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Previous work on the solution to analytical electronic customer relationship management
(eCRM) problems has used either data-mining (DM) or optimization methods, but has

not combined the two approaches. By leveraging the strengths of both approaches, the eCRM
problems of customer analysis, customer interactions, and the optimization of performance
metrics (such as the lifetime value of a customer on the Web) can be better analyzed. In par-
ticular, many eCRM problems have been traditionally addressed using DM methods. There
are opportunities for optimization to improve these methods, and this paper describes these
opportunities. Further, an online appendix (mansci.pubs.informs.org/ecompanion.html)
describes how DM methods can help optimization-based approaches. More generally, this
paper argues that the reformulation of eCRM problems within this new framework of
analysis can result in more powerful analytical approaches.
(Data Mining; Optimization; eCRM Applications)

1. Introduction
Prior research has used optimization methods for
solving data-mining (DM) problems (Mangasarian
et al. 1990, Vapnik 1995, Fu et al. 2003) and used
DM methods for solving optimization problems (Brijs
et al. 1999, Campbell et al. 2001). In this survey,
we systematically explore how optimization and DM
can help one another for certain customer relation-
ship management (CRM) applications in e-commerce,
termed analytical eCRM (Swift 2002). Analytical eCRM
includes customer analysis, customer interactions,
and the optimization of various performance met-
rics, such as customer lifetime value in Web-based
e-commerce.
To illustrate how optimization and DM interact in

eCRM settings, consider the following two impor-
tant eCRM problems. The first deals with finding

the optimal lifetime value (LTV) of a customer by
determining proactive customer interaction strategies
resulting in maximal lifetime profits from that
customer. Because this LTV optimization problem
also relies on the analysis of large volumes of cus-
tomer data in the eCRM setting, it can be augmented
with DM techniques to help improve the LTV model
by better estimating its various parameters. The sec-
ond eCRM problem, primarily in the DM domain,
pertains to preprocessing click-stream data as the
basis for building DM models, such as purchase pre-
diction models. Zheng et al. (2003) show that inappro-
priate preprocessing of data can result in significantly
worse DM models for critical eCRM problems. Given
the nature of click-stream data and the fact that hun-
dreds of derived variables can be created from this
data for a user session, it is important to partition
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the click-stream data into an optimal set of sessions
and to select an optimal set of derived variables to
produce the best DM model from this data. Both these
examples show how DM and optimization can inter-
act when solving various eCRM problems.
Understanding interactions between DM and opti-

mization is particularly important in the eCRM
context. First, many eCRM problems can be framed
as optimization problems, and the domain is char-
acterized by the availability of large volumes of
data, often measured in terabytes. In this way, we
can explore how patterns generated from DM can
be combined with optimization approaches. Second,
many eCRM problems deal with online customers
interacting with an eCRM system and, therefore,
require real-time solutions. For example, wine recom-
mendations should be provided in real time for a
customer purchasing wine at an online store. Opti-
mization approaches can be computationally inten-
sive and DM can help in such situations by identify-
ing additional constraints to reduce the search space
and, thus, produce faster results. For example, the
customer preferences learned from using DM meth-
ods could be applied to limit the search space for best
wines to white Chablis in a $20–$30 price range. As
a result, we may be able to consider far fewer recom-
mendation alternatives, which would ease the task of
selecting the best one in real time. Third, many eCRM
systems fail to build good relationships with cus-
tomers, which often results in low satisfaction rates
with such systems (Dver 2003). Often, just one bad, or
even offensive, experience for a customer can break
a relationship with a firm deploying a “bad” eCRM
system. Hence, it is crucial to deploy superior per-
formance methods in eCRM applications, and there
is the potential to do so by integrating DM and opti-
mization methods into high-performance solutions.
Using the broader context of eCRM applications

as motivation, this paper surveys from a theo-
retical perspective how optimization and DM can
be synergistically used. In particular, we present
in §2, various eCRM applications and discuss
opportunities for optimization. These eCRM appli-
cations include (1) maximization of customer LTV,
(2) customer analysis, including preprocessing click-
stream data and building profiles, and (3) customer

interaction methods, including website design and
personalization. Many of the eCRM applications dis-
cussed in §2 have been traditionally addressed using
DM, and we note that there are significant opportu-
nities for optimization to help the DM approaches.
We present a theoretical discussion of how optimiza-
tion can help in various DM problems in §3. The
seven DM problems we discuss are: (1) feature selec-
tion, (2) active learning, (3) DM model optimiza-
tion, (4) selection of the best DM model or pattern,
(5) classification using mathematical programming,
(6) clustering, and (7) rule and constraint discovery.
While the interactions between DM and optimiza-
tion can be bidirectional, a detailed treatment of
how DM can help optimization is beyond the scope
of this paper. However, an online appendix (at
mansci.pubs.informs.org/ecompanion.html) of this
paper presents various examples of how DM can help
optimization and discusses additional research oppor-
tunities. We conclude in §4 by listing several key
research opportunities that emerge from this paper.
At a general level, in eCRM, these opportunities lie
in (1) using DM to help exploit the data better for
eCRM problems that are naturally formulated as opti-
mization problems (e.g., selecting the 10 best items to
recommend), and (2) using optimization for eCRM
problems that are more naturally formulated or cur-
rently considered as DM problems (e.g., building
good predictive models or learning customer patterns
from data to build profiles).

2. Optimization Opportunities
in eCRM

The purpose of CRM is to identify, acquire, serve, and
retain profitable customers by interacting with them
in an integrated way across a range of communication
channels. Swift (2002) describes analytical eCRM as
a four-step iterative process consisting of (1) collect-
ing and integrating online customer data, (2) analyz-
ing this data, (3) building interactions with customers
based on this analysis such that certain performance
metrics such as LTV are optimized, and (4) measuring
the effectiveness of these interactions in terms of these
performance metrics. In this section, we will examine
how various optimization and DM methods help in
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providing better eCRM solutions for these steps, with
a focus on steps (2)–(4). We start in §2.1 by studying
one of the most important performance metrics—the
LTV of a customer. In §2.2, we discuss customer anal-
ysis problems and, in §2.3, we discuss customer inter-
action problems in eCRM.

