UTD	Course	CS4384.001 CS4384.501 CS5349.001	
	Professor	Dr. Richard Min (Ph.D., MBA, MS, M.Div, STM)	
	Term	Spring 2015	
	Meetings	001 Tuesday & Thursday 2:30pm – 3:45pm. ECSS2.311	
		501 Tuesday & Thursday 7:00pm – 8:15pm. ECSS2.410	

Professor's Contact Information

Office Phone	972-883-4522
Office Location	ECSS 4.609
Email Address	Richard.Min@utdallas.edu
Office Hours	Tuesday & Thursday 9am – 1pm, 8:15pm – 9:15pm (or by appointment)

General Course Information

Dra requisites	CS 3305 (Discrete Math II) or equivalent (for CS4384)	
Pre-requisites	CS5333 (Discrete Structure) or equivalent (for CS5349)	
	A review of the abstract notions encountered in machine computation. Topics	
	include finite automata, regular expressions, PDAs, and context-free languages.	
	[We will also introduce Turing Machines and Undecidability.]	
	1. Brief review of mathematical background. (Sipser Chapter 0)	
	Binary relations, digraphs, strings, languages, induction, types of proof,	
	2. Finite Automata and Regular Expressions. (Sipser Chapter 1)	
	(Deterministic and nondeterministic finite automata, regular expressions and	
	regular sets, Kleene's Theorem.)	
	3. Properties of Regular Sets (Sipser Chapter 1, in particular Section 1.4)	
Course	(Pumping Lemma, closure properties, decision algorithms)	
Description	4. Context-Free Grammars and Languages. (Sipser Chapter 2)	
	(Context-free grammars, regular grammars)	
	5. Simplified Forms and Normal Forms. (Sipser Chapter 2)	
	(Useful symbols, productions, unit productions, Chomsky normal form)	
	6. Pushdown Automata. (Sipser Section 2.2)	
	(Pushdown automaton, equivalence between PDA & CFL)	
	7. Properties of Context-Free Languages. (Sipser Section 2.3)	
	(Pumping Lemma, closure properties, the CYK algorithm)	
	8. Turing Machines. (Sipser Chapters 3, 4)	
	(Turing machines, their variants and the undecidibility of the halting problem)	
	Course Objective: The goal of this course is to introduce students to the theory	
	of computation. We will discuss several basic computational models including	
	the finite automata (FA), pushdown automata (PDA) and Turing machines (TM)	
	as well as the corresponding classes of regular languages, context-free languages	
	and recursively enumerable languages. The classes of regular grammars and	
Loorning	between regular grammars and finite automate, and between context free	
Outcomes	grammars and pushdown automata. We will also discuss various properties of	
Outcomes	regular languages and context-free languages including the Pumping Lemma	
	several closure properties as well as some decision algorithms. We will discuss	
	the Turing machine model the notion of decidability/undecidability the halting	
	problem for TMs and its undecidability	
	The Learning Objectives include:	
	(1) Ability to design finite automata and regular expressions,	

	(2) Ability to convert among DFAs, NFAs, and regular expressions,		
	(3) Ability to show that certain languages are not regular,		
	(4) Ability to design PDAs and CFGs,		
	(5) Ability to convert PDAs to CFGs and vice versa,		
	(6) Ability to show that certain languages are not context-free.		
Required Text	Sipser, M., Introduction to the Theory of Computation, Thomas Course		
Requireu rest	Technology, (3rd edition) 2013.		
	 Theory of Computation by Anil Maheshwari & Michiel Smid, available online http://cg.scs.carleton.ca/~michiel/TheoryOfComputation/TheoryOfComputation.pdf Introduction to Automata Theory Languages and Computation 3e by John 		
	E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. © Prentice Hall 2006. ISBN: 978-0321455369		
	• Introduction to Languages and the Theory of Computation, by J. Martin. McGraw-Hill, 2010.		
	• Autotama, Computability and Complexity by E. Rich, Prentice Hall, 2008.		
	• Languages and Machines by Sudkamp, Addison Wesley, 2005.		
	Internet Online Materials:		
Supplemental	• Theory of Computation – ppts by Dr. Costa Busch.		
Text & Online	http://csc.lsu.edu/~busch/courses/theorycomp/fall2008/		
Resources	• Automata - class ppts and notes by Dr. Moorthy:		
	http://www.cs.rpi.edu//~moorthy/Courses/modcomp/		
	• Class Notes by Dr. Huynh, and by Pervin		
	https://www.utdallas.edu/~pervin/cs4384.html		
	• "Automata Theory" web-course by Dr. Jeffrey Ullman on		
	https://www.coursera.org/		
	• JFLAP computer program and tutorial on http://www.jflap.org/		
	• Tutorials on parsing, Yacc/Lex or Bison/Flex:		
	• Lex&Yacc or Flex/Bison tutorials on http://dinosaur.compilertools.net/		
	• Dr. Jonathan Engelsma (Youtube 2parts)		
	http://www.youtube.com/user/batwingd		
	• Dr. Tom Niemann on http://epaperpress.com/lexandyacc/		

