
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 19:

Recursion



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.1

Introduction to Recursion



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to Recursion

• A recursive function contains a call to itself:
void countDown(int num)

{ 

if (num == 0)

cout << "Blastoff!";

else

{ 

cout << num << "...\n";

countDown(num-1); // recursive

}                    // call

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens When Called?

If a program contains a line like countDown(2);

1. countDown(2) generates the output 2..., then 
it calls countDown(1)

2. countDown(1) generates the output 1..., then 
it calls countDown(0)

3. countDown(0) generates the output 
Blastoff!, then returns to countDown(1)

4. countDown(1) returns to countDown(2)

5. countDown(2)returns to the calling function



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens When Called?

third call to
countDown 
num is 0

countDown(1);

countDown(0);

// no 

// recursive

// call

second call to
countDown 
num is 1

first call to
countDown
num is 2 output:

2...

1...

Blastoff!



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.2

Solving Problems with Recursion



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Recursive Functions - Purpose

• Recursive functions are used to reduce a 

complex problem to a simpler-to-solve 

problem.

• The simpler-to-solve problem is known as 

the base case

• Recursive calls stop when the base case 

is reached



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stopping the Recursion

• A recursive function must always include a 

test to determine if another recursive call 

should be made, or if the recursion should 

stop with this call

• In the sample program, the test is:

if (num == 0)



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stopping the Recursion

void countDown(int num)

{ 

if (num == 0) // test

cout << "Blastoff!";

else

{ 

cout << num << "...\n";

countDown(num-1); // recursive

}                    // call

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stopping the Recursion

• Recursion uses a process of breaking a problem 

down into smaller problems until the problem 

can be solved

• In the countDown function, a different value is 

passed to the function each time it is called

• Eventually, the parameter reaches the value in 

the test, and the recursion stops



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Stopping the Recursion

void countDown(int num)

{ 

if (num == 0)

cout << "Blastoff!";

else

{ 

cout << num << "...\n";

countDown(num-1);// note that the value

}                   // passed to recursive

}                     // calls decreases by

// one for each call



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens When Called?

• Each time a recursive function is called, a new 
copy of the function runs, with new instances 
of parameters and local variables created

• As each copy finishes executing, it returns to 
the copy of the function that called it

• When the initial copy finishes executing, it 
returns to the part of the program that made 
the initial call to the function



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

What Happens When Called?

third call to
countDown 
num is 0

countDown(1);

countDown(0);

// no 

// recursive

// call

second call to
countDown 
num is 1

first call to
countDown
num is 2 output:

2...

1...

Blastoff!

return

return

return



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Types of Recursion

• Direct

– a function calls itself

• Indirect

– function A calls function B, and function B 

calls function A

– function A calls function B, which calls …, 

which calls function A



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Recursive Factorial 

Function

• The factorial function: 

n! = n*(n-1)*(n-2)*...*3*2*1 if n > 0

n! = 1 if n = 0

• Can compute factorial of n if the factorial of              

(n-1) is known:

n! = n * (n-1)!

• n = 0 is the base case



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Recursive Factorial 

Function

int factorial (int num)

{

if (num > 0)

return num * factorial(num - 1);

else

return 1;

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 19-3 (Continued)



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.3

The Recursive gcd Function



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Recursive gcd Function

• Greatest common divisor (gcd) is the 

largest factor that two integers have in 

common

• Computed using Euclid's algorithm:

gcd(x, y) = y if y divides x evenly

gcd(x, y) = gcd(y, x % y) otherwise

• gcd(x, y) = y is the base case



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Recursive gcd Function

int gcd(int x, int y)

{

if (x % y == 0)

return y;

else

return gcd(y, x % y);

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.4

Solving Recursively Defined 

Problems



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Solving Recursively Defined

Problems
• The natural definition of some problems 

leads to a recursive solution

• Example: Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, ...