2.1. Maximizing Lifetime Value
A typical performance metric used in many CRM
applications is the LTV of a customer. One of the key
questions in CRM is how to develop proactive cus-
tomer interaction strategies that maximize LTV. This
key problem is viewed by some as the “holy grail” of
CRM. Substantial work has been done on modeling
LTV, mainly in the marketing literature (Schmittlein
et al. 1987, Dwyer 1989, Blattberg and Deighton 1991,
Gupta et al. 2001, Dreze and Bonfrer 2002).
Traditionally, the problem of estimating LTV is

divided into two components: (1) estimating how
long a customer will stay, and (2) estimating the flow
of revenue from the customer during this period.
Estimating the flow of revenue during a customer’s
lifetime was done with parametric models in the mar-
keting literature. With respect to estimating customer
tenure, Schmittlein et al. (1987) provide analytical
models that determined whether a customer at any
point in time is “active,” by identifying a set of qual-
itative criteria that capture when a customer is more
likely to be active. The concept of customer reten-
tion is a natural extension of this approach, because it
deals with trying to prevent a customer from becom-
ing inactive and, hence, is a proactive method of
increasing LTV. Blattberg and Deighton (1991) present
a more general framework for interactive marketing
for LTV, suggesting the key notion that customers are
“addressable” and can be engaged in interaction.
This notion of customer interaction is further

explored in Dreze and Bonfrer (2002) in which the
problem of optimal communication to maximize LTV
is addressed. In their approach, they assume that
communications (e.g., mailings) are sent at a fixed
time interval � and the problem is determining the
optimal �. Based on simplifying assumptions regard-
ing the probability of a customer being active at time
i to be pi and on equal expected profit, A, from each

communication, they derive value of a customer, V ,
as a function of � as

V ���=∑
A��� · (p���i/�1+ r��i)


Dreze and Bonfrer (2002) show that both too little
and too much communication can result in a firm’s
failure to capture adequate value from its customers.
This analysis provides useful insights into the LTV
optimization problem. However, this work consid-
ers only optimal communication frequency with cus-
tomers and the model does not take into account the
existence of data on customer behavior.
In contrast, the DM community studied the LTV

problem in the presence of large volumes of cus-
tomer data (Mani et al. 1999, Rosset et al. 2002). In
particular, Mani et al. (1999) predict customer tenure
using classical survival analysis methods by building
a neural network and training it on past customer
data. However, Mani et al. (1999) do not address the
problem of computing optimal parameters for LTV
models. Similarly, Rosset et al. (2002) compute LTV
based on large volumes of customer data by focusing
on using DM to estimate customer churn and future
revenues. They use statistical and DM methods to
estimate future revenues v�t� from the customer and
probabilities S�t� that the customer will still be active
at various times t in the future. To compute more
realistic estimates of S�t�, Rosset et al. (2002) group
customers into segments and make a simplifying
segment homogeneity assumption. This assumption
makes it possible to use simple nonparametric estima-
tions of probabilities S�t� for the segments. Once the
values v�t� and S�t� are estimated and the LTV values
are computed, the next step is to design incentives
for the customers that maximize their LTVs. As an
example, Rosset et al. (2002) discuss a case in the wire-
less industry where service providers need to select
the best incentive (such as reduced prices, handset
upgrade, a free battery) to offer to each customer. In
general, this is an optimization problem, although the
Rosset et al. (2002) paper determines the best incen-
tive by exhaustive search across a relatively small
number of incentives. Because DM methods are used
for computing LTV values, and optimization meth-
ods determine incentives resulting in highest LTV val-
ues, such applications provide examples of how DM
methods can help solve optimization problems.
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We would like to point out that it is difficult to
solve an LTV optimization problem in the presence of
large volumes of data, and Rosset et al. (2002) stopped
short of doing this. Similarly, Dreze and Bonfrer
(2002) studied only an optimization problem and
did not deal with large volumes of data. Therefore,
developing new algorithms computing optimal LTVs
and utilizing optimization and DM methods in the
presence of large volumes of data constitutes an
important and challenging problem for operations
research/management science (OR/MS) researchers.
One way to deal with the complexity of the general

LTV optimization problem is to reduce it to simpler
types of problems. One such reduction may con-
sider various heuristics producing higher LTV values,
rather than attempting to find an optimal solution.
For example, we can study customer attrition prob-
lems and determine policies that will result in lower
attrition rates and, therefore, higher customer LTVs.
Another way to deal with this complexity is to seek
to optimize simpler performance measures that can
serve as proxies for LTV. For example, one can use
customer satisfaction rates with various offerings as
one such measure. Much of the eCRM literature on
customer analysis and interactions discussed below
illustrate these two ways of dealing with the complex-
ity of the general LTV optimization problem.

2.2. Customer Analysis in eCRM
Customer analysis includes two main steps in the
eCRM context: (1) preprocessing data that tracks var-
ious online activities of the customers—this involves
starting with individual user clicks on a site and
constructing logical user “sessions” and summary
variables; and (2) building customer profiles from this
and other data. At a general level, a profile is a set
of patterns that describe a user. DM is used to learn
these patterns from data. Customer profiles are then
built from these results.

2.2.1. Preprocessing Click-Stream Data. As ar-
gued by Zheng et al. (2003), data preprocessing is
a critical step of the knowledge discovery process
in eCRM, and the success of most DM methods to
a large extent depends on this step. Therefore, any
method that directly improves data preprocessing

affects DM results. In this section, we examine how
optimization can facilitate better data preprocessing
of click-stream data.
Most current literature considers heuristic methods

for analyzing click-stream data gathered by websites.
One of the most important problems is the ses-
sion identification problem, which determines how
to group consecutive clicks into sessions. This is an
important business problem because most of the user
tracking systems developed by such companies as
E.piphany and Blue Martini, provide only ad hoc
solutions to the session identification problem.
Some popular session identification methods in-

clude session-level characterization (Srivastava et al.
2000, Theusinger and Huber 2000) that aggregates
user clicks into sessions, a fixed-length sliding win-
dow method (Cooley and Mobasher 1999) that breaks
a session into several sliding windows, and differ-
ent types of clipping methods that break a session
into windows of different sizes using various split-
ting methods (Brodley and Kohavi 2000, VanderMeer
et al. 2000, Padmanabhan et al. 2001). Zheng et al.
(2003) demonstrate that various session identification
methods can produce radically different conclusions
derived from the same data. It is therefore impor-
tant to study optimization-based approaches to pre-
processing click-stream data, and we discuss some of
the opportunities of how optimization can help DM
to do this.
The main reason for preprocessing click-stream

data is to build a model, such as one that would pre-
dict the likelihood that a current user’s session would
result in a purchase. Accurate models are crucial for
such problems, requiring optimal preprocessing of
the click-stream data. To partition the click-stream
data into sessions, one needs to specify optimiza-
tion criteria. This can be done by first identifying
“similar” groups of consecutive pages in the click-
stream, which can then be partitioned into sessions
to maximize intrasession similarities and intersession
differences. One way to specify these similarities and
differences is to identify the variance of some brows-
ing measure, such as the time spent viewing a page.
For any possible “session,” let the average time spent
per page be �i, where i refers to the session number,
and let the standard deviation of this measure be �i.
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An alternative measure is the variance of page con-
tent as defined by a set of keywords in each page,
i.e., based on how much the keywords in one page
differ from those on another page. The problem can
then be defined as follows. Given a number of desired
sessions n, a minimum and maximum length for each
session, and the requirement that only consecutive
pages form a session, find an optimal partitioning of
the click-stream data into n sessions. Optimality can
be defined in many ways, one of which is to achieve
dual objectives (maximizing intrasession similarities
and intersession differences):

minimize
n∑
i=1
�i

/
n and

maximize
n∑
i=1
��i−avg��i��

2
/
n


An opportunity for the optimization community is
to determine how to formalize the session optimiza-
tion approach outlined above, determine good simi-
larity measures, and find optimal solutions for these
measures. In this mode of interaction, optimization
helps DM by preprocessing data to build better DM
solutions. Note that a related use of optimization dur-
ing preprocessing is the use of optimization models to
select the set of variables used to build a DM model.
Because this is not specific to eCRM, we discuss this
further in §3.1.

