The Paleogene ophiolite conundrum of the Iran–Iraq border region

Hadi Shafaii Moghadam1,2,3*, Qiu-Li Li3, Robert J. Stern4, Massimo Chiaradia5, Orhan Karsli6 and Bahman Rahimzadeh7

1 School of Earth Sciences, Damghan University, Damghan 36716-4116, Iran
2 FB4-Dynamics of the Ocean Floor, GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Wiss. Hofsstr. 1-3, 24148 Kiel, Germany
3 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Geosciences, Beijing 100029, China
4 Geosciences Department University of Texas at Dallas, TX 75083-0688, USA
5 Department of Earth Sciences, University of Geneva, Geneva, Switzerland
6 Department of Geological Engineering, Recep Tayyip Erdogan University, Rize TR-53100, Turkey
7 Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran

*Correspondence: hshafaei@geomar.de

Abstract: New and compiled geochemical, isotopic and geochronological data allow us to propose a new explanation for Paleogene oceanic magmatic rocks along the Iran–Iraq border. These rocks are represented by a thick pile (>1000 m) of pillow lavas and pelagic sediments and underlying plutonic rocks. These are sometimes argued to represent a Paleogene ophiolite but there are no associated mantle rocks. Integrated zircon U–Pb ages, bulk rock major and trace element and radiogenic isotope data indicate that these rocks are more likely related to forearc rifting due to extreme extension during Late Paleogene time which also triggered high-flux magmatism in the Urumieh–Dokhtar Magmatic Belt and exhumation of core complexes in Iran. These observations are most consistent with formation of the Paleogene oceanic igneous rocks in a >220 km long forearc rift zone.

Received 14 January 2020; revised 16 April 2020; accepted 11 May 2020

Iran and Iraq contain many ophiolites of Mesozoic (mostly Late Cretaceous) age (Moghadam and Stern 2015). Late Cretaceous ophiolites are especially abundant along the Zagros suture zone of Iran and Iraq. Geochronological and geochemical data from Zagros ophiolites strongly support Neotethyan subduction initiation (SI) beneath SW Eurasia during earliest Late Cretaceous and maturation of the convergent margin in latest Cretaceous and Paleogene time (e.g. Golonka 2004; Moghadam and Stern 2011; Moghadam and Stern 2015; Nouri et al. 2016; Monsef et al. 2018). Subduction initiation was coincident with equivalent ophiolites in Oman and the eastern Mediterranean area (Cyprus, Turkey, Syria to Iraq) (Dilek et al. 2007; Dilek and Thy 2009; Moghadam and Stern 2011; van Hinsbergen et al. 2019). Late Cretaceous ophiolites are intruded and covered by younger, Cenozoic intrusions and volcano-sedimentary rocks. Abundant Cenozoic igneous rocks in Iran are readily distinguished because they tend to be felsic and eruptions were subaerial or in shallow water. However, along the Iran–Iraq border Cenozoic igneous rocks are often mafic and submarine and are easily confused with Late Cretaceous ophiolites (Fig. 1a, b). The presence of gabbros and overlying pillow lavas has led to these being described as a Paleogene ophiolite (e.g. Ao et al. 2016). Do Paleogene mafic-submarine mafic igneous rocks along the Iran–Iraq border really represent oceanic crust? Crucially, what is their significance in the framework of Neotethyan ophiolite and SW Eurasian tectonic evolution?

There are several interpretations for the genesis of these rocks. For example, Saccani et al. (2014) described these rocks as Permain–Triassic passive margin-type ophiolite related to the Gondwana rifting and Neotethyan opening. Paleocene–Oligocene arc to back-arc basin models are also used to explain the occurrence of these rocks along the Zagros suture zone (Araz et al. 2011; Ali et al. 2013). A complex model involving Paleocene back-arc rifting and Eocene arc construction within the Paleocene back-arc basin along the Eurasian continental margin is also used to explain the occurrence of these rocks (Whitechurch et al. 2013). Ao et al. (2016) argued that the Paleogene oceanic realm reflected an exhumed Eocene oceanic core complex, which triggered remelting of oceanic gabbros to make Paleogene granites. Another model considers slab breakoff – following Early Paleogene continental collision – and development of a slab window, which facilitated partial melting of metasomatized lithospheric mantle to make Paleogene igneous rocks along the Iran–Anatolia margin (Dilek and Altunkaynak 2010). This controversy is usefully referred to as the ‘Paleogene ophiolite conundrum’.

