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Abstract

A recently developed data separation/classification method, called isotonic separation, is applied to breast cancer pre-
diction. Two breast cancer data sets, one with clean and sufficient data and the other with insufficient data, are used for the
study and the results are compared against those of decision tree induction methods, linear programming discrimination
methods, learning vector quantization, support vector machines, adaptive boosting, and other methods. The experiment
results show that isotonic separation is a viable and useful tool for data classification in the medical domain.
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1. Introduction

The task of data classification using knowledge
obtained from known historical data has been one
of the most intensively studied subjects in statistics,
decision science, operations research, and computer
science. It has been applied in problems of medicine,
social science, management, and engineering. For
instance, the StatLog project (Michie et al., 1994)
and its extension (Lim et al., 2000) evaluated a num-
ber of separation/classification techniques applied
in various problem domains such as disease diagno-
sis, image recognition, and credit evaluation. Linear
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programming approaches (Smith, 1968; Grinold,
1972; Freed and Glover, 1981; Bennett and Manga-
sarian, 1992) were also verified to be efficient and
effective methods in medical and other domains.
Currently support vector machines (Burges, 1998;
Cristianini and Shawe-Taylor, 2000; Miiller et al.,
2001; Scholkopf et al., 1999; Vapnik, 1998, 2000)
and AdaBoost (Freund and Schapire, 1997; Scha-
pire, 1999; Schapire and Singer, 1999, 2000) are
gaining attentions as techniques for solving classifi-
cation and regression problems.

This paper applies a recently developed linear
programming method called isotonic separation
(Chandrasekaran et al., 2005) to breast cancer pre-
diction, that is, categorical (binary in this case) pre-
diction of breast cancer diagnosis. A critical
assumption of the technique is monotonic consis-
tency within a set of data points, which in turn
establishes a partial order on data points. Such a
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consistency condition may be known in advance. In
the case of the Wisconsin breast cancer data set
tested in the paper, if a patient is known to have a
malignant tumor with a certain epithelial cell size,
then another patient’s tumor with a bigger epithelial
cell size is diagnosed to be malignant, when all other
features are identical. If no isotonic consistency con-
dition is known, as in the case of the Ljubljana
breast cancer data set also tested in the paper, it
must be obtained from the data set.

The two cancer data sets (i.e., Wisconsin and
Ljubljana breast cancer data sets) used in the paper
are similar in that both have binary class variables.
Besides the fact that one is a cancer diagnosis data
set and the other is a cancer recurrence data set,
they differ in that the Wisconsin data set has suffi-
cient features to induce accurate classification sys-
tems, whereas the Ljubljana data set contains
ambiguous data (Congdon, 2000) and the provided
features are insufficient (Clark and Niblett, 1987).
Following Lim et al. (2000) study, we also tested
the method on the Wisconsin cancer data with arti-
ficially added noisy features. The testing was done
under three possible scenarios: a clean data set with
sufficient features, a data set with not only sufficient
features but also noisy features, and a data set with
insufficient features.

The isotonic separation method tested on the two
data sets is compared against others, some of which
were reported in previous studies and others are
tested in this paper. The experiment results show
that the isotonic separation method has lower test-
ing error rates than all other methods and is statis-
tically validated to be better than many of them.

2. Two-category isotonic separation

Consider a set P of data points in a d-dimen-
sional space R? that is partitioned into two disjoint
sets B of blue points and R of red points. Given
these two classes of points, we would like to design
a system that can learn to separate these points as
either blue or red with a minimum of errors. In this
paper we propose a classification scheme that
assumes the data set satisfies an isotonic consistency
condition. The isotonic consistency condition yields
a partial ordering relation S on R?. That is,
S'={(i,j): a; > a;} contains ordered pairs of data
points for which if i is classified as red then j must
be classified as red, and conversely, if j is classified
as blue, then 7/ must be classified as blue. Here, a;
and a; are the coordinate vectors of i and j, respec-

tively, and a; > a; if and only if a;; > a;; for all
k=1,2,...,d, where a;; and ay; are the kth element
of a; and a;, respectively.

For example, in the case of breast cancer diagno-
sis (Mangasarian et al., 1990, 1995), if fine needle
aspirates taken from subjects with certain values
of clump thickness, uniformity of cell size, unifor-
mity of cell shape, etc. are diagnosed malignant,
then those from other subjects with the same or
higher values must be diagnosed malignant. In the
case of firm bankruptcy prediction (Altman, 1968),
if firms with certain values of capital-to-asset, earn-
ing-to-asset, and equity-to-debt ratios are predicted
to go bankrupt, then other firms with the same or
lower values must be predicted to go bankrupt.

Our analysis also takes into account penalties for
misclassification. We define the following misclassi-
fication penalties: o > 0 for each blue point that is
classified as red by the system, and > 0 for each
red point that is classified as blue by the system.
The proposed isotonic separation technique mini-
mizes the total misclassification penalties, i.e.,
ony + Pn, where n; is the number of misclassified
blue points and #n, is the number of misclassified
red points.