2.2.2. Building Customer Profiles. The profiling
problem has been studied even before eCRM appli-
cations became popular. In particular, Fawcett and
Provost (1996) studied this problem within the fraud
detection context and used DM to generate rule-based
customer profiles to detect fraudulent cellular phone
usage behavior. Building rich and accurate profiles
of customers based on their transactional histories
is also crucial in many CRM applications, including
recommendation applications, one-to-one marketing,
and personalized Web content delivery. These user
profiles can contain (1) factual information about the
user, such as demographic and psychographic data,
(2) a set of rules capturing behavior of the user,
(3) management science models parameterized to par-
ticular individuals, and (4) important website visita-
tion patterns, and so on. For example, consider the

rule, “if John travels to Los Angeles on business, he
stays in expensive hotels.” Adomavicius and Tuzhilin
(2001) describe how DM methods can be used for
learning such rules and for incorporating them into
customer profiles.
Because many of the discovered rules can be spu-

rious, irrelevant, or trivial, one of the main problems
is how to select an optimal set of rules for each cus-
tomer from the set of rules previously discovered
with DM methods. This is crucial in profiling appli-
cations that (1) deal with large customer bases where
the total number of patterns for all the customers
can be in the millions, (2) deal with real-time prob-
lems, and (3) need to have only the most important
patterns to provide better performance results. In
such applications, personalized content needs to be
delivered in real time, while the customer is waiting
online. Therefore, content delivery decisions should
be driven by only a few rules to guarantee real-time
delivery and relevant content for the customer (Davis
1998). Consequently, optimization can help customer
profiling and other applications to select a small num-
ber of the most important patterns from the set of
previously discovered patterns.

2.3. Customer Interactions in eCRM
In this section, we will review the problems facil-
itating better interactions with the customers. In
particular, we will focus on website design and on
personalization problems.

2.3.1. Website Design. Websites can be viewed as
user interfaces to information sources, and it is a chal-
lenge to construct efficient websites that provide cus-
tomers with a good interface. Current DM approaches
are based on mining Web logfiles for path traversal
patterns and restructuring sites based on the analysis.
In Perkowitz and Etzioni (1998), the problem is

defined in terms of automatic construction of index
pages based on logfile data, with the goal of con-
structing index pages that provide users access to
information that they are likely to view. The algo-
rithm proposed has four steps: (1) processing the
logfiles into user visits, (2) computing co-occurrence
frequencies between pages and creating a similarity
matrix, (3) creating a graph from this matrix and then
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finding cliques in this graph, and (4) creating index
pages corresponding to each clique in the graph. The
algorithm is evaluated based on how often users
simultaneously visit the pages in the index page.
Srikant and Yang (2001) propose another interesting
approach to the problem of automatically synthesiz-
ing Web pages. They address the issue of compar-
ing the “expected location” of various pages with the
actual location where the page is, and they propose
an algorithm that automatically finds such pairs of
Web pages. The main idea is to examine user sessions
in the logfiles and identify backtracking points where
a user backtracks to a previous page and continues
the session. If a number of users backtrack at page pi
and finish their session at page pj , then this approach
considers pi to be the “expected location” of pj .
Opportunities exist for framing website design

problems as optimization problems, and we outline
one such method in the online appendix. For example,
an objective of a website design can be to maximize
navigational simplicity by minimizing the average
number of clicks required to get to any page. Further,
there may be several constraints on the design. A
constraint, motivated by cognitive reasons, may be
that the number of links that may be placed on any
page should be less than some user-specified thresh-
old value. Yet, another constraint may require the
sports and finance pages to be explicitly linked to
each other based on input from the marketing depart-
ment. However, it is difficult to provide user-specific
constraints a priori (in many cases, we may not even
know these constraints before looking at the data).
DM can help to address this problem. First, the web-
site is structured as per the solution to the optimiza-
tion problem. As the user navigates this site, data on
the user’s access patterns is gathered. DM can, thus,
identify additional constraints using patterns identi-
fied by this data. For example, DM can find that most
users access the finance and sports pages together.
This information can then be used as a constraint. The
optimization problem is then solved incorporating the
additional constraints. This process can be iteratively
done until some user-defined stopping criterion.
This example demonstrates the opportunity for

new research to identify similar problems that can
be formulated in the context of website design.

Note that in this mode, problems in website design
will be mainly formulated as optimization problems
(e.g., select the optimal set of links to place in a page
delivered to a customer). However, DM will play a
key role in the specification of the optimization space
(e.g., which subsets of links should be in the consider-
ation set), and will also play a part in the specification
of the constraints (e.g., DM can be used to discover
that for users from a certain domain, links a and b
will have to be a part of the dynamically composed
page).

2.3.2. Personalization. Another interesting cus-
tomer interaction issue is the provision of personalized
services to customers, including recommendations.
Assume that a customer visits an online store (e.g.,
Amazon.com), and the store wants to recommend k
products on the visitor’s customized “welcome” page
(e.g., 10 books for the customer). Crucially, this deci-
sion needs to be made in real time while the customer
waits for the requested page. This is an example of a
recommender systems problem, and has been exten-
sively studied during the past decade.
Most of the approaches developed for solving this

type of a recommendation problem use statistical and
DM approaches, and usually try to determine “good”
products to recommend to the customer. Various
existing recommendation methods were classified by
Balabanovic and Shoham (1997) into content-based,
collaborative and hybrid approaches and have been
reviewed in surveys (Pazzani 1999, Schafer et al.
2001, Adomavicius and Tuzhilin 2003). For example,
the collaborative filtering method finds k “nearest
neighbors” ci for customer c (based on various mea-
sures that define distances between customers ci and
c�d�c� ci�), takes the products that customers ci have
rated that customer c has not yet consumed, and rates
these products based on the average ratings that the k
customers ci have already assigned to them, weighted
by the distance measures d�c� ci�. Then, the products
with the highest ratings are recommended to cus-
tomer c. Many proposals have been made for defin-
ing distances and weights to compute the weighted
ratings (Pazzani 1999).
As argued in Adomavicius and Tuzhilin (2003), the

recommendation problem can also be formulated as
an optimization problem that selects the best items to
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recommend to a user. More specifically, if R: Users×
Items→ Ratings is a rating function specifying how
much user u ∈ Users liked item i ∈ Items, then the
recommendation problem determines how to select
item i′u for user u so that

