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Web Appendix

Model
The Bayesian structural vector autoregression model employed here is based on a system of equa-
tions for each dyadic conflict measure and the Jewish public opinion data. It has one equation for
each of these endogenous variables. Each endogenous variable is a function of contemporaneous
(time “0”) and p = 2 past (lagged) values of all of the endogenous variables in the system. The
dynamic simultaneous equation model is written in matrix notation as

yt
1×m

A0
m×m

+

p∑
`=1

yt−`
1×m

A`
m×m

= Zt
1×k

D
k×m

+ εt
1×m

, t = 1, 2, . . . , T, (1)

with each vector’s and matrix’s dimensions noted below the matrix. This is an m-dimensional VAR
for a sample size of T , with yt a vector of observations for m variables at time t; A` the coefficient
matrix for lags ` = 1, . . . , p, p = 2 the maximum number of lags (assumed known); Zt a matrix of
exogenous variables for the Israeli election counters, Israeli prime ministerial regimes, and conflict
trends for the second Intifada and the post-Battle of Jenin period, and a constant; D is a matrix of
coefficients for the exogenous variables; and, εt a vector of i.i.d. normal structural shocks:

E[εt|yt−s, s > 0] = 0
1×m

, and E[ε′tεt|yt−s, s > 0] = I
m×m

.

Two sets of coefficients in it need to be distinguished. The first are the coefficients for the lagged
values of each variable, A`, ` = 1, . . . , p. These coefficients describe how the dynamics of past
values are related to the current values of each variable. The second are the coefficients for the
contemporaneous relationships, (the “structure”) among the variables, A0. The matrix of A0 coef-
ficients describes how the variables are interrelated to each other in each time period (thus the time
“0” impact). The free parameters of the A0 matrices are defined in the model blocks in the paper.

The prior for the A0 and A+ parameters is specified for (column major) vectorized a0 =
vec(A0) and a+ = vec(A+) where A+ is a column major stacking of the parameters A`, ` =
1, . . . , p:

π(a) = π(a0)φ(ã+, Ψ) (2)

where the tilde denotes the mean parameters in the prior for a+, φ(·, ·) is a normal distribution, and
Ψ is the prior covariance matrix for ã+.

The posterior density for the model parameters is then formed by combining the likelihood for
equation (1) and the prior in equation (2):

Pr(A0, A`, ` = 1, . . . , p) ∝ φ(a+a0|Y )φ(ã+, Ψ)π(a0) (3)

The Bayesian posterior estimates are obtained as detailed in Brandt and Freeman (2007) and
Waggoner and Zha (2003). Posterior estimates are found using a Markov Chain Monte Carlo
(MCMC) Gibbs sampler algorithm for the equations for the structural model. The estimates re-
ported here are based on a Gibbs sampler with a burn-in of 20000 iterations and 500000 iterations
thinned every 5th for the final sample from 200000 draws from two parallel MCMC chains. The
posterior estimates pass standard convergence diagnostics such as the Geweke tests and Gelman
and Rubin’s PSRF.
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Impulse responses and forecasts
Details about the impulse response computations are in (Brandt and Freeman, 2006). The re-
sponses here are based on one chain (100000 draws) from the posterior sample of the B-SVAR
model.

The forecasts are computed by translating the structural model into a reduced form model. The
reduced form version of the model,

yt = ZtC + yt−1B1 + · · ·+ yt−pBp + ut, t = 1, 2 . . . , T, (4)

is an m-dimensional VAR model for each observation in the sample, with yt an 1 × m vector of
observations at time t, B` the m × m coefficient matrix for the `th lag, and p = 2, the maximum
number of lags. In this formulation, all of the contemporaneous effects (which are in the A0 matrix
of the SVAR) are included in the covariance of the reduced form residuals, ut.