Isotonic separation is closely related to isotonic
regression (Gebhardt, 1970; Barlow et al., 1972;
Dykstra and Robertson, 1982; Block et al., 1994).
In both methods, isotonic consistency conditions
are the main constraints. However, the main differ-
ence is that while isotonic separation minimizes
numbers of misclassified categorical data points,
isotonic regression minimizes errors measured as
the distances between the actual outcomes and pre-
dicted outcomes of non-categorical data points.
Other methods that use the isotonic consistency
conditions include the monotonic decision tree
induction technique (Ben-David, 1995), the UTA-
DIS (Jacquet-Lagréze, 1995), and the dominance-
based rough set approach (Greco et al., 1998). A
monotonic decision tree is built in such a way that
monotonicity between branching conditions and
the outcome preference is maintained. The UTA-
DIS is a multicriteria decision making method in
which utilities of multiple criteria are aggregated
while their monotonicity aspects are explicitly main-
tained. The dominance-based rough set approach is
a variation of the rough set method based on mono-
tonic dominance relation over order attribute
domains. These methods and isotonic separation
all utilize the known nature of monotonicity of attri-
butes or criteria but in different manners.
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2.1. The mathematical model

It is possible that multiple data points have the
same set of coordinates; furthermore, some of these
points could be blue belonging to B and the others
red belonging to R. We will consider all such data
points as one data point i such that r; and b, indicate
the actual numbers of red and blue points, respec-
tively, represented by i. Further, suppose there exist
only n distinct data points (i.e., those with different
sets of coordinates). Define a variable x; for each
data point i

m; €{0,1} for I <i<n, (2.1

meaning that

1 if i is classified as blue by the system,
T = .
0 otherwise.

As a result of the isotonic consistency condition, we
have the following consistency constraints:

>0 for (i,j) €S. (2.2)

If i is classified as red by the system (i.e., n;=0),
then there will be a misclassification penalty of b,o.
Similarly, if i is classified as blue (i.e., 7; = 1), then
there will be a misclassification penalty of ;5. These
lead to the objective function

minimize Zb,-oc(l — ) + Z ripm;,
i=1 =1

T, — T

or equivalently,
minimize Z(—bicx + rif)m;. (2.3)
i=1

Even though the above formulation of (2.1)—(2.3)
appears to be an integer program, the constraint
matrix of (2.2) consists of only 1, 0, and —1, and
thus is totally unimodular (Hoffman and Kruskal,
1956; Papadimitriou and Steiglitz, 1998). Therefore,
we can drop the integer requirement in (2.1)

0<m <1l forl<i<n, (2.1)

and still get integer solutions (Murty, 1976; Shapiro,
1979).

2.2. Separation of the d-dimensional space

As discussed above, the system is able to effec-
tively separate the given data. However, we perceive
the value of such a system as being able to classify
new points once it has been trained on the given
data set. Thus, in this section, we provide a frame-

work to partition the d-dimensional space RY.
New data points, therefore, can be classified based
on which area they are located in. Let
{m} : 1 <i < n} be an optimal solution to the prob-
lem of (2.1'), (2.2), and (2.3). We can divide the d-
dimensional space R? into three regions:

Sr=1{p¢€ R?: (i,p) € S for some 7; = 0},

(2.4a)
={peR’:(p,i)eS forsome n; =1},
(2.4b)
and
Py = RN (S U S). (2.4c)

The region &}, of (2.4b) is classified as blue, because
for every point p € S, there exists i € BU R such
that n; =1 (i.e., i is classified as blue) and
(p,i) € S (i.e., since i is classified as blue, p must be
classified as blue). Similarly, the region %, is classi-
fied as red. The region &y, however, is the area in
which the training sample set does not have data
points and therefore, the system cannot partition
the region. If the penalty for a blue point classified
as red by the system is substantially greater than
that for a red point classified as blue, then test data
that lie in .%,, would be classified as blue; in the
opposite case, they would be classified as red. Other-
wise, a test data point is classified based on its
weighted distance from the boundary. Thus, if a test
data point in % is closer to the boundary of &
than that of %, it is classified as red; otherwise, it
is classified as blue. This is performed as follows.

Let F, and F;, be sets of boundary corner points
(i.e., undominated points) of &%, and %, respec-
tively. That is,

Fy={i:n; =0and An; = 0 such that
i #jand (j,i) € S},

F,={i:n; =1and Zn; =1 such that
i #jand (i,)) € S}.

When S = {(i,j): a;, > a;} where a; and a; are the
coordinate vectors of i and j, a point p € &, (or
more generally any point p € RY) is classified as blue
if

III€111FI; {ﬁz max {ay — ay, O}}
rlrgrrl {az max {a, — a;, O}} (2.5)
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where (a1, azp,...,a4,) and (ay;,az;,. . .,aq) are the
coordinate vectors of p and i, respectively; otherwise
it is classified as red.

2.3. Reduction of the problem size

It was shown that the isotonic separation tech-
nique formulates the classification problem as a lin-
ear programming model. The elimination of
redundant pairs (i.e., reflexive and transitively
implied ones) in S reduces the problem by reducing
constraints in the linear programming model. How-
ever, a further investigation of the isotonic separa-
tion problem allows significant reduction of the
problem size. Define a maximal subset R of R and
a maximal subset B of B:

={i € R: 3j € B such that (i,j) € S},

R
B={i€B: 3j€R such that (j,i) € S}.

That is, R is the biggest subset of R such that for
i € R there does not exist j € B with (i,j) € S; simi-
larly, B is the biggest subset of B such that for
i € B there does not exist j € R with (j,i) € S. Then,
in every optimal solution

n; =0 forieR,
*=1 fori€B.
If not, by changing the solution by modifying only
these variables, we would get a better solution. As
a result of this observation, we can reduce the set

of data points P to P":
P =P\ (RUB),

and then, we can build and solve a linear program-
ming model for P’.

3. Wisconsin breast cancer diagnosis data

The Wisconsin breast cancer data set (Merz and
Murphy, 1998) contains 699 data points on fine nee-
dle aspirates taken from patients’ breasts. Each data
point consists of one class variable (indicating
benign or malignant tumors) and nine features of
clump thickness, uniformity of cell size, uniformity
of cell shape, marginal adhesion, single epithelial
cell size, bare nuclei, bland chromatin, normal
nucleoli, and mitoses measured in the integer range
of 1-10, with a higher value corresponding to a
more abnormal state of the tumor (Mangasarian
et al., 1990). Of 699 data points, 458 were diagnosed
to be benign and 241 malignant.