• After the starting 0, 1, each number is the 
sum of the two preceding numbers

• Recursive solution:
fib(n) = fib(n – 1) + fib(n – 2);

• Base cases: n <= 0, n == 1



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Solving Recursively Defined 

Problems

int fib(int n)

{

if (n <= 0)

return 0;

else if (n == 1)

return 1;

else

return fib(n – 1) + fib(n – 2);

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.5

Recursive Linked List Operations



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Recursive Linked List 

Operations

• Recursive functions can be members of a 

linked list class

• Some applications:

– Compute the size of (number of nodes in) a 

list

– Traverse the list in reverse order



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Counting the Nodes in a Linked 

List
• Uses a pointer to visit each node

• Algorithm:

– pointer starts at head of list

– If pointer is NULL, return 0 (base case)

else, return 1 + number of nodes in the list 
pointed to by current node

• See the NumberList class in Chapter 19



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The countNodes function, a private 

member function

The countNodes function is executed by 

the public numNodes function:

int numNodes() const

{ return countNodes(head); }



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Contents of a List in Reverse 

Order
• Algorithm:

– pointer starts at head of list

– If the pointer is NULL, return (base case)

– If the pointer is not NULL, advance to next 

node

– Upon returning from recursive call, display 

contents of current node



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The showReverse function, a 

private member function

The showReverse function is executed by 

the public displayBackwards function:

void displayBackwards() const

{ showReverse(head); }



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.6

A Recursive Binary Search 

Function



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Recursive Binary Search 

Function
• Binary search algorithm can easily be written to 

use recursion

• Base cases: desired value is found, or no more 
array elements to search

• Algorithm (array in ascending order):
– If middle element of array segment is desired value, 

then done

– Else, if the middle element is too large, repeat binary 
search in first half of array segment

– Else, if the middle element is too small, repeat binary 
search on the second half of array segment 



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

A Recursive Binary Search Function (Continued)



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.7

The Towers of Hanoi



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Towers of Hanoi

• The Towers of Hanoi is a mathematical 

game that is often used to demonstrate 

the power of recursion.

• The game uses three pegs and a set of 

discs, stacked on one of the pegs.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Towers of Hanoi

• The object of the game is to move the discs from 

the first peg to the third peg. Here are the rules:

– Only one disc may be moved at a time.

– A disc cannot be placed on top of a smaller disc.

– All discs must be stored on a peg except while being 

moved.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Moving Three Discs



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Towers of Hanoi

• The following statement describes the 

overall solution to the problem:

– Move n discs from peg 1 to peg 3 using peg 2 

as a temporary peg.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Towers of Hanoi

• Algorithm
– To move n discs from peg A to peg C, using peg B as 

a temporary peg:
If n > 0 Then

Move n – 1 discs from peg A to peg B, using
peg C as a temporary peg.

Move the remaining disc from the peg A to peg C.

Move n – 1 discs from peg B to peg C, using
peg A as a temporary peg.

End If



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 19-10 (Continued)



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.8

The QuickSort Algorithm



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The QuickSort Algorithm

• Recursive algorithm that can sort an array 

or a linear linked list

• Determines an element/node to use as 

pivot value:
pivot

sublist 1 sublist 2



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The QuickSort Algorithm

• Once pivot value is determined, values are 

shifted so that elements in sublist1 are < pivot 

and elements in sublist2 are > pivot

• Algorithm then sorts sublist1 and sublist2

• Base case: sublist has size 1

pivot value

sublist 1 sublist 2



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.9

Exhaustive and Enumeration 

Algorithms



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Exhaustive and Enumeration 

Algorithms
• Exhaustive algorithm: search a set of 

combinations to find an optimal one

Example: change for a certain amount of money 

that uses the fewest coins

• Uses the generation of all possible 

combinations when determining the 

optimal one.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

19.10

Recursion vs. Iteration



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Recursion vs. Iteration

• Benefits (+), disadvantages(-) for recursion:

+ Models certain algorithms most accurately

+ Results in shorter, simpler functions

– May not execute very efficiently

• Benefits (+), disadvantages(-) for iteration:

+ Executes more efficiently than recursion

– Often is harder to code or understand


