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Data classification and prediction problems are prevalent in many domains. The need to predict to which
class a particular data point belongs has been seen in areas such as medical diagnosis, credit rating, Web

filtering, prediction, and stock rating. This has led to strong interest in developing systems that can accurately
classify data and predict outcome. The classification is typically based on the feature values of objects being
classified. Often, a form of ordering relation, defined by feature values, on the objects to be classified is known.
For instance, the objects belonging to one class have larger (or smaller) feature values than do those in the other
class. Exploiting this characteristic of isotonicity, we propose a data-classification method called isotonic separation
based on linear programming, especially network programming. The paper also addresses an extension of
the isotonic-separation method for continuous outcome prediction. Applications of the isotonic separation for
discrete outcome prediction and its extension for continuous outcome prediction are shown to illustrate its
applicability.
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1. Introduction
The study of outcome prediction based on histori-
cal data has many applications in a wide range of
disciplines including business management, e.g. firm-
bankruptcy prediction (Altman 1968), and medicine,
e.g., medical diagnosis/prognosis (Schenone et al.
1993, Burke 1994, Mangasarian et al. 1995). No mat-
ter which domain is considered, the historical data
typically contain information about the outcome (e.g.
bankruptcy status in firm-bankruptcy prediction) and
the relevant attributes (e.g. debt-to-asset ratio, etc.
(Altman 1968) in the case of firm-bankruptcy predic-
tion) that allow one to make a prediction. Using these
attributes, or features, it is desirable to classify firms
systematically into two or more categories and further
generalize the classification in order to predict other
firms’ status in the future.

Statistical discriminant analysis (Anderson 1972,
Cox 1966, Fisher 1936), linear programming approa-
ches to discriminant analysis (Smith 1968, Freed and

Glover 1981, Glover 1990, Bennett and Mangasarian
1992), neural networks (Burke 1994), genetic algo-
rithms (Siedlecki and Sklansky 1989, Güvenir and
Sirin 1993, Punch et al. 1993), data envelopment anal-
ysis (Pendharkar and Kumar 1998), probability anal-
ysis (Detrano et al. 1989), decision-tree induction
(Murthy et al. 1994; Quinlan 1986, 1993), multisurface
separation (Mangasarian 1965, 1968; Mangasarian
et al. 1990; Wolberg and Mangasarian 1990), and var-
ious other artificial intelligence techniques (Michalski
et al. 1986, Gennari et al. 1989) were used for this
purpose. Lim et al. (2000) conducted a very exten-
sive study of 33 data-classification methods compared
on 32 data sets. Among the 33 data-classification
methods are 22 decision-tree-induction methods, nine
variations of discriminant analysis, and two neu-
ral network algorithms. A nonlinear-mathematical-
programming method called support vector machines
(Vapnik 1998) is currently recognized as a promising
data-classification method (Burges 1998).
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In this paper, we propose a new mathematical-
programming method, called isotonic separation. Given
an isotonic consistency condition on historical data
points, we build a maximum-flow network model for
data separation. The isotonic consistency condition
establishes a quasi-order on the set of data points,
which becomes the major set of constraints of the net-
work model. An isotonic consistency condition for a
classification problem is a kind of domain knowledge
of the problem. For instance, in breast-cancer diagno-
sis, it is known that when all other feature values are
identical, a tumor with a bigger epithelial cell is more
likely to be malignant than a tumor with a smaller
epithelial cell. Such isotonic consistency conditions
are known in many data classification and outcome
prediction areas, including the cases of medical diag-
nosis (Mangasarian et al. 1990, 1995), bankruptcy pre-
diction (Altman 1968), and Internet information filter-
ing (Jacob et al. 1999). The isotonic-separation method
takes advantage of the known isotonic consistency
conditions and accurately classifies historical data
points.

We start with the two-category isotonic separation
and generalize it into three-category and multicate-
gory separation techniques. Especially, the presenta-
tion of the two-category isotonic separation includes
issues of problem-size reduction and outcome pre-
diction based on data classification, which can be
extended to cases of three-category and multicategory
separations. Also, we propose a continuous outcome
isotonic model, which is closely related to isotonic
regression (Gebhardt 1970, Barlow et al. 1972, Dykstra
and Robertson 1982, Block et al. 1994). Finally, we dis-
cuss the practical use of isotonic separation in medical
diagnosis/prognosis and compare isotonic separation
results with those of other methods.