Wolberg and Mangasarian (1990) used first 369
data points (367 points out of 699 breast cancer
data points plus two others that were removed later)
for the multisurface separation method (summa-
rized in Section 3.5). When 50% of the data points
were used for training, two parallel planes were
drawn and 6.5% of remaining data for testing were
misclassified. When 67% of the data points were used
for training, three parallel planes were drawn and
4.1% of remaining data for testing were misclassi-
fied. Mangasarian et al. (1990) used all 369 data
points as the training data set for the multisurface
separation method, which resulted in four parallel
planes. When other 45 data points were tested, all
were correctly classified. Mangasarian and Wolberg
(1990) used the same 369 points for the multisurface
separation and reported the testing result of other
70 data points (including the previous 45 points),
in which only one was incorrectly classified. Bennett
and Mangasarian (1992) used 566 data points of
which 67% were used for training and remaining
33% for testing, and reported a 2.56% testing error
rate of the robust linear programming discrimina-
tion method (summarized in Section 3.3), compared
with a 6.10% testing error rate of the multisurface
separation method with one pair of parallel planes
and a 3.58% testing error rate of Smith’s (1968) lin-
ear programming discrimination method.

Lim et al. (2000) performed a comprehensive
study on 33 data classification methods experi-
mented with sixteen data sets including the Wiscon-
sin breast cancer data. They reported the testing
accuracies with provided feature sets and artificially
added noisy features on the data set 683 data points
(among which 444 are benign and 239 are malig-
nant) using 10-fold cross validation. Among them,
the neural network method utilizing the learning
vector quantization algorithm (Kohonen, 1992,
2001) tested on the original features performed the
best with a 2.78% testing error rate. The Quest clas-
sification system (Loh and Shih, 1997) tested on the
original features performed the second with a 3.08%
testing error rate. When tested with the artificially
added noisy features, the Quest classification system
performed the best with a 2.93% testing error
rate and the flexible discriminant analysis method
(Hastie et al., 1994) performed the second with a
3.21% testing error rate.

We replicated Lim et al.’s (2000) 10-fold cross val-
idation experiment environments with the nine origi-
nal features and with the artificially added nine noisy
features. That is, we used exactly the same partition
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and exactly the same noisy features of Lim et al.’s
experiments. Each of those noisy features contained
randomly generated integer values between 1 and 10.
The disjointing 10 blocks of the partition were ran-
domly generated so that each block contained a
same ratio of benign and malignant tumor data.
The proposed isotonic separation method, support
vector machines (Burges, 1998; Cristianini and
Shawe-Taylor, 2000; Miiller et al., 2001; Scholkopf
et al., 1999; Vapnik, 1998, 2000), Bennett and
Mangasarian’s (1992) robust linear programming
discrimination method, AdaBoost (Freund and
Schapire, 1997; Schapire, 1999; Schapire and Singer,
1999, 2000), and Wolberg and Mangasarian’s (1990)
multisurface separation methods were all tested on
the data sets and compared against each other and
against methods used in Lim et al.’s (2000) study.
The details are as follows.

3.1. Isotonic separation experiments

Isotonic separation experiments started with the
known isotonicity: a higher feature value corre-
sponds to a more abnormal state of the breast
tumor cells (Mangasarian et al., 1990). Suppose a;
and a; are 9-dimensional (or 18-dimensional in the
case of experiments with the noisy features) feature
value vectors of data points i and j. This known iso-
tonic consistency condition yields an ordering rela-
tion S = {(i,j): a; > a;}. The separation variable 7,
for each data point i has a binary value of either 0
or 1, where n; =1 denotes malignancy and =, =0
denotes benignity.

For the task of feature selection, that is, choosing
a subset of features that would result in the best pre-
diction, we adopted the backward sequential elimi-
nation method (Kittler, 1986; Marill and Green,
1963). During each session of 10-fold cross valid
experiments, a 10-fold partition of the training data
set was generated and used for feature selection.
(Note that this 10-fold partition for feature selection
contains only the training data not the testing data.)
Using the set of all nine features (or 18 features
when noise was added), the isotonic separation test-
ing (i.e., 10-fold cross validation experiments using
the partition of the training data set) was per-
formed. Next, each subset containing eight features
(or 17 features when noise was added) was used for
isotonic separation testing and one with the smallest
error rate was chosen. From this chosen set of eight
features (or 17 features when noise was added), sub-
sets containing seven features (or 16 features when

noise was added) were considered for further test-
ing. This series of testing was performed until only
two features were left. Among all of these subsets
of features with which isotonic separation testing
was performed, one with the best prediction result
was selected as the final feature subset.

During the experiments, we noticed that the
problem reduction method of Section 2.3 improved
the efficiency of isotonic separation significantly. In
the 10-fold cross validation experiments on the ori-
ginal data set, the isotonic separation model of Sec-
tion 2.1 contained 615 variables (2.1’) and 122,651
constrains (2.2) on average. When the problem
reduction method of Section 2.3 was applied, the
model was reduced to that with 23 variables and
40 constraints on average. During the 10 training
sessions with the original data, isotonic separation
showed an average of 0.99% misclassification error
rate. When the additional noisy features were
added, an average of 0.29% of training data were
misclassified.