The reduced form in equation (4) is derived from the SVAR model by post-multiplying equa-
tion (1) by A−1

0 . Thus, the reduced form parameters are transformed from the structural equation
parameters via

C = DA−1
0 B` = −A`A

−1
0 , ` = 1, 2, . . . , p, ut = εtA

−1
0 (5)

where the last term in equation (5) indicates how linear combinations of structural shocks are
embedded in the reduced form residuals. Equation (5) shows that restricting elements of A0 to be
zero restricts the linear combinations that describe the reduced form dynamics of the system of
equations via the resulting restrictions on B` and ut.

The posterior sample of the ex ante forecasts is constructed using the following steps:

1. Draw A0 and A+ using the Gibbs sampler for the structural model.

2. Compute the reduced form coefficients in equation (5) from the draws of A0 and A+.

3. Forecast j periods using equation (4). In these forecasts, the uncertainty of the structural
shocks, εt enters the system by adding a set of reduced form shocks, ut ∼ N(0, (A0A0)

−1)
to the forecasts.

4. Repeat steps 1–3 N times.

The N posterior forecasts are then used to compute the error bands for the forecasts. A posterior
sample of 100000 draws is used for computing the forecasts.

The exogenous variables (time counters and Israeli prime ministerial regimes) were set based
on the values at the end of the sample. That is, trend counters were allowed to continue and no
changes in prime ministerial control were made.

Model comparisons / Posterior probabilities of A0

To compute the probabilities of each of the models, one first must find the log marginal data
density. This is the probability that the sample data was produced by the model. The log marginal
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Model log(P (A0, A+)) log(p(Y |A0, A+)) log(π(A+|A0))
∑

log(π(A0(i))) log(m(y))
Recursive −207.83 −64.37 869.51 −22.29 −1119.41
Accountability −182.25 −71.00 869.51 −2.49 −1120.27
Bystander −180.96 −71.65 869.51 −2.29 −1119.83
Credibility −179.62 −70.72 869.51 −0.56 −1119.28
Follower −181.93 −71.60 869.51 −3.84 −1119.20

Table 1: Log probabilities of various quantities of interest for the B-SVAR models reported in the
paper.

data densities are computed using the following representation of the Bayesian Marginal Identity
(BMI) from Chib (1995):

log(m(Y )) = log(p(A0, A+)) + log(p(Y |A0, A+))−
m∑

i=1

log(π(A0(i)))− log(π(A+|A0)), (6)

where log(m(Y )) is the log marginal data density, log(p(A+, A0)) is the log prior, log(p(Y |A+, A0))
is the log-likelihood,

∑m
i=1 log(π(A0(i))) is the log posterior probability of the A0 matrix and

log(π(A+|A0)) is the log posterior of the A+ terms, conditional on A0. All of the quantities on the
right-hand side of the equation are trivially computed from the Gibbs sampler output.

Note that equation 6 is just the logarithm of the following:

m(y) =
p(Y |A0, A+) · p(A0, A+)

[
∏m

i=1 π(A0(i))] π(A+|A0)
. (7)

A little rearranging of this gets us back to the standard posterior or Bayes Theorem form (so
the above has just reverse engineered the standard presentation of the log MDD derivation):

[
m∏

i=1

π(A0(i))

]
π(A+|A0) =

p(Y |A0, A+) · p(A0, A+)

m(y)
. (8)

Thus, the quantities produced in computing the log marginal data density can be used to com-
pute the log probability of A0 for each model.

Table 1 shows the log marginal data density and its component quantities computed from the
Gibbs sampler output for each of the models. The items in the third column match those in the
paper.

One question here is whether the log marginal data density is the quantity of interest for the
model. Gelman et al. (2004) argue that in many cases the Bayes factors are the quantity of interest,
rather than we care about some marginal probability statement. So in the present context we prefer
a probability statement about the structure of the model, not the fit of the model to the data. In
this case, the quantity of interest should be the model with the largest posterior probability, π(A0)
or π(A0, A+|Y )? The rational is as follows: suppose we estimate two different models that differ
only in their A0 specifications. Then the likelihoods, and the estimates of other quantities above
are going to be basically the same. So we should then focus on the posterior probability of A0

as the point of comparison, since this is really the only specification difference across the models.
Note that under this criteria, the log(π(A0)) is largest for the credibility model.
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