Chapter 9:

Pointers

Addison-Wesley
is an imprint of

VST Copyright © 2012 Pearson Education, Inc.
e Ra—

STARTING OUT WITH

C++

From Control Structures
through Objects

seventh edition

TONY GADDIS



Pointer Variables

* Pointer variable : Often just called a
pointer, it's a variable that holds an

address

* Because a pointer variable holds the
address of another piece of data, It "points”
to the data

Copyright © 2012 Pearson Education, Inc.



Something Like Pointers: Arrays

* We have already worked with something similar

to pointers, when we learned to pass arrays as
arguments to functions.

* For example, suppose we use this statement to
pass the array numbers to the showvValues
function:

showValues (numbers, SIZE) ;

Copyright © 2012 Pearson Education, Inc.



Something Like Pointers : Arrays

The values parameter, in the showValues

function, points to the numbers array.
numbers array

1 213|465

Y

showValues (numbers, SIZE);

‘ I
address 5

[

Y
C++ automatica”y stores void showValues(int values[], int size)

: {
the address of numbers in for (int count = 0; count < size; count++)
the values parameter. cout << values[count] << endl;

Copyright © 2012 Pearson Education, Inc.



Pointer Variables

« Pointer variables are yet another way using a
memory address to work with a piece of data.

* Pointers are more "low-level" than arrays and
reference variables.

* This means you are responsible for finding the
address you want to store in the pointer and
correctly using It.

Copyright © 2012 Pearson Education, Inc.



Pointer Variables

* Definition:
int *intptr;
* Read as:
“Intptr can hold the address of an Int”

« Spacing in definition does not matter:
int * intptr; // same as above

int* intptr; // same as above

Copyright © 2012 Pearson Education, Inc.



Pointer Variables

« Assigning an address to a pointer variable:
int *intptr;
intptr = &num;

« Memory layout:

num intptr
25 O0x4a00

A

address of num: 0x4a00

Copyright © 2012 Pearson Education, Inc.



The Indirection Operator

* The Indirection operator (*) dereferences
a pointer.

* |t allows you to access the item that the
pointer points to.

int x = 25;

int *intptr = &x;
cout << *intptr << endl;
N

This prints 25.

Copyright © 2012 Pearson Education, Inc.



The Relationship Between
Arrays and Pointers

* Array name Is starting address of array
int vals[] = {4, 7, 11};

4 '/ 11
starting address of vals: 0x4a00
cout << vals; // displays
// 0x4a00

cout << vals[0]; // displays 4

Copyright © 2012 Pearson Education, Inc.



The Relationship Between
Arrays and Pointers

« Array name can be used as a pointer
constant:

int vals[] = {4, 7, 11};

cout << *vals; // displays 4
* Pointer can be used as an array nhame:

int *valptr = vals;

cout << valptr[l]; // displays 7

Copyright © 2012 Pearson Education, Inc.



Pointers In Expressions

Given:
int vals[]={4,7,11}, *valptr;
valptr = vals;
What Is valptr + 17
It means (address in valptr) + (1 * size of an int)

cout << * (valptr+l); //displays 7
cout << * (valptr+2); //displays 11

Must use ( ) as shown in the expressions

Copyright © 2012 Pearson Education, Inc.



Array Access

* Array elements can be accessed in many ways:

Array access method

Example

array name and [ ]

vals[2] = 17;

subscript arithmetic

pointer to array and [ ] valptr([2] = 17;
array name and subscript *(vals + 2) = 17;
arithmetic

pointer to array and *(valptr + 2) = 17;

Copyright © 2012 Pearson Education, Inc.




Array Access

 Conversion:

vals[1i] IS equivalentto * (vals + 1)

* No bounds checking performed on array
access, whether using array name or a
pointer

Copyright © 2012 Pearson Education, Inc.



Pointer Arithmetic

» Operations on pointer variables:

Operation Example
int vals[]={4,7,11};
int *valptr = vals;

++, —- valptr++; // points at 7
valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer valptr = vals; // points at 4

and int) valptr += 2; // points at 11

- (pointer from pointer) cout << valptr-val; // difference
// (number of ints) between valptr
// and val

9-14
Copyright © 2012 Pearson Education, Inc.




Initializing Pointers

e Can Initialize at definition time:
int num, *numptr = &num;
int val[3], *valptr = val;
« Cannot mix data types:
double cost;
int *ptr = &cost; // won't work
« Can test for an invalid address for pt r with:
1f (!ptr)

Copyright © 2012 Pearson Education, Inc.



Comparing Pointers

» Relational operators (<, >=, etc.) can be
used to compare addresses in pointers

« Comparing addresses In pointers Is not
the same as comparing contents pointed

at by pointers:
if (ptrl == ptr2) // compares
// addresses
if (*ptrl == *ptr2) // compares

// contents

9-16
Copyright © 2012 Pearson Education, Inc.