∀u ∈Users� i′u = arg max
i∈Items

R�u� i�


Reconsider, for example, that Amazon.com may
want to determine which best 10 books to put on the
customer’s “welcome” page. The challenge for this
problem is that the rating function is usually par-
tially specified (i.e., not all entries in matrix R�u� i�
have known ratings). Therefore, it is necessary to
specify how unknown ratings R�u� i� should be esti-
mated from the set of the previously specified ratings.
Numerous methods have been developed for esti-
mating these ratings, and the surveys (Pazzani 1999,
Adomavicius and Tuzhilin 2003) describe some of
these methods.
Once the optimization problem is defined, DM

can contribute to its solution by learning additional
constraints with DM methods, thereby significantly
reducing the search space. For example, in the case
of an online wine store, we can learn that a customer
usually prefers to buy red inexpensive wines, how-
ever, on certain occasions, such as his wife’s birthday,
he usually buys midrange white Chablis. By storing
this information in the customer’s profile and invok-
ing it on these special occasions, much tighter con-
straints on recommendations can be specified.
In this section, we reviewed some of the existing

approaches to solving three main analytical eCRM
problems: (1) specifying effective performance metrics
(such as LTV) and finding optimal solutions based
on them, (2) developing effective customer analysis,
and (3) customer interaction methods. In general, we
described how DM and optimization can help each
other to provide better eCRM solutions, pointing out
how many of the eCRM problems discussed above
have been traditionally addressed using DM. There
are significant opportunities for optimization to help
the DM approaches to these eCRM problems. More
generally, there are significant opportunities for opti-
mization to help various key DM problems, and we
discuss these in the next section.

3. How Optimization Can Help
Traditional DM Problems

Optimization can contribute to DM in one of two
ways: (1) optimization can be a component of a larger
DM process, or (2) new DM techniques can be built
using entirely optimization-based methods. For exam-
ple, optimization as a component of a larger DM tech-
nique can be used as a method for determining the
selection of the best decision tree out of a set of pre-
viously generated decision trees using a genetic algo-
rithm (Fu et al. 2003), and estimating the optimal
weights of a multilayer neural network using gradi-
ent descent (Rumelhart et al. 1986). Support Vector
Machines (SVM) (Vapnik 1995, Burges 1998) fall into
the second category, because selection of an optimal
separating hyperplane (or a surface) constitutes the
DM method.
In this section, we consider the following DM prob-

lems: (1) feature selection, (2) active learning, (3) DM
model optimization, (4) selection of the best DM
model or pattern, (5) classification using mathematical
programming, (6) clustering, and (7) rule and con-
straint discovery. We demonstrate how optimization
can significantly contribute to DM by developing
solutions that are better and more often theoretically
sound. Note that the first four problems suggest ways
in which optimization can help by being a component
of a larger DM process, while the last three problems
suggest opportunities to develop new DM techniques
using optimization-based methods.

3.1. Feature Selection
When optimization is used to preprocess click-stream
data, as described in §2.2.1, optimization is used
before DM. In general, optimization can be useful
during the preprocessing stage of the DM process
(Fayyad et al. 1996) where it can be used to select both
an optimal set of features (or attributes) to mine over,
and the actual data to run the DM models on.
Good feature selection techniques can significantly

improve DM algorithms in two ways. First, these
techniques can contribute to dimensionality reduction
and faster running times. Second, they can contribute
to building more accurate models from data. The fea-
ture selection problem is defined as selecting a “best”
subset of features from a finite space of features,
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and has been studied as an optimization problem in
Olafsson and Yang (2002) who define the problem in
general as

max faccuracy�Model� F �

xi�the decision variables�= 1

if feature i is selected, 0 otherwise,

i ∈ F0 is the set of possible features,∑
xi ≥min f and

∑
xi ≤max f �

where F is the set of features selected, and min f and
max f are the minimum and maximum number of
desired features, respectively.
For specific formulations of the feature selection

problem, see the work of Bradley et al. (1998)
described in §3.5.1. As mentioned above, an impor-
tant eCRM application here is the selection of features
from preprocessed click-stream data. A single user
session can be preprocessed into hundreds of binary
(indicator) variables for every page accessed in the
session and several continuous variables (e.g., average
time spent per page). For a given task (e.g., predicting
if this customer will make a purchase in the session),
the feature selection problem is to select the most
relevant subset of these variables for use in modeling.

3.2. Active Learning
Active learning (MacKay 1992, Cohn et al. 1996, Saar-
Tsechansky and Provost 2001) constitutes an approach
to selecting the data on which to train DM models,
and a good summary of active learning is provided
in Saar-Tsechansky and Provost (2001). Mannino and
Mookerjee (1999) address a related problem where
they optimize the cost of information acquisition
for expert systems. By selecting only the data with
high utility to the model, active learning aims to
minimize the data needed for model building. The
usual scenario considered in active learning is that
all explanatory variables are known, a current model
of the target (dependent variable) exists, but the
dependent variable values are often unknown and
expensive to acquire. The problem is to determine
from which “best” points to acquire this target value.
For example, consider the problem of determin-
ing user satisfaction at an online store. Determining

what content is actually shown to various users is
straightforward, and this is automatically recorded
by eCRM systems. However, determining user satis-
faction is important, but expensive, and may require
incurring the cost of conducting surveys. Active
learning approaches can be used to determine the best
records to get the labels for (i.e., the identity of which
customers’ data information would be most helpful
for satisfaction data).
The different active learning methods fall into two

categories: (1) heuristic based, and (2) optimization
based (Hasenjager and Ritter 1999). The “query by
committee” approach (Engelson and Dagan 1999,
Freund et al. 1997) employs several models, and
each model makes its own predictions on the unseen
data. The data points chosen are those in which
there is maximum disagreement among the models.
Optimization approaches employ an objective func-
tion, and those data points that optimize this objective
function are selected. In Cohn et al. (1996), data points
are selected to minimize the overall prediction vari-
ance of a model, and Saar-Tsechansky and Provost
(2001) select the data according to the variance of
bootstrap predictions of class probability estimates.
MacKay (1992) proposes a criterion based on informa-
tion gain and suggests that for Gaussian distributions,
this criterion is equivalent to the heuristics that choose
data where the current model yields the largest error.
Inherently, the active learning problem is an optimiza-
tion problem (choose the “best” set of data points to
build a model), but this has not always been cast as
such by prior work. Therefore, it constitutes an oppor-
tunity for optimization researchers to do so, as well
as suggest new mechanisms for active learning.