In this paper, we report new data on Paleogene magmatic assemblages near Kermanshah-Kamyaran, Iran, near the Iran–Iraq border region. We report new whole rock major and trace element and whole rock Sr–Nd–Pb isotope data along with zircon U–Pb ages and O–Hf isotopes and use these to better understand the age, geochemical signatures and source of these rocks. We further integrate our new data with published results to resolve the ‘Paleogene ophiolite conundrum’ and identify for the first time an important Eocene oceanic rift zone that developed along the present border of Iran and Iraq with possible continuation into easternmost Turkey (Fig. 1b).
Late Cretaceous forearc ophiolites of the Iran–Iraq border region

Late Cretaceous Sl-related Zagros ophiolites are present in the Kurdistan region of eastern Iraq and western Iran, around Kermanshah and Sahneh–Harsin (Fig. 1b). These ophiolites continue to the SE towards Neyriz and Haji-Abad ophiolites (Fig. 1a). Ophiolites in the Kurdistan region are associated with thick Triassic–Cretaceous sequence of pelagic limestones (Avroman–Bisotun limestones), radiolarites (Qulqua–Kermanshah radiolarites) and ocean island basalt (OIB)-, incompatible element-enriched (E-) mid-ocean ridge basalt (MORB)-like lavas and minor felsic intrusive and extrusive rocks which are similar to Triassic (c. 230 Ma) alkaline magmatism of the Hawasina Nappes of Oman (Chauvet et al. 2011). These units are found near the Main Zagros Thrust (MZT; Fig. 1b, c) and are highly crushed. The along-strike continuation of these units to the SE is known as the Pichakun series in Neyriz, which consist of upper Triassic limestones, middle Jurassic oolitic limestones and lower-middle Cretaceous conglomeratic limestones. Minor OIB-like lavas accompany these sediments (Babaei et al. 2005).
These sequences are related to rifting of Gondwana and opening of Neotethys. These units continue into Iraqi Kurdistan (Mawat to Hasanbag, Fig. 1b) where they are known as the Avroman limestones and Qulqula radiolarians.

The Late Cretaceous forearc ophiolite around Kermanshah includes mantle peridotite, gabbro, minor plagiogranite, Nb-Ta depleted arc tholeiitic to calc-alkaline lava and Turonian–Maastrichtian pelagic limestone. Gabbroic dikes within the Kermanshah ophiolite mantle section are dated at c. 97 Ma and Kermanshah plagiogranites have zircon U–Pb ages of 94.6 ± 2.7 to 99.5 ± 0.2 Ma (Nouri et al. 2016). Further to the SE, in Neyriz and Haji-Abad, Late Cretaceous ophiolites include depleted to highly impregnated harzburgites containing screens of residual dunite, chromitite, pyroxenitic sills/dikes, pegmatitic gabbros and diabasic–basaltic–andesitic dikes. Sheeted dikes and pillow lavas construct the crustal sequence of these ophiolites. 40Ar/39Ar age data from crustal plagiogranites yield ages of 92.07 ± 1.69 and 93.19 ± 2.48 Ma (Babaie et al. 2006), whereas Zagros U–Pb data show ages of 100.1 ± 2.3 to 93.4 ± 1.3 Ma (Monsel et al. 2018).

Zagros ophiolites show strong supra-subduction zone geochemical signatures, both for mantle and crustal rocks (Ghazi et al. 2010; Moghadam et al. 2010; Moghadam and Stern 2011; Monsef et al. 2015). The crustal sequence of Zagros ophiolites is represented by MORB-like lavas similar to forearc basalts (FAB), arc tholeiites and boninites, similar to present-day forearcs (Ishizuka et al. 2014), although Zagros igneous rocks have stronger Nb-Ta depletion, variable mantle sources and contributions of various subduction components during their genesis (Moghadam et al. 2012, 2013b, 2014). Magmatic rocks with boninitic compositions (Ti/V > 10 and a depleted REE pattern) occur in the Haj-Abad (egg-shaped pillow lavas), Neyriz (sheeted dike complex) and Kermanshah (massive lava) (Moghadam and Stern 2011; Moghadam et al. 2013a). Zagros MORB-like rocks both pre-date and post-date boninites. The Zagros system, like other intra-oceanic forearcs, finally erupted calc-alkaline felsic lavas with Ti/V > 10 and high V/Sc.