Pointers as Function
Parameters

A pointer can be a parameter

Works like reference variable to allow change to
argument from within function

Requires:
1) asterisk * on parameter in prototype and heading
void getNum(int *ptr); // ptr is pointer to an int

2) asterisk * in body to dereference the pointer
cin >> *ptr;
3) address as argument to the function
getNum (&num) ; // pass address of num to getNum

Copyright © 2012 Pearson Education, Inc.



Example

vold swap (int *x, 1nt *vy)

{ int temp;
temp = *Xx;
*X — *y;
*y = temp;
}
int numl = 2, numZ2 = -3;

swap (&numl, &num?2);

Copyright © 2012 Pearson Education, Inc.



Pointers to Constants

« Example: Suppose we have the following
definitions:

const 1nt SIZE = 6;
const double payRates |[SIZE] =
{ 18.55, 17.45, 12.85,
14.97, 10.35, 18.89 };

* In this code, payRates IS an array of
constant doubles.

9-19
Copyright © 2012 Pearson Education, Inc.



Pointers to Constants

* Suppose we wish to pass the payRates array to
a function? Here's an example of how we can do
It.

vold displayPayRates (const double *rates, int size)

{

for (int count = 0; count < size; count++)

{
cout << "Pay rate for employee " << (count + 1)

<< " is $" << *(rates + count) << endl;

The parameter, rates, is a pointer to const double.

Copyright © 2012 Pearson Education, Inc.



Declaration of a Pointer to
Constant

The asterisk indicates that
rates is a pointer.

|

const doublel*rates

This is what rates points to.

Copyright © 2012 Pearson Education, Inc.



Constant Pointers

* A constant pointer is a pointer that Is
Initialized with an address, and cannot
point to anything else.

* Example

int value = 22;
int * const ptr = &value;

Copyright © 2012 Pearson Education, Inc.



Constant Pointers

* const indicates that
ptr is a constant pointer.

lintl[* consg ptr

This is what ptr points to.

Copyright © 2012 Pearson Education, Inc.



Constant Pointers to Constants

* const indicates that
ptr is a constant pointer.

: l
const 1nt”* const ptr

This is what ptr points to.

Copyright © 2012 Pearson Education, Inc.



Dynamic Memory Allocation: new

Can allocate storage for a variable while program is
running

Computer returns address of newly allocated
variable

Uses new operator to allocate memory:
double *dptr;
dptr = new double;

new returns address of memory location

Copyright © 2012 Pearson Education, Inc.



Dynamic Memory Allocation

« Can also use new to allocate array:
const int SIZE = 25;

arrayPtr = new double[SIZE];

« Canthen use [] or pointer arithmetic to access array:
for(i = 0, 1 < SIZE; 1i++)
*arrayptr[i] = 1 * 1i;
or
for(i = 0; i < SIZE; i++)
* (arrayptr + 1) = 1 * 1i;

* Program will terminate if not enough memory available to
allocate

Copyright © 2012 Pearson Education, Inc.



Releasing Dynamic Memory

 Use delete to free dynamic memory:.
delete fptr;

 Use [] to free dynamic array:
delete [] arrayptr;

* Only use delete with dynamic memory!

Copyright © 2012 Pearson Education, Inc.



Program 9-14

// This program totals and averages the sales figures for any
// number of days. The figures are stored in a dynamically

// allocated array.

tinclude <icstream=

$include <icmanip>

using namespace std;

int main()

1
double *zales, // To dynamically allocate an array
total = 0.0, // Accumulator
averadge; {// To hold average sales

Copyright © 2012 Pearson Education, Inc.



Program 9-14 (continued)

int numbDays, // To hold the number of days of sales
count ; // Counter wvariable

// Get the number of days of sales.
cout =< "How many days of sales figures do you wish ";

cout << "to process? ";
cin >> numDays;

/4 Dynamically allocate an array large enough to hold
/4 that many days of sales amounts.
sales = new double[numDays];

// Get the sales figures for each day.
cout =< "Enter the sales figures below.\n";
for (count = 0; count < numDays; count++)

1
cout << "Day " << (count + 1) << ": "
cin »> sales|[count];

Copyright © 2012 Pearson Education, Inc.



Returning Pointers from
Functions

* Pointer can be the return type of a function:
int* newNum() ;

« The function must not return a pointer to a local
variable in the function.

A function should only return a pointer:

— to data that was passed to the function as an
argument, or

— to dynamically allocated memory

Copyright © 2012 Pearson Education, Inc.



From Program 9-15

int *getRandomlumbers(|int num)

{

int *array; {// Arrav to hold the numbers

// Return null if num is zero or negative.
if (num == 0)
return MULL:

// Dynamically allocate the array.
array = new int[num];

// Seed the random number generator by passing
// the return value of time(0) to srand.
srand( time(0) );

// Populate the array with random numbers.
for (int count = 0; count < num; count++)
array[count] = rand{);

// Return a pointer to the array.
return array;

Copyright © 2012 Pearson Education, Inc.