3.3. DM Model Optimization
Many DM methods can be directly formulated as
optimization problems or can have an optimization
component that is a part of the DM problem (Hand
et al. 2001). Assume that � is the space of the mod-
els or patterns parameterized by some set of param-
eters � = ��1� 
 
 
 � �d�. Also, let S��1� 
 
 
 � �d � D�M� be
the scoring function specifying how well a specific
model (also called “structure” in Hand et al. 2001)
M fits data D for the set of parameters �. We want
to find M and the set of parameters � that optimize
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the scoring function S for data D. For example, �
can be the class of decision trees, �1� 
 
 
 � �d can be
the parameters controlling the node splitting process,
and the scoring function S��1� 
 
 
 � �d � D�M� can be
defined in terms of the predictive accuracy of the
tree on out-of-sample data. Many other DM problems,
such as neural networks and rule discovery problems,
can also be formulated as optimization problems in a
similar manner. Hence, optimization is a fundamental
component of many learning methods used in DM.
As Hand et al. (2001) points out, the solution to this

general optimization problem depends on the nature
of the parameter space � and the scoring function S.
If the parameter space � and the scoring function S
are “simple,” we may find a closed-form solution to the
optimization problem. However, for most of the opti-
mization problems encountered in DM, it is impos-
sible to find closed-form solutions, and the optimal
solution needs to be obtained using the following
iterative method:
(1) Initialize. Choose an initial value for the param-

eter vector � =�0. Set i = 0.
(2) Iterate. Compute the value of �i+1 based on �i

using the methods described below.
(3) Terminate. Determine if �i approaches a local

optimum by examining the distances either between
�i and �i+1 or between S��i� and S��i+1�.
(4) Repeat steps (1)–(3) for different initial values

of �0, and choose the best among the local optima
found thus far.
Various parameter estimation methods differ in the

way the iterative step 2 is performed. For some
methods, the value of �i+1 can be specified in
terms of �i with an equation. For example, gradi-
ent descent and similar optimization methods express
�i+1 as �i+1 = �i+!ivi, where vi is the vector in the
parameter space � specifying the direction toward
the next point (e.g., vi can be the gradient of S
at �i), and !i is a scalar specifying how far we need
to go along vi. For example, weights in multilayer
neural networks can be computed using gradient
descent. Another example of the iterative procedure
constitutes the Expectation Maximization (EM) algo-
rithm (Dempster et al. 1977) that is widely used in
various DM applications such as estimating the val-
ues of missing data (Little and Rubin 1987), com-
puting state transition matrices in Hidden Markov

Models (HMM) (Thrun and Langford 1997), and
computing clusters using Gaussian mixture models
(Xue and Jordan 1996). One example of utilizing the
EM algorithm in eCRM applications is the work of
Ypma and Heskes (2002), who use click-stream data
and the EM algorithm to learn an HMM, in which
the states learned provide important insight into user
navigational patterns on the Web.
In some cases, however, it is impossible to express

the value of �i+1 in terms of �i using an equation,
and one needs to resort to an algorithm that computes
the next value of �i+1. This gives rise to the class
of combinatorial optimization problems that require
heuristic search methods across the space � for a solu-
tion yielding the optimal score. For example, some
of the rule discovery methods generate rules using
heuristic search techniques, where the strength of a
rule can be defined using one of the many criteria
used in DM literature, such as the ones described
in Tan et al. (2002). An excellent example of using
heuristic search procedures for solving DM problems
is the use of tabu search (Glover 1989), which con-
stitutes an iterative greedy search algorithm using
memory of past points visited to improve search.
In classical gradient descent, the neighborhood of
the current solution is searched, and the best point
in this neighborhood is chosen as the current best
solution. However, this converges to a local optimum.
Simulated annealing techniques can be used to move
out of local optima and to continue search. Doing
so could, however, result in visiting the same points
again and getting into cycles. To prevent converg-
ing fast into local optima and to prevent getting into
cycles, tabu search restricts the selection of the neigh-
borhood of a point by imposing a “tabu” on some
subset of points. This concept has been applied in
Battiti and Tecchiolli (1995) to train the weights of
neural networks, which have been used in building
predictive models in eCRM applications. The experi-
ments in Padmanabhan et al. (2001) show that neu-
ral networks built on click-stream data outperform
several other models of purchase prediction.
As another example of the heuristic search for

an optimal solution to a DM problem, consider the
problem of selecting the best decision tree using
the Minimum Description Length (MDL) principle
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(Rissanen 1978). The MDL principle selects a model
from a set of all models that minimizes the total num-
ber of bits needed to encode the model and the data
given the model. Formally, let D = "d1�d2� 
 
 
 � dN $
be a set of data points and let H be a set of mod-
els (hypotheses) describing data D. Also, let C1 be a
coding scheme for hypotheses from H , and C2 a cod-
ing scheme for data D given hypothesis h from H .
Then, the MDL principle selects the hypothesis h0
from H that minimizes the total length of the encoded
model and the description of the data given the model

h0 = arg min
h∈H

(
LC1�h�+LC2�D � h�) (1)

taken across different possible coding schemes C1
and C2.
For decision tree construction, a tree can first be

built using standard DM techniques, such as See5/
C4.5 (Quinlan 1993), and then an optimal subtree can
be selected that is minimal in the MDL sense, i.e.,
one that minimizes the total encoding of the tree and
the data given the tree (Quinlan and Rivest 1989).
This selection is equivalent to pruning the tree and is
done to avoid overfitting. MDL has also been used in
learning Bayesian networks. Jaronski et al. (2001) use
Bayesian networks to understand online audiences in
general, and to model stickiness and repeat visits of
customers to websites.

3.4. Selection of the Best DM Model or Pattern
Some optimization methods operate on the models or
patterns produced by DM algorithms and select the
best model or pattern from a set of generated candi-
dates. For example, Kennedy et al. (1997) and Fu et al.
(2003) describe how a genetic algorithm selects the
best decision tree from a set of decision trees gener-
ated by tree induction methods. This selection process
is performed in the postprocessing stage after the DM
algorithm generates decision trees.
Kennedy et al. (1997) present genetic algorithm

encoding decision trees as chromosomes, using a vari-
ation of one of the standard tree traversal methods.
The approach uses the predictive accuracy of deci-
sion trees as a fitness function and defines crossover
and mutation operations on decision trees and their
encodings. Fu et al. (2003) build multiple decision

trees from the data by subsampling from the data and
building individual decision trees for each sample.
This approach then uses genetic algorithms to breed
better decision trees using the ideas presented in
Kennedy et al. (1997), and reports higher accuracy
rates of their approach in comparison to other tree
induction methods.
One particular opportunity for using optimization

after DM is in selecting the “best” patterns generated
by DM algorithms from data. As mentioned in §2.2.2,
the problem of building optimal profiles using opti-
mization is an example of this sort of opportunity in
eCRM. This problem can be formulated as an opti-
mization problem that selects a set of rules from a dis-
covered set such that they maximize certain objectives
such as revenue. There has been little work in DM on
this topic, and this is an opportunity for optimization
researchers to express these as optimization problems
that are formulated and solved after the DM step is
completed. This would be particularly relevant and
useful given the widespread use of rule discovery
algorithms in DM.