Among 683 data points (among which 444 are
benign and 239 are malignant) with the original nine
features, when tested by the 10-fold cross validation,
417 data points belonged to the benign tumor area
S (2.4a), 200 data points belonged to the malig-
nant tumor area %, (2.4b), and 66 data points
(9.66%) belonged to the unclassified area %,
(2.4c). Data points falling in the unclassified area
were classified using the criterion of (2.5). Among
them, 3 data points in &,, 6 data points in ¥,
and 6 data points in %, were misclassified. When
the additional nine noisy features were used, 334
data points belonged to the benign tumor area %,
101 data points belonged to the malignant tumor
area Y, and 248 data points (36.31%) belonged
to the unclassified area .%,,. Among them, 2 data
points in ¥, 2 data points in .%}, and 14 data points
in &, were misclassified. That is, with the original
nine features, the isotonic separation method
showed a 2.20% error rate; with the 18 features
including the nine noisy features, it showed a
2.64% error rate.

3.2. Support vector machine experiments

Suppose two sets B and R of malignant and
benign data points in a d-dimensional space are
given, where |BU R| =n. (Note, | --- | denotes the
cardinality of a set.) For each data point i € BU R,
let a; be the vector of its feature values and c¢;
its class label such that ¢;=1 if i€ B, and
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c;=—11if i€ R. Let ® be a function that trans-
forms d-dimensional space to d’-dimensional space
where d’ > d. Define K, called a kernel function, to
be the scalar product operation of vectors in the
d'-dimensional space, that is, K(x,y) = ®(x) - ®(y).
Typical forms of kernel function used for the sup-
port vector machine method include x-y (dot
product kernel), exp (—%Hx - y||§/02) (Gaussian,
or radial basis function, kernel) where ¢ is a real
number, and (x -y + 0)? (polynomial kernel) where
0 is a real number and the degree term d is an inte-
ger. Note, ||v||, denotes the /,-norm of vector v.

The support vector machine method finds a
linear separator w-x+ b =0 for the transformed
d'-dimensional space. whose coefficient vector
w = (w;,ws,...,wy) and constant b are obtained
by solving the following quadratic program:

minimize %Hw”i + C;yi
subject to c;(w-®(a;,) +b) = 1 —y, (3.1)
fori=1,2,...,n,
v =20 fori=1,2,... n.

Let non-negative 4; for i=1,2,...,n be Lagrangian
multipliers (i.e., dual variables) for the constraints.
Then, we have the following dual quadratic
program:

n n
. 1 ,
maximize E i,-—z E E LidjeiciK(a;, a;)
i=1 =1

i=1
subject to Z Aici = 0,
i1

0<A4<<C fori=1,2,... n.

A solution to this dual quadratic program with a
specific kernel gives a separator for the d’-dimen-
sional space.

For the support vector machine experiments, we
used an implementation based on Joachims’ (1999)
algorithm. We trained support vector machines
using the Gaussian kernel with ¢ = 6, the dot prod-
uct kernel, and the polynomial kernel degree d = 3
and 6 = 1. The polynomial kernel could find perfect
separators in all sessions of 10-fold experiments.
When testing data were classified, it resulted in
4.97% testing error rate on the original data set
and a 4.27% testing error rate on the data set with
the additional noisy features. The Gaussian kernel
showed 2.54% and 1.12% training error rates on
the data sets without and with noisy features,

respectively. When testing data were classified, it
resulted in a 2.92% testing error rate on the original
data set and a 2.78% testing error rate on the data
set with the additional noisy features. Finally, the
dot product kernel showed 2.55% and 2.28% train-
ing errors on the data sets without and with noisy
features, respectively. When testing data were classi-
fied, it resulted in a 3.37% testing error rate on the
original data set and a 2.78% testing error rate on
the data set with the additional noisy features.

3.3. Linear programming discrimination experiments

Linear programming approaches to discriminant
analysis (Smith, 1968; Grinold, 1972; Freed and
Glover, 1981; Bennett and Mangasarian, 1992) are
well-developed data classification methods. Among
them, we used the robust linear programming (LP)
discrimination method (Bennett and Mangasarian,
1992) which resolves the known problem of the null
solution without any extraneous constraint. Given
two sets B and R of malignant and benign data
points in a d-dimensional space, the robust linear
programming discrimination method finds a linear
separator for the d-dimensional space:

WX + WaXo + -+ Waxg =) (3.2)

whose coefficients wy,w»,...,w, and constant y are
obtained by the following linear program:

minimize o« Z vi+ B Z z;

i€R i€B

d
subject to Za,-,kwk +y;,zy+1 forieB,
k=1

d
Z".i,kwk —z;<y—1 forjeRr,
k=1

vi,z; =20 forieBandjeRr,
(3.3)

where (a;,4;2, . . .,d;4) 18 the d-dimensional coordi-
nate vector of point i. That is, it is expected that all
malignant points are in one side of the separator
and all benign points in the other side of the separa-
tor; however, if such a perfect separation is not pos-
sible, the linear program minimizes the total
weighted distance of misplaced points. The robust
LP method with pooled penalty has o = f8. The ro-
bust LP method with averaged penalty has
o= 1/|R| and B = 1/|B|.

The robust LP method with pooled penalty
showed a 2.55% training error rate and a 3.37%
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testing error rate on the original data set and a
2.28% training error rate and a 2.78% testing error
rate on the data set the additional noisy features.
The robust LP with averaged penalty showed a
2.64% training error rate and a 2.78% testing error
rate on the original data set and a 1.93% training
error rate and a 2.93% testing error rate on the data
set the additional noisy features.

