INTRODUCTION

At the centre of the Alpine-Himalaya orogenic belt, Iran and Turkey preserve similar evidence of different tectonic environments that have existed since the Ediacaran (Azizi & Whattam, 2022; Dokuz et al., 2022; Karsli et al., 2022; Moghadam et al., 2021). Magmatic activity in Turkey–Iran is limited to several intense episodes, including Ediacaran–Cambrian, late Palaeozoic, Jurassic, Late Cretaceous and Cenozoic (Azizi et al., 2019; Azizi & Tsuboi, 2021; Daneshvar et al., 2019; Gholipour et al., 2022; Karsli et al., 2022; Karsli, Dokuz, Faruk, & Bin, 2010; Karsli, Dokuz, Uysal, et al., 2010; Nouri et al., 2017; Nouri et al., 2021; Topuz et al., 2005; Topuz et al., 2017). Magmatic episodes reflected the opening and closing of Prototethys, Palaeotethys and Neotethys. The most enigmatic of these magmatic episodes happened in the Jurassic. Jurassic igneous rocks are not as well exposed as Cretaceous and Cenozoic magmatic rocks, which can be traced from western Iran to northern Turkey as parallel belts that formed at a convergent plate margin. Jurassic volcanic rocks in the central Sanandaj–Sirjan Zone (SaSZ) of Iran are interbedded with shallow marine sediments and intruded by granitic plutons. Based on clear OIB basaltic rocks with ages ~150 Ma in the central part of the SaSZ, bimodal magmatism and synsedimentary structures, a continental rift was suggested for the tectonic setting of the SaSZ in Jurassic time (Azizi et al., 2018; Azizi et al., 2020; Azizi & Stern, 2019).

In this contribution, we review Jurassic successions for Iran and northern Turkey as a "single terrane" hypothesis to test the hypothesis that these evolved as a continental rift. We show that Jurassic sequences in the two regions are usefully explained by the formation of a volcanic passive margin on the SW margin of Eurasia in Jurassic time. This novel interpretation further suggests that the Jurassic successions of Iran and Turkey offer an avenue for studying an exposed volcanic rifted margin as a complement to offshore studies (Gallahue et al., 2020).

1.1 Jurassic rock sequences of Iran and Turkey

Jurassic rocks are widely distributed in northern, central and western Iran (Figure 1) and continue into the Sakarya Zone (SZ) of northern Turkey with minor exposures in southern and central Turkey (Ahadnejad et al., 2011; Azizi et al., 2011; Azizi, Najari, et al., 2015; Azizi, Zanjefili-Beiranvand, & Asahara, 2015; Bayati et al., 2017; Chiu et al., 2013; Çimen et al., 2018; Dokuz et al., 2017; Esna-Ashari et al., 2012; Eyuboglu et al., 2016; Fazlia et al., 2009; Galoyan et al., 2018; Hunziker et al., 2015; Khalaji et al., 2007; Mahmoudi et al., 2011; Mousivand et al., 2011; Shahbazi et al., 2010; Stöcklin & Nabavi, 1973; Yilmaz & Bonhomme, 1991; Zhang et al., 2018). Jurassic sequences in Iran unconformably overlie Late Palaeozoic and Triassic rocks and start with terrestrial conglomerate, sandstone...
and shale, gradually changing up-section into marine limestone. These sediments are interbedded with mafic to felsic lavas and pyroclastics and are intruded by plutons and dikes. This succession attests to continental extension and subsidence in a terrestrial environment that evolved into a marine shelf. In the following, we describe the four main occurrences of Jurassic rocks in Iran and Turkey (Figure 1).

1.1.1 | Sanandaj–Sirjan Zone (SaSZ), Iran

The SaSZ Jurassic succession changed with time from older conglomerate, shale and sandstone into younger dolomite and limestone (Figure 2). Triassic sedimentary rocks (1000–1500m thick) are unconformably overlain by Jurassic sedimentary rocks (700–3000m thick). The Jurassic complex is overlain by Cretaceous shale and limestone which are interbedded with calc-alkaline basalts and andesites in the northern SaSZ.

