
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 9:

Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Pointer variable : Often just called a
pointer, it's a variable that holds an
address

• Because a pointer variable holds the
address of another piece of data, it "points"
to the data

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers: Arrays

• We have already worked with something similar
to pointers, when we learned to pass arrays as
arguments to functions.

• For example, suppose we use this statement to
pass the array numbers to the showValues
function:

showValues(numbers, SIZE);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Something Like Pointers : Arrays

The values parameter, in the showValues

function, points to the numbers array.

C++ automatically stores
the address of numbers in

the values parameter.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Pointer variables are yet another way using a

memory address to work with a piece of data.

• Pointers are more "low-level" than arrays and

reference variables.

• This means you are responsible for finding the

address you want to store in the pointer and

correctly using it.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Definition:

int *intptr;

• Read as:

“intptr can hold the address of an int”

• Spacing in definition does not matter:

int * intptr; // same as above

int* intptr; // same as above

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Variables

• Assigning an address to a pointer variable:
int *intptr;

intptr = #

• Memory layout:

num intptr

25 0x4a00

address of num: 0x4a00

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Indirection Operator

• The indirection operator (*) dereferences

a pointer.

• It allows you to access the item that the

pointer points to.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

This prints 25.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Relationship Between

Arrays and Pointers

• Array name is starting address of array

int vals[] = {4, 7, 11};

cout << vals; // displays

// 0x4a00

cout << vals[0]; // displays 4

4 7 11

starting address of vals: 0x4a00

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Relationship Between

Arrays and Pointers
• Array name can be used as a pointer

constant:

int vals[] = {4, 7, 11};

cout << *vals; // displays 4

• Pointer can be used as an array name:

int *valptr = vals;

cout << valptr[1]; // displays 7

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers in Expressions

Given:
int vals[]={4,7,11}, *valptr;

valptr = vals;

What is valptr + 1?

It means (address in valptr) + (1 * size of an int)

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

Must use () as shown in the expressions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Access

• Array elements can be accessed in many ways:

Array access method Example

array name and [] vals[2] = 17;

pointer to array and [] valptr[2] = 17;

array name and subscript

arithmetic

*(vals + 2) = 17;

pointer to array and

subscript arithmetic

*(valptr + 2) = 17;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Array Access

• Conversion:

vals[i] is equivalent to *(vals + i)

• No bounds checking performed on array

access, whether using array name or a

pointer

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer Arithmetic

• Operations on pointer variables:

9-14

Operation Example
int vals[]={4,7,11};

int *valptr = vals;

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer
and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Initializing Pointers

• Can initialize at definition time:
int num, *numptr = #

int val[3], *valptr = val;

• Cannot mix data types:
double cost;

int *ptr = &cost; // won’t work

• Can test for an invalid address for ptr with:

if (!ptr) ...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Comparing Pointers

• Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

• Comparing addresses in pointers is not
the same as comparing contents pointed
at by pointers:
if (ptr1 == ptr2) // compares

// addresses

if (*ptr1 == *ptr2) // compares

// contents

9-16

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers as Function

Parameters

• A pointer can be a parameter

• Works like reference variable to allow change to
argument from within function

• Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer

cin >> *ptr;

3) address as argument to the function
getNum(&num); // pass address of num to getNum

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example

void swap(int *x, int *y)

{ int temp;

temp = *x;

*x = *y;

*y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

• Example: Suppose we have the following
definitions:

const int SIZE = 6;

const double payRates[SIZE] =

{ 18.55, 17.45, 12.85,

14.97, 10.35, 18.89 };

• In this code, payRates is an array of
constant doubles.

9-19

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointers to Constants

• Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
it.

void displayPayRates(const double *rates, int size)

{

for (int count = 0; count < size; count++)

{

cout << "Pay rate for employee " << (count + 1)

<< " is $" << *(rates + count) << endl;

}

}

The parameter, rates, is a pointer to const double.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Declaration of a Pointer to

Constant

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers

• A constant pointer is a pointer that is

initialized with an address, and cannot

point to anything else.

• Example

int value = 22;

int * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constant Pointers to Constants

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation: new

• Can allocate storage for a variable while program is
running

• Computer returns address of newly allocated
variable

• Uses new operator to allocate memory:

double *dptr;

dptr = new double;

• new returns address of memory location

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamic Memory Allocation

• Can also use new to allocate array:
const int SIZE = 25;

arrayPtr = new double[SIZE];

• Can then use [] or pointer arithmetic to access array:
for(i = 0; i < SIZE; i++)

*arrayptr[i] = i * i;

or

for(i = 0; i < SIZE; i++)

*(arrayptr + i) = i * i;

• Program will terminate if not enough memory available to
allocate

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Releasing Dynamic Memory

• Use delete to free dynamic memory:

delete fptr;

• Use [] to free dynamic array:

delete [] arrayptr;

• Only use delete with dynamic memory!

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Returning Pointers from

Functions
• Pointer can be the return type of a function:

int* newNum();

• The function must not return a pointer to a local
variable in the function.

• A function should only return a pointer:
– to data that was passed to the function as an

argument, or

– to dynamically allocated memory

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 9-15