Paleogene oceanic tracts of the Iran–Iraq border region

Paleogene volcano-sedimentary rocks are abundant for > 220 km long on either side of the Iran–Iraq border, from SE of Kermanshah to Hasanbag (Fig. 1b). These rocks are called the Walash and Naopurdan volcano-sedimentary sequences in Iraq; we informally call them the Kamyaran series here. Paleogene rocks also occur as bimodal intrusive rocks (c. 41 Ma alkaline gabbros and A2-type granites) in northwestern parts of Piranshahr (Mazhari et al. 2009) (Fig. 1b). The Walash–Naopurdan–Kamyaran (WK) volcano-sedimentary rocks – along with intrusive rocks from NW Iran – are the western extension of the Urumieh–Dokhtar Magmatic Belt (UDMB), which represents the Paleogene magmatic arc of Iran to the east (Fig. 1a). These sequences are intruded by Paleogene granitoids and gabbros. The Walash and Naopurdan sequences consist of pillow and massive basalts, andesites and pyroclastic rocks associated with sandstones, limestones and clastics. The thickness of the Walash–Naopurdan series varies up to > 3000 m. These rocks are mixed and fault-bounded with Late Cretaceous Iraqui ophiolites and even Permian–Triassic OIB-type lavas and limestones (Ali et al. 2013; Hassan et al. 2015). Recent 40Ar/39Ar radiometric dating on basaltic–andesitic felsic dikes and white rocks near Hasanbag indicates ages of c. 43–24 Ma; 43.01 ± 0.15 on Walash and 34.33 ± 0.91 to 24.10 ± 4.8 Ma on Naopurdan rocks (Ali et al. 2013). In the Mawat area, 40Ar/39Ar geochronological data indicate that Walash andesites erupted at 43.1 ± 0.3, 40.1 ± 0.3 and 32.3 ± 0.4 Ma (Aswad et al. 2014). Igneous rocks of the Walash and Naopurdan series have subduction-related characteristics, and include both arc tholeiites and calc-alkaline rocks (Aswad 1999; Numan 2001; Aswad et al. 2011; Azizi et al. 2011a, b; Ali et al. 2013). These geochemical characteristics are similar to those of Eocene arc-related volcano-sedimentary rocks from Kamyaran (Azizi et al. 2011). The formation of the Walash and Naopurdan volcano-sedimentary series has been ascribed to an intra-oceanic convergent margin and development of an arc-back-arc setting during Paleocene–Oligocene (and even Miocene) time (Ali et al. 2013). Eocene volcano-sedimentary rocks are similarly present along the Bitlis–Zagros suture zone in SE Turkey, where their genesis is ascribed to Neotethys subduction, slab detachment, extension and melting of a sub-continental lithospheric mantle (Dilek et al. 2010).

The Paleogene intrusive rocks also occur around Kamyaran and are dominant at SE of Kermanshah, in Sahnah and Harsin. Around Kamyaran, these intrusive rocks intrude both Late Cretaceous ophiolitic rocks – especially serpentinites and harzburgites – and Paleogene volcano-sediments and lavas (Fig. 1c, d). Rocks from SE of Kermanshah include gabbros, granitoids and pillow lavas with arc tholeiitic signature and high εNd(t) values (+ 3.7 to + 9.8) (Nouri et al. 2017). Granites show a zircon U–Pb age of 35.7 ± 0.5 Ma (Ao et al. 2016). Granites and gabbros from Sahnah–Harsin intruded into Late Cretaceous harzburgites and Eocene volcano-sediments (Whitechurch et al. 2013). Azizi et al. (2011) also described a series of calc-alkaline to arc tholeiitic pillow basalts (Fig. 2a) and gabbros of Kamyaran, with zircon U–Pb ages of 54.6 ± 0.3 Ma and 36.75 ± 0.51 to 36.63 ± 0.40 Ma respectively. Initial εNd of these rocks is high (+2.8 to +10), similar to those of intra-oceanic arcs (Azizi et al. 2011). There is also an (basaltic–)andesitic to dacitic dike complex that is intruded by granitic lenses (Fig. 2b). Paleogene dikes intruded Late Cretaceous Kermanshah ophiolites and Paleogene lavas cover them. We sampled dikes as well as lavas for geochemical-isotopic analysis and granitic-dacitic dikes for zircon U–Pb dating.

