
Replication Note for A Bayesian Poisson Vector
Autoregression Model∗

Patrick T. Brandt†

pbrandt@utdallas.edu

Todd Sandler
tsandler@utdallas.edu

School of Economic, Political and Policy Sciences
The University of Texas, Dallas
800 W. Campbell Rd., GR 31

Richardson, TX 75080

January 17, 2012

Here we provide the replication materials for our article, “A Bayesian Poisson Vector
Autoregression Model.” The replication code is organized into two folders, one for each of
the examples in the paper:

superpower/ Replication files for the superpower rivalry application,

targeting/ Replication files for the terrorist targeting appplication.

For both applications we have also included the dataset analyzed and the R and JAGS scripts
used in the analysis, and output logs from the R runs. We have omitted the interim files that
hold the Markov chain Monte Carlo (MCMC) output for the sake of space (these can be
reproduced by running the scripts included here — random number seeds are set thoughout
for reproducibility).

R version 2.14.0 and JAGS version 2.2.0 were used to conduct the analysis. The files
and descriptions listed below work with these versions. Your mileage will vary with future
versions. The JAGS code has not been tested in BUGS as of January 2012.

∗This study was funded by the US Department of Homeland Security (DHS) through the Center for Risk
and Economic Analysis of Terrorism Events (CREATE) at the University of Southern California, Grant
2007-ST-061-000001 and 2010-ST-061-RE0001. Brandt’s research is based upon work supported by the
National Science Foundation under Award Number 0921051. However, any opinions, findings, conclusions,
and recommendations are solely those of the authors and do not necessarily reflect the views of DHS,
CREATE or the National Science Foundation.
†Corresponding author.

1



In several places in the code we have used parallel processing with the R snow package.
This was done for analyzing the multiple datasets with multiple MCMC chains or for other
diagnostics.

There are both single and multicore versions of the code. Given the large number of
models fit (e.g., for the terrorist targeting application there are 5 data subsets and 3 different
lag specifications considered), some of the models are fit using the snow R package so that
we can process different models in parallel on multiple cores. If you do not have a multicore
processor and a working version of R ’s snow package, you will have to run this code serially.
If you have more or fewer cores, you will want to adjust the number of cores employed for
your environment. Please do not contact me with questions about setting up and using snow

in R , since there are ample resources available online (e.g., rseek.org).
In what follows, files with a .R file extension are R input scripts, with a .Rout file

extension are R output files, and anything with a .bug extension are JAGS model code. All
code is heavily annotated with descriptions of what is being done.

Superpower Rivalry Application

The replication of the superpower rivalry example in section 4 of the article uses the following
files. These are presented in the order in which they need to be used or run, since each one
generates output that is necessary for subsequent R scripts. The assumption in setting up
these files for a run is that they are all in the same folder.

dyadyr.dta and dyadyr.txt The dataset, from King (1989), in Stata or text format.

MVPLN-superpower.R This is the simplest version of the BaP-VAR estimator. It sets up the
data from the dataset files dyadyr, generates Figure 1, and estimates the BaP-VAR
models. Examples in the file show how to set up the priors for each of the BaP-
VAR(p) models. The conclusion of the script generates the DIC statistics and checks
posterior convergence with Gelman-Rubin diagnostics. This file is meant to be a quick
pedagogical example of how to employ and setup the model.

MVPLN-VAR-*.bug These are the JAGS model code, specific to this application. The number
in the filename corresponds to the value of p, the lag length in the BaP-VAR(p) spec-
ification. The initial lines of the file read in the data dumped out in a proper format
from the last script. The model is then defined in standard JAGS or BUGS notation.
Note that the prior for the coefficients is set in the ending lines of code in the file.

BAPVAR-superpower-multicore.R This is the main R script used to generate the posterior
output reported in section 4 of the paper. This script does all of the data setup from
the MVPLN-superpower.R script. In this file, however, the models are fit using multiple
processors or cores. Different models (values of p) are deployed on different cores. Each
core does the MCMC simulation for a given posterior, saves the results, and estimates
the DIC for that specification. The setup in this file uses three cores, on each for
p = 1, 2, 3. The computational cluster is set up using the load-balancing functions in
snow for optimal parallel computation. The only output beyond saving the posterior
samples is to return the posterior DIC statistics.

2

rseek.org


BAPVAR-superpower-diagnostics.R Uses the posterior sample output from the previous
file to generate summary statistics for the posterior parameters and the Gelman-Rubin
diagnostics (Brooks and Gelman, 1998) on convergence.

BAPVAR-superpower-dynamics.R This file computes the dynamic responses or impulse re-
sponse functions (IRFs) for the models. The file contains a number of special, model
specific functions to compute and map moments. Some of these are model specific and
will need to be modified for other applications. These are documented at the beginning
of the script. This file produces the output in Figure 2 and the BaP-VAR results in
Table 2 of the paper. The plotting method for the impulse responses is the same one
employed in the MSBVAR R package. The code here employs several versions of error
bands for impulse responses, as documented in Brandt and Freeman (2006).

BAPVAR-superpower-multiplers.R Computes the dynamic or impact multiplers for changes
in the exogenous covariates, as reported in Figure 3 of the article. The BaPVAR.multiplier
function in this file is generate and can be used in other conforming applications. Note
that this file used parallel processing across the number of covariates, since for a fixed
number of k covariates for a given posterior sample of size N , this is a parallel pro-
cessing problem. The plot at the end of the code generates Figure 3.

VAR-superpower.R R script that generates the Gaussian VAR results in Table 2 and footnote
9 of the article using the MSBVAR R package.

Terrorist Targeting Application

Replication of the terrorist targeting example in section 5 of the article uses the following
files. These are presented in the order in which they need to be used or run, since each one
generates output that is necessary for subsequent R scripts. The assumption in setting up
these files for a run is that they are all in the same folder.