1.1.2 | Central Iran

Jurassic sequences in central Iran are 200–1000m thick and are preserved in NW–SE parallel basins (Figure 1). The Jurassic section in the Khor and Tabas regions (Figure 2) is similar to that of the SaSZ but sedimentation in the Tabas region continued from the Jurassic to Cretaceous (Figure 2).

1.1.3 | Northern Iran (Alborz)

In northern Iran, unconformities of the Jurassic section with the underlying Triassic and overlying Cretaceous sequences are clear (Figure 2). The main Jurassic unit is the ~4 km thick Shemshak formation of mainly siliciclastic rocks, terrigenous at the base and marine at the top (Fursich et al., 2009).

1.1.4 | Northern Turkey, Sakarya Zone

Jurassic rocks in Turkey are mainly found in the eastern Sakarya Zone (SZ) and are more poorly developed elsewhere (Figure 1). These correlate with Iran Jurassic sequences, with similar discontinuities at the base and top. SZ sections (Aldogan et al., 2019; Dokuz et al., 2017) also comprise sediments interbedded with basaltic rocks. Early-Middle Jurassic volcano-sedimentary rocks of the Şenköy Formation are widespread in the eastern SZ (Kandemir & Yilmaz, 2009) and rest unconformably on deformed Palaeozoic rocks. The Şenköy Formation varies from 2 to 2250m thick, with significant vertical and lateral facies changes. An extensional tectonic environment is accepted for the deposition of these sequences (Kandemir & Yilmaz, 2009).

Dismembered Early Jurassic ophiolites with 186–174Ma ages (Topuz, Çelik, et al., 2013; Topuz, Göçmengil, et al., 2013; Uysal, Akmaz, et al., 2015; Uysal, Ersoy, et al., 2015) are found in northern Turkey. These are around 20Ma older than the sequences we discuss.

2 | METHODS

We correlated Jurassic members units and compiled whole-rock chemical and Sr–Nd isotopic data for 216 Early to Middle Jurassic igneous rocks in Turkey, Armenia and Iran from the literature (Bozorg Senghaisara et al., 2017; Çimen, 2020; Doaee et al., 2020; Dokuz et al., 2010; Dokuz & Süneştçi, 2019; Eyuboğlu et al., 2016; Galoyan et al., 2018; Genç et al., 2010; Günay et al., 2019; Lechmann et al., 2018; Şen, 2007). We also compiled geochemical data for ophiolite mafic members with 184–176Ma (Sarafkioğlu et al., 2009; Topuz, Göçmengil, et al., 2013; Uysal, Ersoy, et al., 2015); these are presented in Table S2 (whole rocks) and Table S3 (Sr–Nd isotopes). These data were used for identifying mafic rocks’ tectonic settings. This information was used to develop a new geodynamic model for the Jurassic evolution of Turkey and Iran.

2.1 | Igneous Rock chemistry and Sr–Nd isotope ratios

Jurassic magmatism includes volcanic and intrusive rocks. Volcanic rocks are mainly basalt, andesite and rhyolite lava and tuff
interbedded with sedimentary layers. Intrusive bodies vary from gabbro to granite. Chemical compositions in the Na$_2$O + K$_2$O versus SiO$_2$ (wt%) variation (Le Bas et al., 1986) are dominated by basaltic and acidic groups with subordinate intermediate rocks (Figure 3a).

Mafic rocks mostly plot near the sub-alkaline and alkaline boundary with affinity to alkaline suites (Figure 3a). Due to the high Fe$_2$O$_3^t$ contents, most mafic rocks are tholeiites on the Fe$_2$O$_3^t$/MgO ratios versus SiO$_2$ diagram (Miyashiro, 1974) (Figure 3b). Mafic rocks also show a tholeiitic fractionation trend (Figure 3c) in the Fe$_2$O$_3^t$/MgO versus TiO$_2$ diagram (Miyashiro, 1973).