2. Two-Category Separation of
Two-Category Data

Suppose we are given a finite set A of data points
in a d-dimensional real space �d, a function p� A→
�0�1�, and a reflexive and transitive binary relation S
on �d.
Definition 1 (Isotonic Consistency Condition).

A quasi-ordering (i.e., reflexive and transitive) rela-
tion S is called an isotonic consistency condition of
a function 	 on A ⊆ �d (and 	 is called isotonic
with respect to S) if “i� j ∈ A” and “�i� j
 ∈ S” imply
“	�i
≥	�j
.” �

We want to obtain a classification function 	∗� A→
�0�1� that is isotonic with respect to S, while mini-
mizing misclassification (i.e., p�i
 �= 	∗�i
 for i ∈ A).
If p�i
= 1 but 	∗�i
= 0, the misclassification is mea-
sured by �; similarly, if p�i
 = 0 but 	∗�i
 = 1, the
misclassification is measured by �.

Definition 2 (Two-Category Isotonic Separator).
Suppose p is a given function on A to �0�1�, and
� and � are nonnegative real numbers. Then, a
classification function 	∗ on A to �0�1� is called a
two-category isotonic separator of A under p with
weights � and � if 	∗ is isotonic with respect to S and
minimizes ∑

i∈A
�p�i
−	�i
�w�i


in the class of all functions 	 on A to �0�1� that are
isotonic with respect to S, where

w�i
=
{
� if p�i
= 1

−� if p�i
= 0

for i ∈A. �
The process of two-category separation works as

follows. First, an isotonic separator is constructed
from undominated or boundary data points as shown
in (2.7). Such undominated points are obtained by
solving a linear program (2.1), whose dual is a
maximum-flow network model (2.2). Obtaining an
isotonic separator on the data set A is called training
and the set A is called the training data set. Next, in
order to classify new data points (e.g. testing data)
that do not belong to A, we extend the isotonic sep-
arator to a function on �d using a nearness criterion
(2.10).

2.1. The Isotonic Consistency Condition
The isotonic consistency condition of Definition 1
comes from domain knowledge of the problem, on
which the isotonic-separation operation works. For
points i and j in a d-dimensional real space whose
coordinate vectors are i and j, in many cases, �i� j
 ∈ S
when i≥ j. Any binary relation as an isotonic consis-
tency condition would be sufficient for the purpose of
estimating 	∗ on A. However, to estimate 	∗ on �d, it
must have a form of ordering relation. Thus, in gen-
eral, an isotonic consistency condition is required to
be a reflexive and transitive ordering relation (known
as a quasi-order, which is the weakest form of order-
ing relation).

For instance, consider the following fine-needle
aspirate data of tumor taken from the University of
Wisconsin Hospitals breast cancer data set (Merz and
Murphy 1998) in a nine-dimensional space of clump
thickness (d1), uniformity of cell size (d2), unifor-
mity of cell shape (d3), marginal adhesion (d4), single
epithelial cell size (d5), bare nuclei (d6), bland chro-
matin (d7), normal nucleoli (d8), and mitoses (d9):

Points d1 d2 d3 d4 d5 d6 d7 d8 d9

123 4 4 2 1 2 5 2 1 2
125 4 4 4 4 6 5 7 3 1
182 8 4 4 5 4 7 7 8 2
198 4 1 1 3 1 5 2 1 1

�
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The known isotonic consistency condition in breast-
cancer diagnosis states that a data point with big-
ger dimension values is more likely to be malignant
than another with smaller dimension values. Thus,
we have ��182�198
� �182�123
� �125�198
� ⊂ S. Here,
we expect point 182 to be more likely to be malignant
than points 198 and 123, and point 125 to be more
likely to be malignant than point 198.

We would like to classify these data points into two
categories of malignant and benign tumors using the
isotonic consistency condition S. Let “	∗�i
= 1” indi-
cate the data point i’s being classified to be malignant
and “	∗�i
= 0” benign. Then, the pair of data points
�182�198
 ∈ S, meaning that point 182 is more likely to
be malignant than point 198, must satisfy a constraint
“	∗�182
 ≥ 	∗�198
.” The details of the mathematical
model will be addressed in the following section.