MonthlySeries1968-2008.RData The raw data in R format used in the analysis (if you are
using MS-Windows, rename the file with the extension .rda so your OS recognizes
it — but this will not work necessarily with the rest of the code). Since ITERATE
(Mickolus et al., 2009) is a proprietary database, we cannot provide the original, raw,
event data used to construct the time series. Here we have aggregated the monthly
totals from 1968–2008 as zoo R package objects of time series for each target type. The
included setup.R script illustrates how to get the aggregated data from a CSV version
of the original ITERATE data using R.

MVPLN-VAR-monthly.R R script that does the main posterior simulation of the analysis of
the monthly terrorist targeting data. This script does a series of things:

• Subsets the data into the five sub-samples, y1,...,y5.

• Sets up the initial conditions for each sample’s posterior simulation and dumps
these for use in each JAGS run / model.

3



• Defines a function that will estimate a model for each sub-sample, lag length, and
number of chains. This is how JAGS is called from R using the rjags package.
The MVPLNmodel function in this file writes out the main results and only returns
the model fit, or DIC. As interim output, this code outputs the results for each
sub-sample and lag length specifcation (see the MVPLNmodel function and its calls
for more details).

MVPLN-VAR-*.bug These are the files where the * differentiates only a number. These are
the JAGS model code, specific to this application for the separate analyses, based on lag
length. The number in the filename corresponds to the value of p, the lag length in the
BaP-VAR(p) specification. The initial lines of the file read in the data dumped out in
a proper format from the last script. The model is then defined in standard JAGS or
BUGS notation. Note that the prior for the coefficients is set in the final lines of code
in the file.

MVPLN-VAR-monthly-DIC.R Computes the DIC’s for each of the fitted models for this ap-
plication and reports them in a table like Table 3 of the article.

MVPLN-VAR-monthly-posterior.R Uses the posterior sample output from the previous file
to generate summary statistics for the posterior parameters and the Gelman-Rubin
diagnostics on convergence.

MVPLN-VAR-monthly-dynamics.R This file computes the dynamic responses or impulse re-
sponse functions (IRFs) for the models. The file contains a number of special, model
specific functions to compute and map moments. Some of these are model specific and
will need to be modified for other applications. These are documented at the beginning
of the script. This file produces the output in Figures 4–7, those omitted after Figure
7 for the last sub-sample, and the BaP-VAR results in Table 4 of the paper (these are
in the output, but hand-edited to make the reported results). The plotting method for
the impulse responses is the same one employed in the MSBVAR R package. The code
here employs several versions of error bands for impulse responses, as documented in
Brandt and Freeman (2006).

MVPLN-VAR-dfev.R Uses the MCMC results of the last script to compute the decompositions
of the forecast error variance (DFEV) for the BaP-VAR posterior for this application.
This generates the results for Figure 8 in the paper, based on the last script and
the MSBVAR R package. Some of this code is specific to the application, but can be
generalized.

MVPLN-VAR-full.R What if you analyze the complete monthly 1968–2008 sample? Included
here. This script does the analysis noted above for the full sample. Does the same
analysis as above with similar results. This generates the results for the claims in
footnote 15.

MVPLN-VAR-full-*.bug Same as the earlier *.bug files, but adapted for the full sample,
rather than the 5 subsets of the dataset.

4



MVPLN-VAR-full-dynamics.R Generates the IRFs for the full sample analysis using the
BaP-VAR(1) results from the last two scripts.

MVPLN-VAR-full-posterior.R Uses the posterior sample output from the MVPLN-VAR-full.R
script to generate summary statistics for the posterior parameters and the Gelman-
Rubin diagnostics on convergence.

MVPLN-Gaussian-VAR.R This is the Gaussian-VAR analysis of the data in this application.
It estimates the Gaussian VARs using the MSBVAR R package.

Final Notes

A few final comments if you are trying to implement your own BaP-VAR(p) model:

1. Start small. Replicate the superpower rivalry example first to make sure you have all
of the software (R , JAGS , rjags, and related packages) working properly.

2. Tips on setting the prior for the BaP-VAR coefficients. Remember, the coefficients are
in the log-normal space and the outcomes of interest are in the observable count space.
So you need to map your priors for the intercept from the observable space into the
log-normal space. The easiest way to do this is compute the sample means and sample
covariance of your data and then take the natural logs as an approximation.

3. Setting the priors on the AR coefficients. Remember, the suggestion in the paper is
to use a Sims-Zha prior (Sims and Zha, 1998) where A1 = I, an identity matrix and
A` = 0 for ` = 2, . . . p. The precisions should shrink these coefficients toward zero
as the lag length increases. For example, if you set the prior precision for the A1

coefficients to be 10, then to have harmonic lag decay the prior precision for A2 should
be 20, for A3, 30, etc.

References

Brandt, P. T. and J. R. Freeman (2006). Advances in Bayesian time series modeling and the
study of politics: Theory testing, forecasting, and policy analysis. Political Analysis 14 (1),
1–36.

Brooks, S. and A. Gelman (1998). General methods for monitoring convergence of iterative
simulations. Journal of Computational and Graphical Statistics 7, 434–455.

King, G. (1989). A seemingly unrelated Poisson regression model. Sociological Methods &
Research 17 (3), 235–255.

Mickolus, E. F., T. Sandler, J. M. Murdock, and P. Flemming (2009). International Terror-
ism: Attributes of Terrorist Events, 1968-2008 (ITERATE). Dunn Loring, VA: Vinyard
Software.

Sims, C. A. and T. A. Zha (1998). Bayesian methods for dynamic multivariate models.
International Economic Review 39 (4), 949–968.

5