For the feature selection task, we adopted the
backward sequential elimination method (Kittler,
1986; Marill and Green, 1963). The robust LP
method with pooled penalty showed a 2.64% train-
ing error rate and a 3.22% testing error rate on the
original data set with the feature selection and a
2.85% training error rate and a 2.78% testing error
rate on the data set with the additional noisy fea-
tures after the features election. The robust LP
method with averaged method showed a 2.73%
training error rate and a 2.78% testing error rate
on the original data set with the feature selection
and a 3.29% training error rate and a 3.36% testing
error rate on the data set with the additional noisy
features after the features election.

3.4. AdaBoost

AdaBoost (Freund and Schapire, 1997; Schapire,
1999; Schapire and Singer, 1999, 2000) is a boosting
method that improves the performance of a weak
learning system. It runs the weak learning system
multiple times with different weights on training
data points. The final classification is done by com-
bining multiple classification results of the weak
learning system on the training data set with differ-
ent weights.

Suppose two sets B and R of malignant and
benign data points in a d-dimensional space are
given, where |BUR|=mn. For each data point
i € BUR, let a; be the vector of its feature values
and ¢; its class label such that ¢;=1 if i € B, and
¢;=—11f i € R. Consider the training of a learning
system over 7 rounds. At round ¢, each training
data point i is associated with a weight given by
D,(i). At the initial round, D,(i) = 1/n. Let

h, :BUR — R

be the classification function of the learning system
obtained at . Weights of training data points at the
next round are adjusted as follows. Let

1 1+ 3L, Di(i)cih(a;)
e 2 8 <1 - Z;’ID,(i)cih,(ai))'

Then, weights for round 7+ 1 is obtained as:

_ D, (i) exp(—oucihi(a;))

DH»l(i) 7 )
t

where Z, is a normalization factor. As a result, the
weights of incorrectly classified data points are in-
creased. Once i, fort =1,2,..., and T are obtained,
the final classification function H is defined as
follows:

H(a;) = sign (i: oc,ht(a,-)> .

Experiments were performed with 500 boosting
rounds using a simple one-level decision tree (Scha-
pire and Singer, 2000). (The number of boosting
rounds was chosen during the training phase. We
tried various numbers of boosting rounds and chose
one with the lowest training error. The level of deci-
sion tree was chosen similarly.) When the classifier
was trained, it was able to find a perfect separator
for both the original data and the data with addi-
tional noisy features. When the separator was
tested, it resulted in a 3.66% testing error rate on
the original data set and a 5.12% testing error rate
on the data set with the additional noisy features.

3.5. Multisurface separation experiments

The multisurface separation method (Mangasar-
ian, 1968; Mangasarian et al., 1990; Wolberg and
Mangasarian, 1990) generates, until all data points
are separated, multiple pairs of parallel planes in
the d-dimensional space such that one side of the
first plane contains all malignant data points and
the other side of the second plane contains all
benign data points. If the area containing all malig-
nant data points and the area containing all benign
points must overlap, either a closest pair of parallel
planes or those with least data points between them
are selected. We call the first method MSM-d (“d”
indicating a distance measure) and the second
method MSM-c (“c” indicating a count measure).
A pair of such parallel planes can be obtained by
solving 2d linear programs.

The multisurface separation algorithm runs until
all training data are separated. Its training error
becomes always 0. But, its testing performance is
not always good mainly because the classifier can
be overtrained. The testing error rates are as fol-
lows. When tested on the 10-fold partition of the
breast cancer data set, MSM-d showed a 7.01%
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error rate on the original data set and a 7.03% error
rate on the data set with the additional noisy fea-
tures; MSM-c showed a 4.83% error rate on the ori-
ginal data set and a 6.00% error rate on the data set
with the additional noisy features.

The Wisconsin breast cancer diagnosis data set is
known to have one outlying data point. (The outly-
ing data point is a benign data point with clump
thickness 8, uniformity of cell size 4, uniformity of
cell shape 4, marginal adhesion 5, single epithelial
cell size 4, bare nuclei 7, bland chromatin 7, normal
nucleoli 8, and mitoses 2.) Since the multisurface
separation method attempts to achieve a perfect
separation during training, there might be a sub-
stantial negative effect from this outlying data point.
In order to see the performance of the multisurface
method on a cleaner data set, we removed this out-
lying data point and conducted the experiments.
Then, MSM-d showed a 6.62% error rate on the ori-
ginal data set and a 6.01% error rate on the data set
with the additional noisy features; MSM-c showed a
3.66% error rate on the original data set and a
4.27% error rate on the data set with the additional
noisy features.

3.6. Experiment results

Table 1 shows average training error rates and
standard deviations of classification methods
obtained from the 10-fold cross validation experi-
ment. Table 2 contains testing results of our exper-
iments as well as best performers of Lim et al.’s
(2000) experiments. The testing error rate of the iso-
tonic separation method was smaller than those of
other methods. The statistical validation summa-
rized in Table 3 shows that isotonic separation on
the original data set was better than most other
methods, though significant performance difference
was not observed (except in the case of comparisons
with support vector machines with a polynomial
kernel and AdaBoost) when they were tested on
the data set with additional noisy features.