3.5. Classification
In this section, we review the extensive work on
building classifiers using mathematical programming.
This work is particularly relevant for eCRM because
the domain is characterized by several natural clas-
sification problems. For example, we can predict if a
customer will make a purchase within a session or not
and, thus, classify the customer into “buyer” versus
“nonbuyer.” Other classification problems include
predicting if a customer will be a repeat visitor or
will click on an advertisement, or will follow one
of several recommendations. The use of optimization
methods for learning optimal discriminant functions
can be traced all the way back to the work of Fisher
(1936). Many researchers have extended this approach
across the last 40 years, and more recent surveys of
some of these methods can be found in Mangasarian
(1997) and Bradley et al. (1999). We now consider lin-
ear, nonlinear, and integer programming methods for
building classifiers.

3.5.1. Building Classifiers Using Linear Program-
ming. A linear binary classification problem can be
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formulated as follows. Given two sets of points A
and B in the n-dimensional real space Rn, the task
is to separate them with a hyperplane wx+ ) = 0.
The separable case was studied in Mangasarian (1965)
in which A and B can be separated by a hyperplane
wx+) = 0 so that the conditions

Aw > e)� Bw < e) (2)

would hold, where A and B are the m×n and k×n
matrices of reals, whose rows define sets A and B of
m and k points, respectively, and e is a unity vector.
In particular, Mangasarian (1965) formulated a neces-
sary and sufficient condition for linear separability of
sets A and B as a positive solution of a certain linear
programming problem. Alternative conditions were
subsequently formulated in Smith (1968) and Grinold
(1972).
In many complex applications, the separability

assumption is not realistic because it may be impos-
sible to find a separating hyperplane. To deal with
this issue, Mangasarian (1968) separated sets A
and B with a piecewise-linear discriminant function
as follows. First, two parallel hyperplanes, cx=- and
cx = ., are generated by solving the following non-
linear problem:

min
c�.�-

{−.+- �Ac−e.≥ 0� −Bc+e-≥ 0�

−e≤ c≤ e� c22 ≥ n
}



As Mangasarian (1968) shows, these hyperplanes are
the closest ones, which contain between themselves,
the intersection of the convex hulls of points in A
and B (note that the nonemptiness of this intersec-
tion makes the two sets inseparable). By iteratively
repeating this procedure for the subsets of A and B,
which are contained between and lie on the two
hyperplanes cx = - and cx = ., a piecewise-linear
discriminant function is obtained that separates
points A and B. However, the decision problem
presented in Mangasarian (1968) is NP-complete
(Mangasarian et al. 1990). To deal with this problem,
Mangasarian et al. (1990) replace the L2 norm c22 in
the above minimization problem with the L� norm
(the revised term is c� = 1), and demonstrates that
the solution to this problem can be obtained in poly-
nomial time by solving 2n linear programs, where n

is the (usually small) dimensionality of the pattern
space. Then, Mangasarian et al. (1990) use a similar
iterative procedure that results in a piecewise-linear
function separating sets A and B, but the resulting
solution is more efficient than the one described in
Mangasarian (1968).
An alternative solution to the nonseparable case

was proposed in Bennett and Mangasarian (1992),
where the problem was formulated as finding a
hyperplane wx+ ) = 0 that minimizes the average
sum of misclassified points in A and B (i.e., points
that violate conditions of (2)). More precisely, the
optimization criterion in Bennett and Mangasarian
(1992) is

min
w�)

1
m

∥∥�−Aw+e)+e�+
∥∥
1
+ 1
k

∥∥�Bw−e)+e�+
∥∥
1
� (3)

where x+ denotes a vector such that �x+�i =max"xi�0$,
and x1 =

∑
i xi is the L1 norm. Note that (3) will be

zero if conditions (2) are satisfied, as in the separable
case. Bennett and Mangasarian (1992) present an
efficient solution to this problem.
Building on this work, Bradley et al. (1998) study

the feature selection problem that tries to reduce the
dimensionality of space Rn so that separation of the
two classes still remains meaningful. Bradley et al.
(1998) point out that (3) is equivalent to the following
formulation:

min
w�)�y�z

{
eT y

m
+ e

T z

n

∣∣∣∣−Aw+ e)+ e ≤ y�

Bw− e)+ e ≤ z� y ≥ 0� z≥ 0
}



Bradley et al. (1998) then show how this classification
problem can be converted into a “feature selection”
problem. The idea is to suppress as many components
of w as possible such that the separating hyperplane is
of as few dimensions as possible. To do this, Bradley
et al. (1998) introduce an extra term ! ∈ 50�1� and
weight the objective function as

min
w�)�y�z

{
�1−!�

(
eT y

m
+ e

T z

n

)
+!eT �w�∗

∣∣∣∣−Aw+e)+e≤y�

Bw−e)+e≤z� y≥0� z≥0
}
�

where w∗ denotes a vector, such that �w∗�i = 1 if wi
is positive and 0 otherwise.
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3.5.2. Building Classifiers Using Nonlinear
Programming. The separability problem has been
approached from a different angle using the nonlinear
SVM method (Vapnik 1995, Burges 1998) that builds
a classifier in an n-dimensional Euclidean space Rn

as follows. Let "xi� yi$, i = 1� 
 
 
 �M , yi ∈ "−1�1$ be a
set of M labeled training data points, where labels
are binary (true/false or −1/+ 1). We will start our
discussion of SVM methods with a separable case
when there exists a hyperplane wx+ b = 0 in Rn

that separates the positive from the negative training
examples. Let d+ and d− be the shortest distances
from the positive and negative points in the train-
ing set to the separating hyperplane (see Figure 1).
Then, the SVM method seeks to find such a separat-
ing hyperplane wx+ b = 0 that maximizes the total
distance d++d− called the “margin.” The hyperplanes
parallel to the separating hyperplane and located
from it at the distances d+ and d− are denoted as H1

and H2, respectively, and are shown in Figure 1. Note
that there are no training examples located between
these two hyperplanes.
Vapnik (1995) and Burges (1998) show that this

problem can be stated as a quadratic programming
problem seeking to minimize the L2 norm of w, i.e.,
w2 subject to the constraints

yi�xiw+ b�−1≥ 0 for i = 1� 
 
 
 �M


This constrained optimization problem is solved
using standard Lagrangian methods and yields

w =∑
i

.iyixi
 (4)