Isotonic separation is a data-classification method
that exploits given isotonic consistency conditions.
For problems with known isotonic consistency con-
ditions, the proposed approach can be a viable and
powerful tool for data classification. On the other
hand, when no isotonic consistency conditions are
known, they must be tested (Robertson et al. 1988)
and discovered from the available data set for train-
ing. This issue is reported in current studies on heart-
attack recurrence/survival prediction (Ryu et al. 1999)
and extended bankruptcy prediction (Ryu and Yue
2004).

2.2. The Mathematical Model
Define the variable

	i =
{
1 if i is classified as 1

0 otherwise
for i ∈A.

Let ai = p�i
 and bi = 1 − p�i
 for i ∈ A. (That is,
ai = 1 if p�i
 = 1 and bi = 1 if p�i
 = 0.) Also let SA =
��i� j
 ∈ S � i� j ∈ A�. Then, a solution to the following
math program will provide an isotonic separator of
Definition 2 while satisfying the isotonic consistency
condition of Definition 1:

minimize
	i � i∈A



�
∑
i∈A
ai�1−	i


+�∑
i∈A
bi	i

∣∣∣∣∣∣∣
	i−	j≥0 for �i�j
∈SA
	i∈�0�1� for i∈A


�

Here,
∑

i∈A ai�1−	i
 and
∑

i∈A bi	i measure the num-
ber of misclassified data points. The constraint matrix
in “	i − 	j ≥ 0” consists of only 1, 0, and −1 and
thus is unimodular. This implies that we can drop
the integer requirement of the variables and still get
an integer solution (Murty 1976, Shapiro 1979). There-
fore, the above math program can be simplified to the
following linear program:

minimize
	i� i∈A

{∑
i∈A
��bi−�ai
	i

∣∣∣∣∣
	i−	j≥0 for �i�j
∈SA
0≤	i≤1 for i∈A

}
�

(2.1)

Let fi�j be the dual variable of “	i−	j≥0” and ui
the dual variable of “−	i≥−1.” Further, let Bi=�j ∈A �
�i�j
∈SA� and Ci=�j ∈A � �j�i
∈SA� for i∈A. Then, we
have the following dual formulation of (2.1):

maximize
fi�j � �i�j
∈SA
ui� i∈A



−∑
i∈A
ui

∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi
fi�j−

∑
j∈Ci
fj�i−ui≤�bi−�ai

for i∈A
fi�j≥0 for �i�j
∈SA
ui≥0 for i∈A



�

or equivalently,

minimize
fi� j � �i�j
∈SA
ui�si � i∈A




∑
i∈A
ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi

fi� j −
∑
j∈Ci

fj� i−ui+ si

= �bi−�ai for i ∈A∑
i∈A
ui−

∑
i∈A
si = �

∑
i∈A
ai−�

∑
i∈A
bi

fi� j ≥ 0 for �i� j
 ∈ SA
ui� si ≥ 0 for i ∈A




�

(2.2)

This is a maximum-flow network model with �A� + 2
nodes and �SA� + 2�A� arcs.

For instance, let us consider a set A of eight
data points in a two-dimensional space as shown in
Figure 1, where p�i
= 0 for each bullet point (i.e., i=
1, 2, 5, or 8) and p�i
 = 1 for each circle point (i.e.,
i= 3, 4, 6, or 7). We have an isotonic consistency con-
dition S = ��i� j
 � i ≥ j� where i and j are coordinate
vectors of i and j . Thus,

SA = {
�1�1
� �2�2
� �3�2
� �3�3
� �4�1
� �4�2
� �4�3
�

�4�4
� �5�2
� �5�5
� �6�1
� �6�2
� �6�3
� �6�5
�

�6�6
� �7�2
� �7�7
� �8�2
� �8�3
� �8�5
�

�8�7
� �8�8

}
�

which yields the consistency constraints of the model
(2.1). However, one can easily find that some con-
sistency constraints are redundant. For instance,
“�1�1
 ∈ SA” corresponds to “	1 ≥ 	1,” which is tau-
tology; “	6 ≥ 	2” for “�6�2
 ∈ SA” is deducible from
“	6 ≥ 	3” and “	3 ≥ 	2” due to the transitivity prop-
erty of “≥.” After eliminating all such redundant (i.e.,
reflexive or transitively implied) constraints, we have
the following consistency constraints from SA:

	3−	2≥0 	4−	1≥0 	4−	3≥0 	5−	2≥0

	6−	1≥0 	6−	3≥0 	6−	5≥0 	7−	2≥0

	8−	3≥0 	8−	5≥0 	8−	7≥0� (2.3)

as shown by directed arcs in Figure 1.
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Figure 1 Sample Points in a Two-Dimensional Space

With � = � > 0, we have the objective function of
(2.1) as follows:

minimize 	1+	2−	3−	4+	5−	6−	7+	8� (2.4)

The optimization of this linear-programming model
with the boundary constraints of

0≤	i ≤ 1 for i= 1�2� � � � �8

gives the following optimal solution

	∗
1 = 0 	∗

2 = 0 	∗
3 = 1 	∗

4 = 1

	∗
5 = 0 	∗

6 = 1 	∗
7 = 1 	∗

8 = 1�
(2.5)

This optimal solution with � = � > 0 indicates that
points 1, 2, and 5 are classified as 0 and points 3, 4, 6,
7, and 8 are classified as 1. As a result, point 8 is mis-
classified. If we solved the problem with �≥ 2�> 0,
the optimal solution would be

	∗
1 = 0 	∗

2 = 0 	∗
3 = 0 	∗

4 = 1

	∗
5 = 0 	∗

6 = 1 	∗
7 = 0 	∗

8 = 0�
(2.6)

and points 3 and 7 would be misclassified.
Let �∗ = �	∗

i � i ∈A� be an optimal solution to (2.1).
It gives a function 	∗ on A (i.e., 	∗�i
=	∗

i for i ∈A),
but we would like to extend it to a function on �d.
This is necessary for the purpose of actual applica-
tions of isotonic separation, that is, for the purpose of
classification of new data points. To do it efficiently,
first define undominated data points:

A∗
0 = �i �	∗

i = 0 and �	∗
j ∈�∗ such that

i �= j , 	∗
j = 0, and �j� i
 ∈ SA�

A∗
1 = �i �	∗

i = 1 and �	∗
j ∈�∗ such that

i �= j , 	∗
j = 1, and �i� j
 ∈ SA��

(2.7)

Also assume A∗
0 �= � and A∗

1 �= �. Then, for any data
point i ∈ �d, if there exists j ∈ A∗

0 such that �j� i
 ∈ S
then 	∗�i
= 0; if there exists j ∈A∗

1 such that �i� j
 ∈ S
then 	∗�i
 = 1. In the example of Figure 1, with the
optimal solution of (2.5) (i.e., � = �), we have A∗

0 =

1

2

3

4

5

6

7

8

R0

R1

Figure 2 Separation of the Two-Dimensional Space of Figure 1

�1�5� and A∗
1 = �3�7�, as shown in Figure 2, in which

each undominated point is surrounded by a dashed
circle.

This scheme divides the d-dimensional space into
three areas:

�0 = �i ∈�d � ∃ j ∈A∗
0 such that �j� i
 ∈ S�� (2.8)

where alls points are classified as 0,

�1 = �i ∈�d � ∃ j ∈A∗
1 such that �i� j
 ∈ S�� (2.9)

where all points are classified as 1, and an unclassi-
fied area between �0 and �1, in which no data points
of A exist and the isotonic consistency condition can-
not classify the area. To complete the classification,
we will use a nearness criterion, measured by the
weighted distance to the closest points on the bound-
aries of �0 and �1. The classification penalties � and
� will serve as the weights in the distance measure.
For a real number a, let �a
∗ be a function returning
1 if a > 0 and 0 if a≤ 0. For a d-dimensional vector i
whose k-th element is ak, let �i
+ be a function return-
ing a d-dimensional vector whose k-th element is ak
if ak > 0 and 0 if ak ≤ 0. When �i� j
 ∈ S for i ≥ j, we
finally have 	∗ defined as:

	∗�i
=
(
�min

j∈A∗
0

eT �i− j
+ −�min
j∈A∗

1

eT �j− i
+
)

∗
� (2.10)

where i and j are d-dimensional coordinate vectors
of i and j respectively, and eT is the transpose of the
d-dimensional unit vector. When the above nearness
criterion is used, if scale differences among feature
values are pronounced, data must be normalized. The
final separator for the example of Figure 1, obtained
using (2.10), is illustrated in Figure 3 as a dashed line.