Interestingly, some methods performed better
when noisy features containing randomly generated
values were added. They include support vector
machines and the robust LP method with pooled
penalty in our experiments and Quest, radial basis
function neural networks, discriminant analysis
with the Gaussian mixture function, and the OC1
decision tree induction method in Lim et al.’s
(2000) experiments. In order to further investigate
this phenomenon, we generated five sets of nine

Table 1
Wisconsin breast cancer diagnosis experiment results: training
error rates

Methods Training error rates (%)
Original data Data with noise

SVM" with

Polynomial kernel 0.00 (0.00)* 0.00 (0.00)

Gaussian kernel 2.54 (0.29) 1.12 (0.18)

Dot product kernel 2.55(0.24) 2.28 (0.21)
AdaBoost 0.00 (0.00) 0.00 (0.00)
Isotonic separation 0.99 (0.15) 0.29 (0.10)
Robust LP-A°

Before feature selection 2.46 (0.24) 1.93 (0.26)

After feature selection 2.73 (0.20) 3.29 (0.35)
Robust LP-P*

Before feature selection 2.55(0.24) 2.28 (0.21)

After feature selection 2.64 (0.24) 2.83 (0.34)

# Values in (): standard deviations of error rates over 10-fold
experiments.

° Support vector machine: polynomial kernel with d=3,
Gaussian kernel with ¢ = 6.

¢ Robust linear programming with averaged penalty.

4 Robust linear programming with pooled penalty.

attributes containing random values between 1
and 10 and performed experiments on them. That
is, instead of Lim et al.’s noisy features, we used
each of our own five sets of noisy features. The
experiment results, summarized in Table 4, show
that the improvement of testing accuracy when
noisy features were added was incidental. Support
vector machines with the dot kernel and the polyno-
mial kernels tested on the data sets with our noisy
features improved the testing accuracies in three
cases out of five; the robust LP method with pooled
penalty improved the testing accuracies in two
cases; and support vector machines with the Gauss-
ian kernel did not improve the testing accuracies.
Other methods tested on the data sets with our
noisy features did not show improved testing
accuracies.

4. Ljubljana breast cancer recurrence data

The Ljubljana breast cancer data set (Merz and
Murphy, 1998) contains 286 data points on the
recurrence of breast cancer within five years after
surgical removal of tumor. Each data point consists
of one class variable (for recurrence or non-recur-
rence) and nine features of age, menopause status,
tumor size, invasive nodes, node caps, degree of
malignancy, breast, breast quadrant, and irradia-
tion. All features except menopause status and
breast quadrant are have either binary or ordered
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Table 2 Table 4
Wisconsin breast cancer diagnosis experiment results: testing Testing error rates in experiments on data with noise
error rates Data sets Support vector machines (%) Robust
Methods Testing error rates (%) Gaussian Dot Polynomial LP-P (%)
Original data Data with noise product
Isotonic separation 2.20 (1.35)* 2.64 (1.71) Original data  2.92 3.37 4.97 3.37
Robust LP-A® Noise-0* 2.78 2.78 4.27 2.78
Before feature selection 2.78 (2.78) 2.93(1.32) Noise-1° 3.66 3.81 4.10 3.95
After feature selection 2.78 (2.21) 3.37 (2.63) Noise-2° 3.22 2.93 395 2.93
SVM® with Noise-3° 3.22 3.07 4.54 3.07
Gaussian kernel 2.93 (1.97) 2.78 (1.37) Noise-4° 3.51 3.51 5.12 3.51
Dot product kernel 3.37 (2.09) 2.78 (1.03) Noise-5° 3.07 3.22 5.56 3.22
Polynomlald kernel 497 (2.45) 427(1.22) # Original data + Lim et al.’s (2000) nine noisy features.
Robust LP-P b Original data + randomly generated nine noisy features.
Before feature selection 3.37 (2.09) 2.78 (1.03)
After feature selection 3.22 (1.95) 2.78 (2.13)
AdaBoost 3.66 (2.18) 5.12 (2.01) )
MSM-c® and “menopause at or after age 40.” For experi-
With all data 4.83(2.12)  6.00(2.95) ments with isotonic separation, linear programming
M;Vhf[ Od‘guther 3.66 (1.78)  4.27(2.07) discrimination analysis, support vector machines,
With all data 701 (3.17) 703 (3.13) and learnlpg vector quantlzatlop, we considered
W/o outlier 6.62(288)  6.01(3.02) three possible ordered value assignments: that of
Learning vector quantization® 2.78 (N/A) 1, 2, and 3; that of 1, 3, and 2; and that of 1, 2,
Quest* 3.08 (N/A) 293 (N/A) and 2. The feature of breast quadrant having five
Flexible discriminant analysis® 3.21 (N/A)

% Values in (): standard deviations of error rates over 10-fold
experiments.

® Robust linear programming with averaged penalty.

¢ Support vector machine: Gaussian kernel with ¢ = 6, poly-
nomial kernel with d = 3.

4 Robust linear programming with pooled penalty.

¢ MSM-c: multisurface method with count measure.

" MSM-d: multisurface method with distance measure.

€ Top two performers of Lim et al.’s (2000) experiments.

Table 3
Wisconsin data statistical validation against isotonic separation

Methods

Probability of #-test

Original data Data with noise

Robust LP-A
Before feature selection 0.023"" 0.264
After feature selection 0.051" 0.066"
SVM with
Gaussian kernel 0.029" 0.370
Dot product kernel 0.002""" 0.370
Polynomial kernel 0.000™" 0.000™"
Robust LP-P
Before feature selection 0.002"" 0.370
After feature selection 0.004™" 0.370
AdaBoost 0.009"" 0.000"""

* Marginally significant (p < 0.1).
** Significant (p < 0.05).
™ Very significant (p<0.01).

values. The menopause status feature has values of
“pre-menopause,” ‘“‘menopause before age 40,”

categorical values for detailed locations of tumor
was not used for isotonic separation and linear pro-
gramming discrimination analysis experiments. Of
286 data points, 201 are non-recurrent data and
85 are recurrent data.