To avoid complications due to crustal contamination and magma differentiation, we rely on samples with 45 to 52 wt% SiO$_2$ for interpretation Harker bivariant diagrams (Figure 4) with horizontal trends confirm that compositions change little as SiO$_2$ varies across this range, although minor variations suggest different magma sources.

Mafic samples approach primary compositions and are useful for understanding the tectonic setting of formation. Mafic rocks with higher Fe$_2$O$_3^t$, TiO$_2$ and Y mainly plot in the tholeiitic field and extensional tectonic settings such as continental rift (Figure 5a–c) with minor arc affinities in some tectonic discrimination diagrams (Cabanis & Lecolle, 1989; Irvine & Baragar, 1971; Mullen, 1983). Higher Y with lower Zr contents (MacLean & Barrett, 1993) indicate tholeiitic and transitional basalts (Figure 6a). Some samples show arc affinity on the Nb/Th versus Nb diagram (Pearce, 2014) (Figure 6a). In the Ti–Vi variation diagram (Shervais, 1982), mafic rocks plot in the MORB to back-arc basin fields (Figure 6c). Due to elevated Ta/Hf and Th/Hf ratios (Figure 6d), samples mostly plot in the rift initiation to mature continental rift and some in the mantle plume field (Yunliang et al., 2001). Lower Th/Yb and higher Nb/Yb ratios (Pearce, 2008) show the relation of these rocks to normal mid-oceanic ridge basalt (N-MORB) and oceanic island basalt (OIB).
FIGURE 2 Simplified stratigraphic columns of Turkey (1 and 2) and Iran (3–7). Columns 1 and 2 are modified from (Akdoğan et al., 2019; Dokuz et al., 2017). Columns 3–7 are modified from the geological map of Iran (Huber, 1977). See the location of stratigraphical columns in Figure 1. [Colour figure can be viewed at wileyonlinelibrary.com]
with minor crustal assimilation (Figure 6e). Minor continental crustal contamination (Figure 6f) is also seen on plots of Nb/La versus Nb/Th ratios (Zhang et al., 2014).

Low La/Yb and high La/Sm ratios and high Sm concentrations in mafic rocks show that these magmas were produced from the partial melting of mostly spinel–garnet peridotites and minor garnet lherzolite (Figure 6g–i). Modelled partial melting of the spinel–garnet lherzolite (Aldanmaz et al., 2000) shows these were generated from 5 to 30% partial melting.

The samples mostly have low to moderate $^{87}\text{Sr}/^{86}\text{Sr}(t)$ (from 0.7036 to 0.7087, mean = 0.7052), moderate $\varepsilon_{\text{Nd}}(t)$ (+6 to −2, mean = +2.8, n = 67; Figure 7) and Nd model ages (T_{DM} = 0.32 to 1.4 Ga, mean = 0.78 Ga) (Table S3). These rocks mostly plot in the depleted mantle field. Scatter in the $^{87}\text{Sr}/^{86}\text{Sr}(t)$ versus $\varepsilon_{\text{Nd}}(t)$ diagram suggests that some samples were affected by seawater alteration, but this could also indicate the involvement of old subduction-modified crust or lithosphere.

3 | DISCUSSION

Due to the time progression of Jurassic intrusions in the central SaSZ and bimodal magmatism, a propagating continental rift was suggested for the C-SaSZ (Azizi & Stern, 2019). In this discussion, we build on this insight to show that the SaSZ and correlative Jurassic sequences in northern Turkey and Iran were parts of a volcanic passive margin that began to form during the Jurassic. This interpretation is supported by the presence of basaltic rocks with a plume to N-MORB type affinities.