2.3. Reduction of the Problem Size
As discussed in the previous example, removing tau-
tological and implied constraints in SA reduces the
size of the problem by reducing the number of con-
straints in the linear-programming model (2.1) or the
number of arcs in the network (2.2). The reduced



Chandrasekaran et al.: Isotonic Separation
466 INFORMS Journal on Computing 17(4), pp. 462–474, © 2005 INFORMS

Figure 3 The Final Separator for Figure 1

isotonic consistency condition S ′A can be obtained as
follows:

S ′A = {
�i� j
 ∈ SA � i �= j and �k ∈A such that
i �= k� j �= k� �i� k
 ∈ SA� and �k� j
 ∈ SA

}
�

where i, j, and k are coordinate vectors of i, j , and k,
respectively. Here, by the first component (i �= j), we
remove tautological constraints (e.g. 	i ≥ 	i); by the
second component (there does not exist k such that
�i� k
 ∈ SA and �k� j
 ∈ SA), we remove transitively
implied constraints (e.g., 	i ≥	j if 	i ≥	k and 	k ≥	j
are constraints of the model).

Now, we will discuss two additional reduction
methods, which reduce not only the number of con-
straints (i.e., arcs in the network) but also the number
of variables (i.e., nodes in the network). Observe bul-
let points 1, 2, and 5 (whose p function value is 0)
in Figure 1. No circle points (whose p function value
is 1) are located at their lower left-hand side in the
coordinate system. That is, for i ∈ �1�2�5�, there does
not exist j ∈ A such that p�j
 = 1 and �i� j
 ∈ SA (i.e.,
	i−	j ≥ 0). Thus, setting 	i = 0 for all i ∈ �1�2�5� sat-
isfies (2.3); furthermore, the objective-function value
of (2.4) when 	i = 0 for all i ∈ �1�2�5� is less than that
when 	i = 1 for some i ∈ �1�2�5�. Similarly, there are
no bullet points (whose p function value is 0) at the
upper right-hand side of circle points 4 and 6 (whose
p function value is 1). That is, for i ∈ �4�6�, there does
not exist j ∈ A such that p�j
 = 0 and �j� i
 ∈ SA (i.e.,
	j − 	i ≥ 0). Thus, setting 	i = 1 for all i ∈ �4�6� sat-
isfies (2.3); furthermore, the objective-function value
of (2.4) when 	i = 1 for all i ∈ �4�6� is less than that
when 	i = 0 for some i ∈ �4�6�. Solutions to this exam-
ple (2.5) and (2.6) with �= �> 0 and �≥ 2�> 0 (and
in fact, with any �> 0 and �> 0) confirm this obser-
vation. As a result, we may exclude these data points
when constructing (2.1):

minimize −	3 −	7 +	8

subject to 	8 ≥	3

	8 ≥	7

0≤	3�	7�	8 ≤ 1�

whose dual is a maximum-flow network with five
nodes and eight arcs.

We generalize this observation as follows.

Lemma 1. Let A0 = �i ∈ A � p�i
 = 0�; A1 = �i ∈ A �
p�i
= 1�. Define

� = {
i ∈A0 � ∃ j ∈A1 such that �i� j
 ∈ SA

}
∪ {
j ∈A1 � ∃ i ∈A0 such that �i� j
 ∈ SA

}
�

or equivalently

�= �i ∈A0� j ∈A1 � �i� j
 ∈ SA�� (2.11)

Then, for every optimal solution �∗ = �	∗
i � i ∈A� to (2.1),

	∗
i = p�i
 for all i ∈A\�. (Note, “\” denotes the set sub-

traction operator.)