Figure 1 The Linearly Separable Case for Support Vector Machines
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Then, the Wolfe dual maximization problem is (with
.i ≥ 0�

LD =∑
i

.i−
1
2

∑
i� j

.i.jyiyjxixj � (5)

and the Karush-Kuhn-Tucker conditions yield

.i�yi�wxi+ b�−1�= 0 for i = 1� 
 
 
 �M
 (6)

We can see from this that if .i > 0, then the point xi
lies on one of the separating hyperplanes H1 or H2,
depending on the value of yi. Such points lying on H1

and H2 are called support vectors and are the points on
the dotted lines in Figure 1. All other training points
have .i = 0 because of (6). Notice that only support
vectors contribute to the calculation of w in (4). The
value of b can be computed using (6) and (4). Once we
trained a SVM by computing w and b (using (4) and
(6)), the SVM classifies a new pattern x by computing
f �x�=wx+ b and determining the sign of f �x�.
For the nonseparable case, we can maximize the

margin distance d+ + d− minus the total distances
of all the misclassified points (those points that fell
between the separating hyperplanes H1 and H2).
Vapnik (1995) and Burges (1998) show that the
problem can still be formulated as a Wolfe dual
quadratic programming problem that maximizes

LD =∑
i

.i−
1
2

∑
i� j

.i.jyiyjxixj � (7)

but this time subject to the additional constraints
0≤ .i ≤ C, where C is a parameter chosen by the
user that assigns penalties to misclassification errors
(larger C means larger errors). The solution is again
given by (4), where the summation is taken over all
the support vectors (.i > 0).
We have reviewed linear SVMs so far, where sepa-

ration between classes is done by a hyperplane. Much
SVM work focuses on nonlinear SVMs where the
separation between classes is done with nonlinear
surfaces. This work is surveyed in Vapnik (1995) and
Burges (1998).
Although SVMs have been mainly used in the

offline applications, one example of using SVMs for
classifying Web searches is presented in Chen and
Dumais (2000). In particular, their paper describes
how SVMs are used for the automatic classification of
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users’ Web search results into several categories, mak-
ing it easier to understand the results of search. In this
application, an SVM is built to classify text documents
into categories.

3.5.3. Building Classifiers Using Integer Pro-
gramming. Logical Analysis of Data (LAD) is another
method for classification proposed in the optimiza-
tion literature (Crama et al. 1988). It builds a classi-
fier for a binary target variable based on learning a
logical expression that can distinguish between pos-
itive and negative examples in a data set. In this
sense, the problem is similar to the concept learning
problem studied in machine learning (Mitchell 1997).
The principal difference is that in the logical analysis
of data literature, the solutions to the problem are
developed by formulating and solving optimization
problems; mainly integer programs. Early work in
this area was targeted at binary domains. Recent work
has extended this target to include numeric predictor
attributes by using a process known as “binarization”
(Boros et al. 1997). Consider the example from Boros
et al. (1997) shown in Table 1.
The data consists of five records of three numeric

predictor attributes (A, B, and C) and a binary target.
The approach in Boros et al. (1997) uses cutoff values
.A, .B, .C to create binary variables XA, XB, XC , where
XA = 1 iff A> .A and XB, XC are similarly computed
for all points �A�B�C� ∈ S+ ∪ S−, where S+ is the set
of positive examples (e.g., the first three records in
Table 1) and S− is the set of negative examples. To
learn a classifier, the LAD approach views the last
four columns of Table 1 as a partially defined Boolean
function (pdBf) because it can be viewed as a partially
specified truth table (which only specifies the out-
come for some values of XA, XB, XC). An extension

Table 1 Example Data for the LAD Approach

Original variables Boolean variables Target variable

A B C XA XB XC Y

3�5 3�8 2�8 1 1 0 1
2�6 1�6 5�2 0 0 1 1
1�0 2�1 3�8 0 1 1 1
3�5 1�6 3�8 1 0 1 0
2�3 2�1 1�0 0 1 0 0

of a pdBf is defined as a Boolean function that is
consistent with all the positive and negative examples
of the data. An example of such a function for the
data in Table 1 is (XA ∧XB�∨ �X ′

A ∧X ′
B�∨ �XB ∧XC�.

The problem then becomes finding such functions.
The LAD literature presents methods to find such
extensions for various specific classes of Boolean func-
tions (Boros et al. 1995). In particular, for a given pdBf,
there can be several consistent extensions and Boros
et al. (1997) formulates different integer programs to
find the extension with a minimum number of cutoff
points for various different classes of functions. Note
that the above approach does not distinguish optimal
models in training versus test data sets. In DM, how-
ever, this is an important distinction because predic-
tive models are required to do well on unseen data.
A challenge for optimization researchers building DM
algorithms is to explicitly address this issue and to
study how optimization over training sets produces
optimal models for unseen data.

3.6. Clustering
In §3.5, we focused on the description of mathematical
programming methods for building classifiers. In
addition, mathematical programming has been used
for clustering. In particular, Bradley et al. (1997) for-
mulate a concave minimization problem for finding
k clusters in an n-dimensional Euclidean space Rn.
Given a set of m points A= "Ai$i=1� 


�m and k clusters
Cl, l = 1� 
 
 
 � k, the problem is to find the locations
of such clusters in Rn so that the sum of the minima
over l from "1� 
 
 
 � k$ of the 1-norm distance between
each point Ai and the cluster centers Cl is minimized:

min
C�D

m∑
i=1

min
l
"eT Dil$

subject to −Dil ≤ATi −Cl ≤Dil�
i = 1� 
 
 
 �m8 l = 1� 
 
 
 � k�

where Dil ∈ Rn is the dummy variable that bounds
the components of the difference between point ATi
and the center Cl and e is the unity vector. The solu-
tion presented in Bradley et al. (1997) reduces this
problem to a bilinear program that is solved by using
a k-median algorithm.
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3.7. Rule and Constraint Discovery
In addition to classification and clustering problems
in DM, the discovery of rules in data is another
important and popular problem. DM researchers have
formulated various rule discovery problems and have
suggested methods for discovering rules predom-
inantly based on intelligent searching techniques.
For example, consider association rules having the
form A1�A2� 
 
