
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 16:

Exceptions,

Templates, and

the Standard

Template Library

(STL)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

6.1

Exceptions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions

• Indicate that something unexpected has
occurred or been detected

• Allow program to deal with the problem in
a controlled manner

• Can be as simple or complex as program
design requires

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions - Terminology

• Exception: object or value that signals an
error

• Throw an exception: send a signal that an
error has occurred

• Catch/Handle an exception: process the
exception; interpret the signal

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions – Key Words

• throw – followed by an argument, is used to
throw an exception

• try – followed by a block { }, is used to
invoke code that throws an exception

• catch – followed by a block { }, is used to
detect and process exceptions thrown in
preceding try block. Takes a parameter that
matches the type thrown.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions – Flow of Control

1) A function that throws an exception is called from
within a try block

2) If the function throws an exception, the function
terminates and the try block is immediately exited. A
catch block to process the exception is searched for in
the source code immediately following the try block.

3) If a catch block is found that matches the exception
thrown, it is executed. If no catch block that matches
the exception is found, the program terminates.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions – Example (1)

// function that throws an exception

int totalDays(int days, int weeks)

{

if ((days < 0) || (days > 7))

throw "invalid number of days";

// the argument to throw is the

// character string

else

return (7 * weeks + days);

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions – Example (2)

try // block that calls function

{

totDays = totalDays(days, weeks);

cout << "Total days: " << days;

}

catch (char *msg) // interpret

// exception

{

cout << "Error: " << msg;

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions – What Happens

1) try block is entered. totalDays function is

called

2) If 1st parameter is between 0 and 7, total
number of days is returned and catch block is

skipped over (no exception thrown)

3) If exception is thrown, function and try block

are exited, catch blocks are scanned for 1st

one that matches the data type of the thrown
exception. catch block executes

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 16-1

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

From Program 16-1

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens in theTry/Catch

Construct

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What if no exception is thrown?

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions - Notes

• Predefined functions such as new may

throw exceptions

• The value that is thrown does not need to
be used in catch block.

– in this case, no name is needed in catch

parameter definition

– catch block parameter definition does need

the type of exception being caught

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exception Not Caught?

• An exception will not be caught if

– it is thrown from outside of a try block

– there is no catch block that matches the data

type of the thrown exception

• If an exception is not caught, the program

will terminate

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exceptions and Objects

• An exception class can be defined in a
class and thrown as an exception by a
member function

• An exception class may have:

– no members: used only to signal an error

– members: pass error data to catch block

• A class can have more than one exception
class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.h (Version1) (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 16-2 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens After catch

Block?

• Once an exception is thrown, the program

cannot return to throw point. The function
executing throw terminates (does not

return), other calling functions in try block

terminate, resulting in unwinding the stack

• If objects were created in the try block and

an exception is thrown, they are destroyed.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Nested try Blocks

• try/catch blocks can occur within an
enclosing try block

• Exceptions caught at an inner level can be
passed up to a catch block at an outer level:

catch ()

{

...

throw; // pass exception up

} // to next level

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

16.2

Function Templates

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Templates

• Function template: a pattern for a function

that can work with many data types

• When written, parameters are left for the

data types

• When called, compiler generates code for

specific data types in function call

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Example

template <class T>

T times10(T num)

{

return 10 * num;

}

template
prefix

generic
data type

type
parameter

What gets generated when
times10 is called with an int:

What gets generated when times10 is
called with a double:

int times10(int num)
{

return 10 * num;
}

double times10(double num)
{

return 10 * num;
}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Example

template <class T>

T times10(T num)

{

return 10 * num;

}

• Call a template function in the usual manner:
int ival = 3;

double dval = 2.55;

cout << times10(ival); // displays 30

cout << times10(dval); // displays 25.5

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Notes

• Can define a template to use multiple data types:

template<class T1, class T2>

• Example:

template<class T1, class T2> // T1 and T2 will be

double mpg(T1 miles, T2 gallons) // replaced in the

{ // called function

return miles / gallons // with the data

} // types of the

// arguments

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Notes

• Function templates can be overloaded Each
template must have a unique parameter list

template <class T>

T sumAll(T num) ...

template <class T1, class T2>

T1 sumall(T1 num1, T2 num2) ...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Notes

• All data types specified in template prefix
must be used in template definition

• Function calls must pass parameters for
all data types specified in the template
prefix

• Like regular functions, function templates
must be defined before being called

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Function Template Notes

• A function template is a pattern

• No actual code is generated until the function
named in the template is called

• A function template uses no memory

• When passing a class object to a function
template, ensure that all operators in the
template are defined or overloaded in the class
definition

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

16.3

Where to Start When Defining

Templates

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Where to Start

When Defining Templates
• Templates are often appropriate for

multiple functions that perform the same
task with different parameter data types

• Develop function using usual data types
first, then convert to a template:

– add template prefix

– convert data type names in the function to a
type parameter (i.e., a T type) in the template

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

16.4

Class Templates

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Templates

• Classes can also be represented by
templates. When a class object is created,
type information is supplied to define the
type of data members of the class.

• Unlike functions, classes are instantiated
by supplying the type name (int, double,
string, etc.) at object definition

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Template Example

template <class T>

class grade

{

private:

T score;

public:

grade(T);

void setGrade(T);

T getGrade()

};

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Template Example

• Pass type information to class template

when defining objects:

grade<int> testList[20];

grade<double> quizList[20];

• Use as ordinary objects once defined

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Templates and

Inheritance
• Class templates can inherit from other class templates:

template <class T>

class Rectangle

{ ... };

template <class T>

class Square : public Rectangle<T>

{ ... };

• Must use type parameter T everywhere base class
name is used in derived class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

16.5

Introduction to the Standard

Template Library

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to the

Standard Template Library

• Standard Template Library (STL): a library

containing templates for frequently used

data structures and algorithms

• Not supported by many older compilers

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Standard Template Library

• Two important types of data structures in

the STL:

– containers: classes that stores data and

imposes some organization on it

– iterators: like pointers; mechanisms for

accessing elements in a container

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Containers

• Two types of container classes in STL:

– sequence containers: organize and access

data sequentially, as in an array. These
include vector, dequeue, and list

– associative containers: use keys to allow

data elements to be quickly accessed.
These include set, multiset, map, and

multimap

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Iterators

• Generalization of pointers, used to
access information in containers

• Four types:
– forward (uses ++)

– bidirectional (uses ++ and --)

– random-access

– input (can be used with cin and istream
objects)

– output (can be used with cout and
ostream objects)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Algorithms

• STL contains algorithms implemented as
function templates to perform operations
on containers.

• Requires algorithm header file

• algorithm includes
binary_search count

for_each find

find_if max_element

min_element random_shuffle

sort and others