Proof. If 	∗
i �= p�i
 for some i ∈A\�, then �∗ would

not be an optimal solution to (2.1) because changing 	∗
i

to p�i
 for all such i still satisfies all constraints of (2.1)
and improves its objective function. �

As a result of Lemma 1, we can reduce (2.1) to

minimize
	i� i∈�

{∑
i∈�
��bi−�ai
	i

∣∣∣∣∣
	i−	j≥0 for �i�j
∈S�
0≤	i≤1 for i∈�

}
�

(2.12)

where S�=��i�j
∈SA � i�j ∈��. That is, if �	∗
i � i∈��

is an optimal solution to (2.12), then �	∗
i � i ∈ �� ∪

�	∗
i = p�i
 � i ∈A\�� is an optimal solution to (2.1). The

dual formulation of (2.12), which can be obtained by
replacing A by � in (2.2), results in a maximum-flow
network model with ���+2 nodes and �S��+2��� arcs.

When the data set A (or the reduced data set �)
is very large and several points have the same set of
coordinates in the d-dimensional space, we can fur-
ther reduce the problem size by having only one vari-
able for each set of such data points. The following
lemma shows this.

Lemma 2. Let A′ be a maximal subset of A that con-
tains data points with different coordinate vectors. Further-
more, for i′ ∈ A′, let ai′ = �Bi′�1� and bi′ = �Bi′�0�, where
Bi′�1 = �i ∈ A � p�i
 = 1 and i = i′� and Bi′�0 = �i ∈ A �
p�i
= 0 and i= i′�. (Here, i and i′ are coordinate vectors
of i and i′, respectively.) That is, ai′ and bi′ denote the
numbers of actual data points on the coordinates i′ whose
p function values are 1 and 0, respectively. Then, the opti-
mization problem (2.1) can be reduced to:

minimize
	i′ � i′∈A′

{∑
i′∈A′

��bi′ −�ai′ 
	i′
∣∣∣∣∣
	i′ −	j ′ ≥0 for �i′�j ′
∈SA′

0≤	i′ ≤1 for i′ ∈A′

}
�

(2.13)

where SA′ = ��i′� j ′
 ∈ S � i′� j ′ ∈A′�.
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Proof. Note that
⋃
i′∈A′�Bi′�1 ∪ Bi′�0
=A. For i1� i2 ∈

Bi′�1 ∪Bi′�0 because their coordinate vectors are identi-
cal, �i1� i2
 ∈ SA and �i2� i1
 ∈ SA. That is, (2.1) includes
constraints of 	i1 − 	i2 ≥ 0 and 	i2 − 	i1 ≥ 0. Thus,
	i1 = 	i2 for i1� i2 ∈ Bi′�1 ∪ Bi′�0. As a result, 	i for all
i ∈ Bi′�1 ∪ Bi′�0 can be substituted by 	i′ . Then, the
objective function of (2.1) is identical to that of (2.13):

∑
i∈A
��bi−�ai
	i =

∑
i∈A′

( ∑
j∈Bi�0

�	j −
∑
j∈Bi�1

�	j

)

= ∑
i∈A′
���Bi�0�	 ′

i −��Bi�1�	 ′
i 


= ∑
i∈A′
��b′i−�a′i
	 ′

i �

and the constraints and boundary conditions of (2.1)
are identical to those of (2.13). �

The same reduction operation can be applied to �,
which may reduce (2.12) to a smaller one.

3. Three-Category Separation of
Two-Category Data

In practical applications of data separation (or
example-based learning in general), we often do not
want to classify certain data because of insufficient
data used for training (or insufficient examples used
for learning). For instance, in a problem of credit-
application evaluation, if an applicant’s income, debt
ratio, etc. are not obviously low or high and there
were no previous applicants with similar incomes,
debt ratios, etc., then the automated evaluation sys-
tem may refuse to recommend acceptance or denial,
but refer the case to the human expert. In fact, this
can be easily achieved by using the two-category iso-
tonic separation result of the previous section. Instead
of the two-category classification function 	∗� �d →
�0�1� of (2.10), the following three-category classifica-
tion function 	∗� �d → �−1�0�1� can be defined:

	∗�i
=
(
min
j∈A∗

0

eT �i− j
+
)
∗
−
(
min
j∈A∗

1

eT �j− i
+
)
∗
� (3.1)

where i is classified as 1 if 	∗�i
= 1, i is classified as 0
if 	∗�i
=−1, and i is unclassified if 	∗�i
= 0. That is,
	∗�i
 = −1 for i ∈�0 of (2.8); 	∗�i
 = 1 for i ∈�1 of
(2.9); and 	∗�i
= 0 for i ��0 ∪�1.