The Ljubljana breast cancer data set is known to
be very difficult to deal with. The data set is ambig-
uous (Congdon, 2000) in that some data points with
same features have different class values. The pro-
vided features are not sufficient (Clark and Niblett,
1987) to produce high quality prediction systems.
Assist 86 (Cestnik et al., 1987), a top-down decision
tree induction method with improvements over 1D3
(Quinlan, 1979, 1986), showed a 22% error rate
tested on 30% of the data with a decision tree built
with 70% of the data. IWN (Clark and Niblett,
1987), a bottom-up induction method of a network
of multiple trees, showed a 26% testing error rate in
a similar experiment environment. A genetic algo-
rithm method (Congdon, 2000) showed a 28% error
rate on average in five experimental runs with ran-
domly selected 80% training and 20% testing data
sets.

On this data set, we experimented the isotonic
separation method, the robust linear programming
method (Bennett and Mangasarian, 1992), the
ID3/C4.5 decision tree induction system (Quinlan,
1993), the OCI1 decision tree induction system
(Murthy et al.,, 1994), support vector machines
(Burges, 1998; Cristianini and Shawe-Taylor, 2000;
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Muiiller et al., 2001; Scholkopf et al., 1999; Vapnik,
1998, 2000), AdaBoost (Freund and Schapire,
1997; Schapire, 1999; Schapire and Singer, 1999,
2000), and learning vector quantization (Kohonen,
1992, 2001) on a 70%/30% partition of the data set
similar to the experiment environments for Assist
86 and IWN, and the Quest classification system
(Loh and Shih, 1997) with its own built-in 3-fold
cross validation option. The details are as follows.

4.1. Isotonic separation experiments

Not like for the Wisconsin data set used in the
previous section, no isotonic consistency condition
is known for the Ljubljana breast cancer data set.
Thus, the feature selection operation for isotonic
separation included isotonic consistency condition
testing. To perform feature selection and isotonicity
testing, we applied the backward sequential elimina-
tion method (Kittler, 1986; Marill and Green, 1963)
on a string of 16 binary bits such that 2 bits deter-
mined the relevance and isotonicity of each feature.
If a pair of bits are both 1s or 0Os, the corresponding
feature was considered to be relevant with positive
isotonicity. If the pair of bits are 0 and 1, the corre-
sponding feature was considered to be relevant with
negative isotonicity. If the pair of bits are 1 and 0,
the corresponding feature was considered to be
irrelevant. For a feature with negative isotonicity,
we multiplied feature values in the data set by —1;
for a feature to be dropped, we multiplied feature
values by 0.

The feature selection process reported that age,
menopause status, node caps, degree of malignancy,
and irradiation were relevant with positive isotonic-
ity. For instance, the older is a patient, the more
likely does cancer recur. For numeric value assign-
ment of the menopause status feature, the process
found that the assignment of 1, 2, and 3 to “pre-
menopause,” ‘“menopause before age 40,” and
“menopause at or after age 40”” was the best.

In the testing experiment on 87 data points
(among which 61 are non-recurrent and 26 are
recurrent), 70 data points belonged to the non-
recurrence area &, (2.4a), 14 data points belonged
to the recurrence area &, (2.4b), and 3 data points
(3.45%) belonged to the unclassified area &, (2.4¢).
Data points falling in the unclassified area were clas-
sified using the criterion of (2.5). Among them, 14
data points in %, 2 data points in %}, and 1 data
point in %y, were misclassified. That is, the isotonic
separation method showed a 20% testing error rate.

4.2. Decision tree induction experiments

ID3/C4.5 (Quinlan, 1979, 1986) is a top-down
decision tree induction method based on the idea
of reducing entropy (Shannon, 1948). Given a set
of data point A4, a decision tree is induced by
sequentially (i.e., from the root to leaves) placing
at nodes the kth feature that results in the most
reduction of uncertainty of class variable y, where
reduction of uncertainty is measured as the differ-
ence between the entropy of A4 for y and the condi-
tional entropy of 4 for y when the kth feature value
is known. The ID3/C4.5 method induces an axis-
parallel decision tree, in which each node contains
one feature variable and branches from the node
have equality or inequality conditions on the feature
variable. OC1 (Murthy et al., 1994), another top-
down decision tree induction method, generates an
oblique decision tree, in which each node contains
a hyperplane separating the d-dimensional feature
space and each of its subsequent nodes further sep-
arates a half space. The hyperplane is derived by
considering a certain impurity measure such as
uncertainty reduction based on entropy. Quest
(Loh and Shih, 1997) is also a top-town decision
tree induction system, in which branches at a node
of the decision tree split based on a form of qua-
dratic discriminant analysis.

Experiments on ID3/C4.5, OCI, and Quest deci-
sion tree induction methods resulted in 28%, 25%,
and 27% testing error rates, respectively.

4.3. Support vector machine experiments

Using the support vector machine method sum-
marized in Section 3.2, we performed training and
testing on the 70%/30% partition of the data set.
The polynomial kernel with degree d=1 and
0 =1 resulted in a 26% error rate. The Gaussian
kernel with ¢ =6 resulted in a 28% testing error
rate. The dot kernel resulted in a 29% testing error
rate.

4.4. Linear programming discrimination experiments

Using the linear programming discrimination
method summarized in Section 3.3, we performed
training and testing on the 70%/30% partition of
the data set. The robust linear programming
method («=1/|R| and f=1/|B|) showed a 37%
error rate. When the backward sequential elimina-
tion method (Kittler, 1986; Marill and Green,
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1963) was applied prior to training, the robust LP
method with averaged penalty show a 30% testing
error rate. The robust LP method with pooled pen-
alty (¢ = =1) showed a 28% testing error rate
both with and without feature selection.