Paleogene oceanic sequences are also present NW of Kamyaran (east of Sarve Abad, Fig. 1b, c). This Paleogene sequence includes gabbros, diorites and granitic dikes at the lower parts with thickness of c. 3–4 km (Fig. 2c–e). The lower gabbroic–dioritic sequence grades into a thick pile (> 1000 m) of pillow lavas (Fig. 2f, g). The abundance of granitic dikes increases towards the contact of the intrusive rocks with pillow lavas. Gabbros and granites show intrusive contacts with both Paleogene volcano-sediments–sandstones and with thin slices of Late Cretaceous serpentinitized harzburgites. To the WSW, this Paleogene sequence shows faulted contacts with Kermanshah radiolarians whereas in the ENE it has faulted contacts with Mesozoic rocks of the Sanandaj–Sirjan zone.

Analytical procedures

We used five analytical techniques, including: (1) Cameca 1280-HR SIMS and (2) LA-ICP-MS to analyse zircons for U–Pb ages and O isotopes; (3) Multicollector-inductively coupled plasma-mass spectrometer (MC-ICPMS) for analysing Lu–Hf isotope composition of dated zircons; (4) X-ray florescence (XRF) and ICP-MS methods to analyse whole rock major and trace elements; and (5) Thermo Neptune PLUS Multi-Collector ICP-MS to analyse whole rock Sr, Nd and Pb isotopes. Detailed analytical procedures can be found in the supplementary material.

Zircon U–Pb geochronology and O–Hf isotopes

We analysed four samples of Paleogene igneous rocks from near Kamyaran. Gabbros (sample KN14-14, from the lower part of the section) and granitic dikes (sample KN14-3 which intrudes gabbros) from NW of Kamyaran (east of Sarve Abad, Fig. 1c) have intercept ages of 39.5 ± 0.3 Ma (Fig. 3a) and 39.7 ± 0.5 Ma (Fig. 3b), respectively. Two samples of SE Kamyaran dacitic dikes and
granites (cross-cutting dikes) have concordia ages of 36.9 ± 0.1 Ma (Fig. 3c) and 39.4 ± 0.1 Ma (Fig. 3d), respectively. These are related magmatic pulses that generated a significant igneous crust in a very short time.

The εHf(t) values for NW Kamyaran granitic zircons range from +10.5 to +16.3, whereas gabbro zircons have overlapping and slightly higher εHf(t) values of +12.4 to +18.8. The δ^{18}O values vary from +5.3 to +7‰ for granitic dike zircons and to overlapping and slightly lower values from +4.9 to +5.7‰ for gabbro zircons. The εHf(t) values for SE Kamyaran rocks varies from −0.8 to −7.6, indicating an unradiogenic source for these magmas, perhaps reflecting involvement of Cadomian continental crust.

Whole rock major and trace elements and Sr–Nd–Pb isotopes

We analysed Paleogene gabbros, pillow lavas and granitic dikes from NW Kamyaran and dikes (from a dike complex) and lavas from SE Kamyaran. These are equivalent to the Walash–Naipurudan series of Iraq and the Kamyaran series of Iran. Pillow lavas have slight light rare earth element (LREE)-enriched patterns (La_{e}/Yb$_{\text{e}}$ = 1.6–1.8), with modest Nb–Ta depletion relative to LREEs (Nb_{e}/La$_{\text{e}}$ = 1.2–1.4, Fig. 4a). They are geochemically similar to E-MORB and OIB. Gabbros also have flat to slightly LREE-fractionated patterns with La_{e}/Yb$_{\text{e}}$ = 0.7–1.5. Depletion in Nb is conspicuous (Nb_{e}/La$_{\text{e}}$ = 0.5–0.8). Granitic dikes are also enriched in LREE relative to heavy rare earth element (HREE) (La_{e}/Yb$_{\text{e}}$ = 1.8–3.3) and are depleted in Nb–Ta (e.g., Nb_{e}/La$_{\text{e}}$ = 0.4–0.8; Fig. 2a). SE Kamyaran lavas and dikes show flat to enriched LREE patterns (La_{e}/Yb$_{\text{e}}$ = 1.2–24.3), with or without Nb–Ta depletion (Nb_{e}/La$_{\text{e}}$ = 0.3–1).