In the above three-category separator obtained from
two-category data, a data point i ∈ �d is unclassified
(	∗�i
 = 0) because there exist no data points in the
two-category data set with which the isotonic con-
sistency condition can classify i. This may not be
the only practical reason not to classify certain data
points. If many data points of different categories
are mixed in an area, it may also be practical not to
classify data points in that area. For instance, among
current customers in a certain range of income, debt

ratio, etc., some persistently defaulted their payments
and others did not. Then, the automated evaluation
system may refer to the human expert the applicants
in this range of income, debt ratio, etc. In this section,
we develop a generalized isotonic-separation method
for such a data classification/prediction problem.

Suppose we are given a finite set A of data points
in a d-dimensional real space �d, a function p� A→
�0�1�, and a reflexive and transitive binary relation S
on �d. While minimizing misclassification, we want
to obtain two classification functions �∗� A→ �0�1�
and  ∗� A→ �0�1�, both of which are isotonic with
respect to S, where  ∗�i
≥ �∗�i
 for i ∈A. (In fact, we
may have two binary relations S1 and S2 such that
�∗ is isotonic with respect to S1, while  ∗ is isotonic
with respect to S2. We assume here that S1 and S2
are the same for the sake of simplicity.) Equivalently,
we want to obtain a classification function 	∗� A→
�−1�0�1� that is isotonic with respect to S, where
	∗�i
= �∗�i
+ ∗�i
− 1. (If we have two binary rela-
tions S1 and S2 such that �∗ is isotonic with respect to
S1 and  ∗ is isotonic with respect to S2, then 	∗ is iso-
tonic with respect to S1 ∪ S2.) Here, i ∈A is classified
as 1 if 	∗�i
 = 1 (or �∗�i
 = 1 and  ∗�i
 = 1), classi-
fied as 0 if 	∗�i
=−1 (or �∗�i
= 0 and  ∗�i
= 0), and
unclassified if 	∗�i
 = 0 (or �∗�i
 = 0 and  ∗�i
 = 1).
For misclassification, we have the following nonneg-
ative penalties: � if p�i
= 1 but i is classified as 0; �
if p�i
= 0 but i is classified as 1; ! if p�i
= 1 but i is
unclassified; and " if p�i
= 0 but i is unclassified.
Definition 3 (Three-Category Isotonic Separa-

tor). Suppose p is a given function on A to �0�1�, and
�, �, !, and " are nonnegative real numbers. Suppose
functions �∗ and  ∗ on A to �0�1� are isotonic with
respect to S and minimize∑

i∈A

(
�p�i
− �i
�w1�i
+ �p�i
− ��i
�w2�i


+ � �i
− ��i
�w3�i

)

in the class of all functions � and  on A to �0�1�
(where  �i
 ≥ ��i
 for i ∈ A) that are isotonic with
respect to S, where

w1�i
 =
{
� if p�i
= 1

0 if p�i
= 0

w2�i
 =
{
0 if p�i
= 1

−� if p�i
= 0

w3�i
 =
{
! if p�i
= 1

" if p�i
= 0

for i ∈A. Then, a classification function	∗ = �∗ + ∗ −1
onA to �−1�0�1� is called a three-category isotonic separa-
tor of A under p with weights �, �, !, and ". �
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Define the variables

�i =
{
1 if i is classified as 1
0 otherwise for i ∈A;

 i =
{
0 if i is classified as 0
1 otherwise for i ∈A.