 
 �AN → B1, B2� 
 
 
 �BK , where the LHS
and RHS are both conjunctions of binary attributes
(itemsets). Agrawal et al. (1995) present an efficient
algorithm that discovers all association rules with
confidence and supports values above some thre-
sholds, where support is the number of transactions
in which both the LHS and RHS of the rule hold
and confidence is the strength of the rule computed
as count�LHS�RHS�/count�LHS�. There is an interest-
ing relationship between problem formulation and
search here. Without the minimum support con-
straint, the search has to be exhaustive and would
generate a huge number of rules. With the minimum
support constraint, the problem can be addressed
using more intelligent search methods that signifi-
cantly limit the search space and, therefore, make
the problem practical. The opportunity for optimiza-
tion researchers is to develop new optimization-based
search methods that can focus on learning rules faster
than traditional DM search methods.
Related work (Hong 1993, Rymon 1994) in machine

learning presents an initial approach to exploring this
opportunity. The approach minimizes a Boolean logic
expression to discover minimal rules from binary
data. For example, consider two binary attributes A
and B and assume that there is a dependent binary
variable C. Let A = 1, B = 0, and A = 1, B = 1 rep-
resent points corresponding to positive instances of
C. This data gives rise to the trivial expression AB′ +
AB→ C, where the LHS of the rule is in disjunctive
normal form. Each term in the LHS corresponds to
a conjunction of literals obtained from a single data
record. The LHS of the rule is now a Boolean logic
expression and logic minimization algorithms (Hong
1993) can be used to simplify it. The LHS simplifies to
A and the rule generated is A→C. In general, simpli-
fying the LHS needs to be efficiently done. See Hong

(1993) and Rymon (1994) for examples of algorithms
that do this.
In this section, we described how optimization can

help solve traditional DM problems. More gener-
ally, the interaction between DM and optimization
is bidirectional, and there are opportunities for DM
to help solve problems that are addressed tradition-
ally using an optimization framework. For example,
an opportunity for using DM with optimization is to
use DM to learn patterns in data that can, in turn,
be used as constraints in a traditional optimization
framework. This can ensure that the solutions derived
from the optimization approach are consistent with
the dominant patterns that emerge from the data and,
hence, the solution quality can be improved. Further,
using better constraints can help solve the optimiza-
tion problem faster by appropriately restricting the
search space. Consider the content management prob-
lem of placing advertisements on Web pages, such
as done by DoubleClick. This can be formulated as
an optimization problem as pointed out by Geoffrion
and Krishnan (2001). Many of the constraints for this
problem are about whom to show what types of
advertisements. Although the content management
problem is an optimization problem, leading CRM
vendors do not formulate it as such and, instead,
use ad hoc heuristics to determine the selection of
content. However, they still use constraints in find-
ing solutions. For example, BroadVision lets domain
experts explicitly specify the types of content that
should be delivered to various types of users (e.g.,
users from .com domains should not be shown adver-
tisements with audio during the day). In contrast
to this, Blue Martini learns these constraints from
data using DM. Before using these discovered con-
straints to guide content delivery, experts are shown
the constraints and decide whether or not to use them.
The applications of website design and recommender
systems discussed in §2.3 give additional examples
of using DM to learn constraints for eCRM prob-
lems. While a detailed treatment of how DM can help
optimization is beyond the scope of this paper, the
online appendix provides additional examples of such
interactions.
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4. Conclusions
Most firms today recognize the importance of build-
ing and maintaining strong relationships with their
customers. As firms increasingly rely on their online
presence to interact with customers, eCRM will con-
tinue to grow in importance. Addressing eCRM prob-
lems by utilizing the strengths of both DM and opti-
mization can, therefore, be a useful area for future
research. A better understanding of the problems in
eCRM and of the possible ways in which DM and
optimization can interact, can help exploit the oppor-
tunities for synergistically using both approaches in
the solution of eCRM problems. To this end, in
this paper we (1) surveyed various eCRM appli-
cations where such interactions are important, and
showed that relatively little work has been done on
exploring these interactions in the eCRM context and
(2) described different ways in which optimization
can help DM by surveying extensive existing liter-
ature. More generally, the interactions between DM
and optimization are bidirectional and the online
appendix presents a treatment of how DM can help
optimization.
A strong theme emerging from our survey is the

existence of several natural opportunities for inter-
actions between DM and optimization in eCRM and
also in general. Optimization can help DM in eCRM
applications by developing more systematic methods
of preprocessing click-stream data in a manner that
optimizes the performance of a DM model subse-
quently built on the preprocessed data. As pointed
out in §2.2.1, there are opportunities for researchers
to formulate and solve this optimization problem.
As was also pointed out in §2.2.2, many eCRM
applications require concise profiles containing the
most important information about customers. This

Table 2 Opportunities for Optimization to Help DM

Method of interaction eCRM opportunities General opportunities

Optimization as a DM component Developing methods for preprocessing click-stream data Developing optimization-based methods for active learning
to optimize performance of eCRM models (§2.2.1) and feature selection (§§3.1 and 3.2)

Building optimal customer profiles (§2.2.2) Developing optimization-based methods for selecting best
patterns or models generated by DM

Optimization-based algorithms Applying optimization-based algorithms (e.g., SVM, Developing new optimization-based algorithms for solving
for DM LAD) to classification problems in eCRM DM problems (classification, rule discovery, and so on)

is clearly a constrained optimization problem that
can be studied by optimization and DM mining
researchers. Finally, as pointed out in §3.5, several
classification problems exist in eCRM, and relatively
few optimization-based DM methods, such as SVM
and LAD, have been applied in this domain.
There are also important opportunities beyond

eCRM for optimization to help DM. DM methods
are only as good as the data they mine and, hence,
rigorous preprocessing methods can significantly con-
tribute to building better DM models. Optimization
can be particularly effective for developing rigor-
ous active learning and feature selection approaches.
Because many DM methods generate a large number
of patterns, postprocessing of DM results remains an
important problem. Optimization can play a valuable
role here. Finally, building new optimization-based
algorithms for DM can directly contribute to DM by
providing new methods. Various opportunities for
optimization to help DM are summarized in Table 2.
Similarly, there are interesting opportunities for

DM to help develop better optimization solutions
to eCRM problems. As pointed out in §§2.3.1 and
2.3.2, opportunities abound for solving the problems
of designing effective websites and generating tar-
geted recommendations by using an optimization-
based approach. There are opportunities for DM to
help by learning constraints from the data. Both these
problems of designing effective websites and gener-
ating targeted recommendations are critical in eCRM,
and will benefit from further exploration by optimiza-
tion and DM researchers. Finally, interesting research
opportunities exist related to the problem of struc-
turing policies to maximize LTV by exploiting cus-
tomer data. In general, we believe that DM can play
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a critical role in identifying relevant variables or
learning patterns that can be used within an optimiza-
tion framework. Such interactions can help build bet-
ter and faster solutions to problems, but have hardly
been explored in the literature thus far.
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