Initial εNd ranges from +6.5 to +8.9 for Paleogene magmatic rocks from NW Kamyaran. Their $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ values change from 18.21 to 19.46 and 38.09 to 40.77, respectively. $^{207}\text{Pb}/^{204}\text{Pb}$ values range from 15.49 to 15.66. SE Kamyaran dikes and lavas have more variable εNd values; +6.9 to −5.3. Their $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ values vary from 18.54 to 18.86 and 38.58 to 39.19, respectively. All Paleogene rocks plot above the Northern Hemisphere Reference Line (NHRL) on the $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ diagram. SE Kamyaran magmatic rocks show higher involvement of sediments in their mantle source and/or contribution of Iranian continental crust – compared with the NW Kamyaran mafic rocks – although granites from NW Kamyaran have high Pb isotope ratios. The Pb isotopic composition of Paleogene samples lies between Zagros ophiolites and UDMB igneous rocks (Fig. 4c, d).
Fig. 3. Zircon LA-ICPMS and SIMS U–Pb plots for Paleogene magmatic rocks.

Fig. 4. (a) N-MORB normalized multi-elements patterns for analysed Paleogene igneous rocks. (b) Evolution plots of zircon Lu–Hf isotope composition of Paleogene rocks, Zagros ophiolites and UDMB-related rocks. CHUR = chondrite normalized uniform reservoir; depleted mantle array is based on data from modern Mid-Oceanic Ridge basalts with $^{176}\text{Hf}/^{177}\text{Hf} = 0.28325$ and using $^{176}\text{Lu}/^{177}\text{Hf} = 0.0384$ (Chauvel and Blichert-Toft 2001). Note that NW Kamyran igneous have more radiogenic Hf isotopic compositions than other Cenozoic igneous rocks from Iran. (c) $^{207}\text{Pb}/^{204}\text{Pb}$ v. $^{206}\text{Pb}/^{204}\text{Pb}$ and (d) $^{208}\text{Pb}/^{204}\text{Pb}$ v. $^{206}\text{Pb}/^{204}\text{Pb}$ for Paleogene magmatic rocks. The composition of the mantle components EM-1 and EM-2 are from Zindler and Hart (1986), whereas composition of subducted sediments is from Plank and Langmuir (1998). MORB and crust data are from Nowell et al. (1998); Pearce et al. (1999); Chauvel and Blichert-Toft (2001); Woodhead et al. (2001). NHRL is after Vervoort and Blichert-Toft (1999). Published zircon U–Pb–Hf and bulk rock data for UDMB and Zagros ophiolites are from Chiu et al. (2013); Moghadam et al. (2016); Chiu et al. (2017); Hosseini et al. (2017); Moghadam et al. (2017); Kazemi et al. (2019); Sepidbar et al. (2019).
Discussion

Paleogene samples have MORB-like to arc-like geochemical signatures, which is shown by variable depletion in Nb-Ta and enrichment in large ion lithophile elements such as Th, U and Ba. In the Th/Yb v. Nb/Yb plot (Leat et al. 2004), pillow lavas and some massive lavas plot near the mantle array and are similar to MORBs. Dikes, gabbros and granitic dikes as well as most lavas show higher Th/Yb ratios and are similar to calc-alkaline rocks and arc tholeiites (Fig. 5a). In the field, MORB-like rocks seem to be younger than arc-related rocks. A plot of εNd(t) v. Sm/Nd (Fig. 5b) indicates that both depleted mantle similar to the source for normal-type Mid-Oceanic Ridge Basalts (N-MORB) and a variety of slab components similar to Izu-Bonin-Mariana (IBM) sediments and/or Cadomian continental crust of Iran were involved in magma genesis. SE Kamyaran dikes have less radiogenic Nd isotopes and lower Sm/Nd ratios compared with pillow lavas and gabbros. Samples with negative εNd(t) and εHf(t) values may reflect melting of a source with mixed proportions of sediment melts and depleted mantle-wedge materials, or contributions of continental crust.

