
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 20:

Binary Trees



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

20.1

Definition and Application of 

Binary Trees



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Definition and Application of                             

Binary Trees

• Binary tree: a nonlinear linked list in which each 

node may point to 0, 1, or two other nodes

• Each node contains

one or more

data fields and

two pointers

NULL NULL

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Tree Terminology

• Tree pointer: like a 

head pointer for a 

linked list, it points to 

the first node in the 

binary tree

• Root node: the node at 

the top of the tree

NULL NULL

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Tree Terminology

• Leaf nodes: nodes that 
have no children

The nodes containing 
7 and 43 are leaf 
nodes

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Tree Terminology

• Child nodes, 
children: nodes 
below a given node 

The children of the 
node containing 31
are the nodes 
containing 19 and 
59

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Tree Terminology

• Parent node: node 
above a given node

The parent of the node 
containing 43 is the 
node containing 59

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Tree Terminology

• Subtree: the portion of 

a tree from a node 

down to the leaves

The nodes containing 

19 and 7 are the left 

subtree of the node 
containing 31 NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Uses of Binary Trees

• Binary search tree: data 
organized in a binary tree 
to simplify searches

• Left subtree of a node 
contains data values < 
the data in the node

• Right subtree of a node 
contains values > the 
data in the node 

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Searching in a Binary Tree

1) Start at root node

2) Examine node data:
a) Is it desired value? Done

b) Else, is desired data < node 
data? Repeat step 2 with left 
subtree

c) Else, is desired data > node 
data? Repeat step 2 with 
right subtree

3) Continue until desired  
value found or NULL
pointer reached NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Searching in a Binary Tree

To locate the node containing 43,

– Examine the root node (31) first

– Since 43 > 31, examine the 

right child of the node containing 
31, (59) 

– Since 43 < 59, examine the left 
child of the node containing 59, 
(43)

– The node containing
43 has been found

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

20.2

Binary Search Tree Operations



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search Tree Operations

• Create a binary search tree – organize data 
into a binary search tree

• Insert a node into a binary tree – put node into 
tree in its correct position to maintain order

• Find a node in a binary tree – locate a node 
with particular data value

• Delete a node from a binary tree – remove a 
node and adjust links to maintain binary tree



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Binary Search Tree Node

• A node in a binary tree is like a node in 
a linked list, with two node pointer fields:
struct TreeNode

{

int value;

TreeNode *left;

TreeNode *right;

}



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Creating a New Node

• Allocate memory for new node:
newNode = new TreeNode;

• Initialize the contents of the node:
newNode->value = num;

• Set the pointers to NULL:
newNode->Left 

= newNode->Right

= NULL; newNode

23

NULLNULL

newNode

newNode

23



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inserting a Node in a                         

Binary Search Tree

1) If tree is empty, insert the new node as the root 
node

2) Else, compare new node against left or right 
child, depending on whether data value of new 
node is < or > root node

3) Continue comparing and choosing left or right 
subtree until NULL pointer found

4) Set this NULL pointer to point to new node 



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inserting a Node in a                         

Binary Search Tree

NULL NULL7

19

31

43

59

root

Examine this node first –
value is < node, so go to 
left subtree

Examine this 
node second –
value is > node, 
so go to right 
subtree

Since the right subtree 
is NULL, insert here 

NULL NULL NULL NULL

newNode

23

NULLNULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Traversing a Binary Tree

Three traversal methods:
1) Inorder: 

a) Traverse left subtree of node

b) Process data in node

c) Traverse right subtree of node

2) Preorder: 
a) Process data in node

b) Traverse left subtree of node

c) Traverse right subtree of node

3) Postorder: 
a) Traverse left subtree of node

b) Traverse right subtree of node

c) Process data in node



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Traversing a Binary Tree

TRAVERSAL 

METHOD

NODES 

VISITED IN 

ORDER

Inorder 7, 19, 31, 

43, 59

Preorder 31, 19, 7, 

59, 43

Postorder 7, 19, 43, 

59, 31

NULL NULL7

19

31

43

59

NULL NULL NULL NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Searching in a Binary Tree

• Start at root node, 

traverse the tree 

looking for value

• Stop when value 
found or NULL

pointer detected

• Can be implemented 
as a bool function

NULL NULL7

19

31

43

59

NULL NULL NULL NULL

Search for 43? return true
Search for 17? return false



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node from a 

Binary Tree – Leaf Node
• If node to be deleted is a leaf node, replace 

parent node’s pointer to it with a NULL pointer, 

then delete the node

NULL7

19

NULL NULL

Deleting node with 7 
– before deletion

NULL

19

NULL

Deleting node with 7 
– after deletion



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node from a 

Binary Tree – One Child

• If node to be deleted has one child node, 

adjust pointers so that parent of node to be 

deleted points to child of node to be deleted, 

then delete the node



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node from a 

Binary Tree – One Child

NULL NULL7

19

31

43

59

NULL NULL NULL NULL

Deleting node with 19 
– before deletion

NULL

7

31

43

59

NULL NULL

NULL NULL

Deleting node with 19 
– after deletion



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node from a 

Binary Tree – Two Children

• If node to be deleted has left and right children, 
– ‘Promote’ one child to take the place of the deleted 

node

– Locate correct position for other child in subtree of 
promoted child

• Convention in text: promote the right child, 
position left subtree underneath



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Deleting a Node from a 

Binary Tree – Two Children

NULL NULL7

19

31

43

59

NULL NULL NULL NULL

Deleting node with 31 
– before deletion Deleting node with 31 

– after deletion

43

59

NULL

NULL

7

19

NULL NULL

NULL



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

20.3

Template Considerations for 

Binary Search Trees



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Template Considerations for            

Binary Search Trees

• Binary tree can be implemented as a 

template, allowing flexibility in  determining 

type of data stored

• Implementation must support relational 
operators >, <, and == to allow 

comparison of nodes