Jurassic basaltic rocks interbedded with sediments are also abundant in northern and central Iran. If we accept the increasingly convincing evidence that Neotethys subduction beneath Iran began in mid-Cretaceous time (Azizi & Stern, 2019; Balázs et al., 2021; Gholipour et al., 2021; Moghadam & Stern, 2021; Stern et al., 2021), an interpretation that is supported by the development of ~100 Ma high-P metamorphism (Angiboust et al., 2016), we can entertain two possibilities for the evolution of Jurassic marine sedimentation and magmatism in Iran and Turkey.

The first scenario emphasizes the development of a Jurassic basin system with the basal conglomerate and older sedimentary layers accompanied by bimodal magmatism. Basaltic magmas were generated from the partial melting of spinel to garnet lherzolite of the subcontinental lithospheric mantle. The different types of sediments with similar ages and the absence of Jurassic sediments in some areas suggest that Jurassic basins opened in central, north and southern Iran as well as in northern Turkey. Such distributed extension is common in the early stages of continental breakup, for example, in the Triassic of the eastern USA (Withjack et al., 2020). From this perspective, Jurassic basins may have accompanied the opening of Neotethys. This interpretation finds further support because younger Jurassic and Early Cretaceous deep marine sediments such

FIGURE 3 Chemistry of Jurassic volcanic and intrusive rocks (Bozorg Seghinsara et al., 2017; Çimen, 2020; Doaee et al., 2020; Dokuz et al., 2010; Dokuz & Sünnetçi, 2019; Eyuboğlu et al., 2016; Galoyan et al., 2018; Genç et al., 2010; Gönay et al., 2019; Lechmann et al., 2018; Şen, 2007) and mafic parts of the Early Jurassic ophiolites (Sarıfakioğlu et al., 2009; Topuz, Gökşen, et al., 2013; Uysal, Ersoy, et al., 2015). Chemical compositions range from mafic to felsic in the Na$_2$O + K$_2$O versus SiO$_2$ (Le Bas et al., 1986) and are dominated by basaltic and acidic groups with subordinate intermediate rocks (a), (b and c) Fe$_2$O$_3$(t)/MgO versus SiO$_2$ and TiO$_2$ diagrams (Miyashiro, 1974). [Colour figure can be viewed at wileyonlinelibrary.com]
as chert and radiolarites are exposed throughout Zagros, demonstrating subsidence to pelagic depths (Al-Qayim et al., 2018).

Jurassic basins in Iran and Turkey were inverted and exposed during the Late Jurassic–Early Cretaceous. These rocks were eroded and covered by the middle Cretaceous basal conglomerate. Based on these findings we suggest an integrated model for the Jurassic–Cretaceous evolution of SW Eurasia with three main elements: (a) Jurassic continental rifting with bimodal magmatism to open a wide extensional basin system along and adjacent to the continental crust margin; (b) thermal subsidence to form a Late Jurassic–Earliest Cretaceous passive continental margin on the northern flank of Neotethys; and (c) subduction initiation of Neotethys beneath Iran–Turkey in the mid-Cretaceous. This model is presented in Figure 8a–c.

The second scenario involves the southward subduction of Palaeotethys beneath northern Turkey continued into Jurassic time to form a back-arc basin in the Sakarya Zone (Dokuz et al., 2010; Genç et al., 2010; Kandemir & Yilmaz, 2009; Karsli et al., 2017; Maffione & van Hinsbergen, 2018; Sengör & Yilmaz, 1981). This interpretation is precluded for Iran, where Palaeotethys closed in Permo-Triassic time (Mohagham and Stern, 2014). For this reason, we prefer the continental rift-passive margin scenario.

4 | CONCLUSIONS

Jurassic extensional basins developed in Iran and Turkey during Early–Middle Jurassic time, associated with bimodal magmatism. Chemical compositions and Sr–Nd isotope ratios suggest the derivation of mafic melts from the partial melting of spinel–garnet lherzolite. 5%-30% partial melting in an extensional tectonic regime with minor involvement of continental crust is suggested for the sources of tholeiitic to alkaline basaltic magma. We suggest two main scenarios for the SW Eurasian Jurassic extensional regime.
which differ mainly concerning whether Turkey–Iran was part of Eurasia (Palaeotethys closed) or not (Palaeotethys open). Evidence from NE Iran that Palaeotethys closed thereby Early Triassic time and closed later north of Turkey indicates that Jurassic extensional basins are not related to Palaeotethys subduction.