Our new zircon U–Pb ages confirm Eocene ages for magmatic rocks from NW and SE Kamyaran and rule out the Permian–Triassic Gondwana rifting model to generate these rocks. Field evidence shows that Paleogene melts were injected into Late Cretaceous Zagros forearc ophiolites. Paleogene igneous rocks formed in a deep oceanic basin, represented by a thick pile (> 1000 m) of pillow lavas and interlayered pelagic siliceous sediments. NW Kamyaran preserves tilted, quasi-continuous exposures of oceanic crust where complementary lower and upper crust is exposed. No mantle rocks are exposed with these, and for this reason the Paleogene oceanic crust is not considered to be an ophiolite. It has been suggested that these rocks manifest a Paleogene intra-oceanic arc and back-arc (Ali et al. 2013; Whitechurch et al. 2013), but this is inconsistent with the observation that the Paleogene oceanic realm formed in a forearc setting. A complex scenario calling for an intra-oceanic arc with a back-arc basin to have coexisted with a continental arc on Iranian crust (the UDMB) – with two subduction systems operating at the same time – is unnecessarily complex. It is also geodynamically and geophysically inconsistent with seismic and mantle tomography data that are most consistent with a single, N-dipping subduction zone (e.g. Al-Lazki et al. 2004; Molinaro et al. 2005; Entezar-Saadat et al. 2017 and references therein).

Continental collision and slab break-off scenarios are more useful to explain the formation of Miocene UDMB adakitic magmas since there are several lines of evidence – including tectonics – that the collision between Iran and Arabia began c. 25 Ma, during the Late Cretaceous.

Fig. 5. (a) Th/Yb v. Nb/Yb plot for Paleogene rocks. Deviations above the mantle array are attributed to addition of subduction components or continental crust assimilation (dashed lines indicate the percent added) (Pearce et al. 1995). (b) εNd(t) v. Sm/Nd plot showing that most studied samples have sources that are more similar to Late Cretaceous ophiolites than UDMB igneous rocks. Data for IBM and pelagic sediments are from Yogyodzinski et al. (2018). The composition of continental crust of Iran is from Moghadam et al. (2020b). For comparison, we also show the composition of Paleogene rocks from SE Kamyaran and Kermanshah (Azizi et al. 2011; Nouri et al. 2017).

Fig. 6. Histograms showing the magmatic age distribution of (a) Walash–Naopurdan–Kamyran (WNK) series igneous rocks (-yellow) and Zagros Late Cretaceous ophiolites (-blue), and (b) UDMB magmatic rocks. Zagros ophiolites are as old as c. 110 Ma with a peak at c. 98 Ma (a). Magmatic rocks along the Iran–Iraq border show magmatic climax at c. 37, indistinguishable from the UDMB magmatic climax. Published zircon U-Pb data from Iran are from Chiu et al. (2013); Moghadam et al. (2016); Chiu et al. (2017); Hosseini et al. (2017); Moghadam et al. (2017); Kazemi et al. (2019); Sepidbar et al. (2019).
Oligocene McQuarrie and van Hinsbergen 2013; Barber et al. 2018). Apatite (U–Th)/He cooling ages of c. 20 Ma from core complex of central Iran further suggest an early Miocene period of north–south shortening related to Late Oligocene collision (Verdel et al. 2007). However, there is also evidence for initial collision between Arabia and Eurasia (including Iran) beginning c. 34 Ma (Allen and Armstrong 2008).

We agree that formation of the Paleogene oceanic realm along the Iran–Iraq border was related to a phase of hyperextension. Strong evidence for Paleogene extension is shown elsewhere in the UDMB, producing numerous arc-related extensional basins and core complexes in the upper plate of the Neotethyan subduction zone (Fig. 1a). Paleogene extension was also responsible for forming basins behind the UDMB with thick sequences of volcano-sedimentary rocks, such as those in N and NE Iran (Vincent et al. 2005; Verdel et al. 2011; Sepidbar et al. 2019). There is an age correlation between Paleogene magmatism along the Iran–Iraq border with a peak at c. 37 Ma and magmatism in UDMB which started at c. 50 Ma onwards (Fig. 6). These ages also overlap with those of magmatic rocks from back-arc basins in N and NE Iran (Moghadam et al. 2020a). Strong extension of Iran continental crust may also have caused Paleogene high-flux magmatism in the UDMB (Verdel et al. 2011; Moghadam et al. 2018; Sepidbar et al. 2019). One of these basins, including the WNK basin(s) along the Iraq–Iran border, rifted sufficiently to form new oceanic lithosphere.