4.5. Learning vector quantization experiments

Suppose two sets B and R of recurrent and non-
recurrent data points in a d-dimensional space are
given, where |BU R|=mn. For each data point
i € BU R, define its class label ¢; such that ¢;=1 if
i€ B, and ¢; =0 if i € R. Learning vector quantiza-
tion (Kohonen, 1992; Kohonen, 2001) is a compet-
itive learning method that separates data points into
m clusters. Let w; be the coordinate vector repre-
senting the kth cluster and ¢; be the class label of
the cluster. That is, if ¢z =1 then the kth cluster
belongs to the class of recurrent data, and if
¢, = 0 then it belongs the class of benign data. We
will call (wy|c) the codebook vector of the kth clus-
ter. When all such codebook vectors are learned
from the given data points, the d-dimensional space
is partitioned by Voronoi tessellation.

The learning algorithm starts at time ¢ =1 with
initial m codebook vectors which can be chosen ran-
domly from the given data points (or by some simple
observations of the given data (Kohonen, 2001)).
Let my(¢) denote the codebook vector of the kth clus-
ter at time 7. For a data point i whose coordinate vec-
tor is a;, find a nearest codebook vector:

K = arg min we— a,. (4.1)
Then, the codebook vector of the k*th cluster at
time 7+ 1 becomes

my: (¢ + 1) = (W + se(a; — wyr)

cr),

where 0<e<1,and s=11if ¢4 =c¢; and s = —1 if
¢y # ¢;. This process is repeated until a stopping
criterion (e.g., a number of iterations or a threshold
change in codebook vectors (Kohonen, 2001)) is
met. That is, if ¢, = ¢;, then the codebook vector
of the k*th cluster moves toward i, and if ¢+ # ¢,
then it moves away from i.

When 20 vectors were learned over 500 iterations
during training, the method resulted in a 29% test-
ing error rate.

4.6. AdaBoost experiments

We performed experiments with AdaBoost, sum-
marized in Section 3.4, using a simple one-level deci-

Table 5
Ljubljana breast cancer recurrence experiment results: training
error rates

Methods Training error rates (%)
SVM? with

Polynomial kernel 15

Gaussian kernel 23

Dot kernel 28
Isotonic separation 21
AdaBoost 21
0OCl1 21
Learning vector quantization 23
Quest 24
ID3/C4.5 25
Robust LP-P 28
Robust LP-A

Before feature selection 32

After feature selection 37

# Support vector machines: polynomial kernel with d =2 and
Gaussian kernel with ¢ = 6.

sion tree (Schapire and Singer, 2000). The experiment
with 1000 boosting rounds resulted in the testing
(error rate of 30%). (The number of boosting rounds
was chosen during the training phase. We tried vari-
ous numbers of boosting rounds and chose one with
the lowest training error. The level of decision tree
was chosen similarly.)

Table 6
Ljubljana breast cancer recurrence experiment results: testing
error rates

Methods Testing error rates (%)
Isotonic separation 20
OC1 25
SVM?* with

Polynomial kernel 26

Gaussian kernel 28

Dot kernel 29
Quest 27
ID3/C4.5 28
Robust LP-P 29
Learning vector quantization 29
AdaBoost 30
Robust LP-A

Before feature selection 37

After feature selection 30
Assist 86 22°
IWN 26°
GA 284

# Support vector machines: polynomial kernel with d =2 and
Gaussian kernel with ¢ = 6.

® Result cited from Cestnik et al. (1987).

¢ Result cited from Clark and Niblett (1987).

4 Result cited from Congdon (2000).
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Table 7
Ljubljana data statistical validation against isotonic separation

Methods

Probability of #-test

ocCl 0.048™
SVM with

Polynomial kernel 0.100"

Gaussian kernel 0.026™

Dot kernel 0.010™
ID3/C4.5 0.026™
Robust LP-P 0.017"
Neural nets with LVQ 0.022"
AdaBoost 0.019"
Robust LP-A

Before feature selection 0.002"""

After feature selection 0.010™"

* Marginally significant (p < 0.1).
" Significant (p < 0.05).
" Very significant (p < 0.01).

4.7. Experiment results

Table 5 shows training error rates of classifiers.
Table 6 summarizes the results of all experiments per-
formed for this paper and previously reported exper-
iments and Table 7 contains statistical validation
results of comparison between isotonic separation
and other methods. Isotonic separation achieved
the lowest testing error rate and was validated to be
better than most other methods when tested on the
Ljubljana breast cancer recurrence data set.

5. Conclusion

Isotonic separation, a linear programming
method for data separation and classification, was
applied to breast cancer prediction. The results of
experiments on the two data sets showed that isotonic
separation performed better than most other meth-
ods tested in this paper and previously published
research reports. This signifies that isotonic separa-
tion is a viable and useful tool for data classification
in the medical domain of breast cancer prediction.

For feature selection and isotonic consistency
condition testing when the condition is unknown,
we applied the backward sequential elimination heu-
ristics (Kittler, 1986; Marill and Green, 1963) in this
paper. We are investigating other approaches, such
as an algebraic method and genetic algorithms.
The algebraic method results in a mixed integer pro-
gramming formulation, which is known to be com-
putationally expensive to solve. We plan to use
various relaxation techniques to reduce the compu-
tational complexity. With genetic algorithms, we
hope the feature search space is more extensively

but reasonably efficiently examined. The results of
these approaches will be discussed in subsequent
research reports.

Additional experiments are currently conducted
to evaluate the applicability and usefulness of iso-
tonic separation in other domains including organ
transplant patient survival prediction. Preliminary
experiment results show high accuracy rates. More
intensive studies and comparisons against other
methods will be reported in the future.
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