Turkey–Iran extensional basins experienced intense magmatic and tectonic activity in the Mid-Late Jurassic and inverted in the Early Cretaceous. These relationships suggest the formation of a Jurassic-rifted continental margin on the SW margin of Eurasia. Further work is needed to test the hypothesis of the Jurassic formation of a volcanic-rifted passive margin on the SW Eurasian margin, similar to that of offshore Norway, but the advantages of Iranian and Turkish scientists working together to solve common geoscienctific problems are clear.

ACKNOWLEDGEMENTS
F. Nouri and N. Daneshvar helped to generate two figures. This work benefited from two reviewers, an anonymous associate editor, and a scientific editor K. Mezger. This is UTD Geosciences contribution #1698.

DATA AVAILABILITY STATEMENT
The data that supports the findings of this study are available in the supplementary material of this article.

ORCID
Hossein Azizi https://orcid.org/0000-0001-5686-4340
Robert J. Stern https://orcid.org/0000-0002-8083-4632

REFERENCES
Angiboust, S., Agard, P., Glodny, J., Omrani, J., & Oncken, O. (2016). Zagros blueschists: Episodic underplating and long-lived cooling of...
that these magmas were produced from partial melting of spinel–garnet peridotite and minor garnet lherzolite. See the text for more information.

FIGURE 6 Mafic samples (Bozorg Seghinsara et al., 2017; Çimen, 2020; Doaee et al., 2020; Dokuz et al., 2010; Dokuz & Sünnetçi, 2019; Eyuboglu et al., 2016; Galoyan et al., 2018; Genç et al., 2010; Günay et al., 2019; Lechmann et al., 2018; Şen, 2007) and mafic parts of the Early Jurassic ophiolite (Sarifakioğlu et al., 2009; Topuz, Göçmengil, et al., 2013; Uysal, Ersoy, et al., 2015) in some petrogenetic variation diagrams (a) Zr versus Y contents (MacLean & Barrett, 1993), (b) Nb/Th versus Nb (Pearce, 2014), (c) Ti/V (Shervais, 1982), (d) Ta/Hf versus Th/Hf ratios (Yunliang et al., 2001), (e) Th/Yb versus Nb/Yb ratios (Pearce, 2008), (f) Nb/La versus Nb/Th ratios in some areas (Zhang et al., 2014) show the relation of these rocks to normal mid-ocean ridge basalt (N-MORB) and oceanic island basalt (OIB) with minor crustal assimilation. (g–i) Yb versus La/Yb and La/Sm and also Sm versus Sm/Yb ratios (Aldanmaz et al., 2000) consistent with the interpretation that these magmas were produced from partial melting of spinel–garnet peridotite and minor garnet lherzolite. See the text for more information. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Schematic model for the Jurassic tectonic evolution of Turkey and Iran. (a) Development of Jurassic extensional basins in Iran and northern Turkey during Early–Middle Jurassic associated with bimodal magmatism. (b) Expansion of Neotethys into western Iran, with basin inversion and exposure in the Late Jurassic–Early Cretaceous. (c) Subduction of Neotethys and development of forearc, arc magmatism and back-arc basin magmatism. See the text for more explanation. [Colour figure can be viewed at wileyonlinelibrary.com]

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

Table S1. Number and references in the Figure 1.

Table S2. Whole-rock chemistry of Early–Middle Jurassic rocks Iran and Turkey.

Table S3. The isotope ratios of Early–Middle Jurassic rocks

How to cite this article: Azizi, H., Stern, R. J., Kandemir, R., & Karsli, O. (2023). A Jurassic volcanic passive margin in Iran and Turkey. *Terra Nova*, 35, 141–152. https://doi.org/10.1111/ter.12638