Zircon Hf–O and bulk rock Nd isotope composition of some WNK igneous rocks show derivation from more depleted mantle (εHf(t) about +15, εNd(t) about +7, δ18O about +5.5) than that responsible for UDMB arc magmatism (εHf(t) about +9, εNd(t) about +3, δ18O about +6.5) (Fig. 7). These isotopic signatures are similar to those of Late Cretaceous Zagros ophiolites except for SE Kamyaran lavas and dikes which show probable involvement of Iran continental crust. Paleogene forearc rifting to form the WNK basin(s) could reflect weakening of the Iran forearc lithosphere due to slab-released fluids and melts (Baitsch-Ghirardello et al. 2014). This also explains the occurrence of older magmatic rocks (c. 40–39 Ma) with trace of extreme contribution of sediment melts and fluids (Fig. 5a). Resolving the subduction contribution for SE Kamyaran magmas from trace elements is complicated by isotopic evidence that the edge of Iran Ediacaran–Early Neoproterozoic crust was involved in magma-genesis. Younger rocks (c. 36 Ma) with MORB-like signatures were likely generated due to decompression of upwelling mantle beneath the rift with minor contribution of slab-
derived fluids, arguing against an important role for hydrous weakening of the lithosphere. Regardless, the forearc rifting scenario we prefer is similar to that documented for the SE Mariana forearc rift, where the Izu–Bonin–Mariana convergent margin experienced forearc rifting c. 2 Ma years ago (Ribeiro et al. 2013). In the SE Mariana forearc rift strong regional extension caused MORB-type melts to disrupt Eocene boninitic and arc tholeiitic crust. This evolution is very similar to that of the Zagros Paleogene forearc rift. There are two significant differences: (1) in Iran continental crust was involved whereas Mariana rifting only involved oceanic lithosphere; and (2) the Mariana forearc rift cut across the forearc perpendicular to the trench whereas the Iran forearc rift was parallel to forearc and trench.

Traces of other Paleogene oceanic basins(s) may exist elsewhere to the SE in Iran and/or towards the NW, in SE Turkey, wherever the Late Cretaceous forearc suffered extreme extension during the Paleogene. Further studies are needed to understand the age and geochemistry of such sequences; e.g., in the Neyriz ophiolite where younger volcanic rocks and sediments known as the Hassan–Abad complex are present (Babaie et al. 2001).

Conclusions
Paleogene magmatic rocks including gabbros, granites, dikes and overlying pillow lavas are present in the Iran–Iraq border region, in a > 220 km-long belt from SE of Kermanshah (Iran) to Hasanbagh (Iraq). These igneous rocks are accompanied by and/or interlayered with Paleogene sandstones and pelagic limestones. Field observations indicate that Paleogene rocks were injected into and/or underlain by Late Cretaceous Zagros forearc ophiolites, the Kurdistan–Kermanshah ophiolites. Paleogene igneous rocks show MORB- to arc-like geochemical signatures. Zircon U–Pb results show crystallization ages of c. 40–37 Ma for these rocks. We believe that a phase of Paleogene hyperextension in the Iranian Plateau – the main triggers for core complex exhumation and high-flux magmatism in the UDMB – was also responsible for forming the Paleogene forearc rift that is now preserved along the Iran–Iraq border.

Acknowledgements This study was funded by the ‘National Key Research and Development Program of China (2016YFE0203000)’ and by ‘Chinese Academy of Sciences, President’s International Fellowship Initiative (PIFI, 2019YCB0013)’. We are very grateful to Mark Allen and two anonymous reviewers for their constructive reviews of the manuscript. Editorial suggestions by Tyrone Rooney are also appreciated. We are also very grateful to Y. Liu, X.X. Ling, J. Li, G. Tang, Y.H. Yang, X. Yan and D. Zhang (IGG-CAS) for their assistance during zircon SIMS and LA-ICPMS dating and O isotope, LA-MC-ICPMS Lu–HF isotope and SEM analyses. All logistical support for the field work came from Damghan University, Iran. This is UTD Geosciences contribution # 1362.

Funding This work funded by the National Key Research and Development Program of China (2016YFE0203000) to QL and by Chinese Academy of Sciences, President’s International Fellowship Initiative (PIFI, 2019YCB0013) to HSM.

Author contributions HSM: conceptualization (lead), formal analysis (lead), investigation (lead), writing – original draft (lead); QL: data curation (equal), funding acquisition (equal); JR: writing – review & editing (equal); MC: formal analysis (equal); OK: review and editing (equal); BR: investigation (equal).

Data availability statement All data generated or analysed during this study are included in this published article (and its supplementary information files).

Scientific editing by Tyrone Rooney

References