Important Dates*

01/12 Monday	First Day of Class for Spring 2015		
01/19 Monday	Martin Luther King Day Holiday – NO CLASSES		
Thursdays * (1) 2/05 (2) 2/26 (3) 3/12 (4) 4/09 and 4/30	4Assignments Due – check eLearning for details & Project (Research/Review Paper)		
1/19 Thursday * 3/26 Thursday * 4/23 Thursday *	Exam 1,2,3 (In TESTING CENTER and not in classroom)		
3/16 Monday - 3/21 Saturday	NO CLASSES (Spring Break)		
5/02 Saturday	Last Day of class		
5/05 - 5/11	Final Examination (To be announced)		

* Note: The dates and the content here are tentatively assigned and are subject to change as needed.

Course Policies

Grading Criteria	Attendance & Participation5%4 Assignments (4 x 5%)20%Quizzes (announced or unannounced)10%3 Examination (20+20+20)60%Project (Research/Review Paper)5%	$\begin{array}{l} A+=97 \ \& \ above \\ A=93.96 \\ A-=90.92 \\ B+=87.89 \\ B=83.86 \\ B-=80.82 \\ C+=77.79 \\ C=73.76 \\ C-=70.72 \\ F=below \ 70 \end{array}$	
Make-up Exams	Not allowed (or 20% penalty)		
Late Work	10% reduction in grade per day (or partial day) for any late submissions;		
Class Attendance	Required; Attendance will be taken		
Classroom Citizenship	Respect for your classmates is necessary at all times		
All other policies	Please visit http://go.utdallas.edu/syllabus-policies for other policies		

Spring 2015 Schedule/Plan * Note: The dates and the topics are tentatively assigned and are subject to change as needed. CS5349.001 Masters students will cover additional topics with advanced research project and paper to do.

Week	Sipser Chaper	Topics & ppt	Examination	Assignment	Week
01 - 1/13 T	Siper ch 0	Syllabus, Introduction			01 - 1/13 T
02 - 1/20 T	Sipser ch1	DFA & JFLAP FSA			02 - 1/20 T
03 – 1/27 T		NFA			$03 - 1/27 \ T$
04 – 2/03 T		Reg Exp		(1) 2/05	04 - 2/03 T
05 - 2/10 T		RE pumping Lemma			05 - 2/10 T
06 - 2/17 T	Sipser ch2	RE pumping Lemma	Exam1 2/19		06 - 2/17 T
07 - 2/24 T		CFL		(2) 2/26	07 - 2/24 T
08 – 3/03 T		PDA & JFLAP PDA			08 - 3/03 T
09 – 3/10 T		CFG & PDA		(3) 3/12	09 - 3/10 T
10 – 3/17 T	Spring Break				10 - 3/17 T
11 – 3/24 T	Sipser ch3-4	CFG & PDA	Exam2 3/26		11 - 3/24 T
12 – 3/31 T		CFL Pumping Lemma			12 - 3/31 T
13 – 4/07 T		Lex & Parsing, Flex/Bison		(4) 4/09	$13 - 4/07 \ T$
$14 - 4/14 \ T$		Lex & Parsing			$14 - 4/14 \ T$
15 – 4/21 T	Advanced Topics	TM, JFLAP TM	Exam3 4/23		$15 - 4/21 \ T$
16 - 4/28 T	Last Week	Halting Problem & Adv Topics	Project Due	4/30	16 - 4/28 T
5/05 - 5/11	Final Exam Week		TBA		5/05 - 5/11