Let ai = p�i
 and bi = 1− p�i
 for i ∈ A. Also let SA =
��i� j
 ∈ S� i� j ∈A�. Then, we have

minimize
�i� i � i∈A




�
∑
i∈A
ai�1− i
+�

∑
i∈A
bi�i

+!∑
i∈A
ai� i−�i


+"∑
i∈A
bi� i−�i


∣∣∣∣∣∣∣∣∣∣∣∣

�i−�j≥0 for �i�j
∈SA
 i− j≥0 for �i�j
∈SA
 i−�i≥0 for i∈A
�i� i∈�0�1� for i∈A



�

After dropping the integer requirements, we finally
have the following formulation for three-category
separation of the two-category data set A:

minimize
�i� i � i∈A




∑
i∈A
����−"
bi−!ai��i
+�"bi−��−!
ai� i


∣∣∣∣∣∣∣∣∣∣∣

�i−�j≥0 for �i�j
∈SA
 i− j≥0 for �i�j
∈SA
 i−�i≥0 for i∈A
0≤�i�  i≤1 for i∈A



�

(3.2)

Let fi� j be the dual variable of “�i− �j ≥ 0,” gi� j the
dual variable of “ i − j ≥ 0,” ui the dual variable of
“ i − �i ≥ 0,” vi the dual variable of “−�i ≥−1,” and
wi the dual variable of “− i ≥−1.” Furthermore, let
Bi = �j ∈ A� �i� j
 ∈ SA� and Ci = �j ∈ A� �j� i
 ∈ SA� for
i ∈A. Then, we have the dual formulation:

minimize
fi�j �gi�j � �i�j
∈SA
ui�vi�wi� i∈A




∑
i∈A
vi+

∑
i∈A
wi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi
fi�j−

∑
j∈Ci

fj�i−ui−vi
≤ ��−"
bi−!ai for i∈A∑

j∈Bi
gi�j−

∑
j∈Ci

gj�i+ui−wi

≤"bi−��−!
ai for i∈A
fi�j �gi�j≥0 for �i�j
∈SA
ui�vi�wi≥0 for i∈A




�

This is a maximum-flow network model with �A� + 2
nodes and 2�SA� + 4�A� arcs.

An optimal solution �∗ = ��∗i � 
∗
i � i ∈ A� to (3.2)

gives functions �∗ and  ∗ on A (i.e., �∗�i
 = �∗i and
 ∗�i
 =  ∗

i ), but we would like to extend them to
functions on �d. Using �∗, define sets of undominated
data points:

A∗
0 =

{
i � �∗i = 0 and ��∗j ∈�∗ such that
i �= j , �∗j = 0, and �j� i
 ∈ SA

}
A∗

1 =
{
i � �∗i = 1 and ��∗j ∈�∗ such
that i �= j , �∗j = 1, and �i� j
 ∈ SA

}
B∗

0 =
{
i � ∗

i = 0 and � ∗
j ∈�∗ such

that i �= j ,  ∗
j = 0, and �j� i
 ∈ SA

}
B∗

1 =
{
i � ∗

i = 1 and � ∗
j ∈�∗ such

that i �= j ,  ∗
j = 1, and �i� j
 ∈ SA

}
�

(3.3)

Assume A∗
0 �= �, A∗

1 �= �, B∗
0 �= �, and B∗

1 �= �. Also,
assume �i� j
 ∈ S for i≥ j. Then, we can define �∗ and
 ∗ on i ∈�d:

�∗�i
 = 1−
(
min
i∈A∗

1

eT �j− i
+
)
∗

 ∗�i
 =
(
min
i∈B∗0
eT �i− j
+

)
∗
�

which can be combined into a single classification
function 	� �d → �−1�0�1�:

	∗�i
 = �∗�i
+ ∗�i
− 1

=
(
min
i∈B∗0
eT �i− j
+

)
∗
−
(
min
i∈A∗

1

eT �j− i
+
)
∗
� (3.4)

where i is classified as 1 if 	∗�i
= 1, i is classified as 0
if 	∗�i
=−1, and i is unclassified if 	∗�i
= 0.

Lemma 3. If �≤ ! or �≤ ", then �∗i = ∗
i for all i ∈A

in some optimal solution �∗ = ��∗i � ∗
i � i ∈A� to (3.2).

Proof. Consider a solution �1 = ��i� i � i ∈ A� to
(3.2), in which  j = 1 and �j = 0 for some j ∈ A. Let
P be the set of all such points: P = �i ∈A �  i = 1 and
�i = 0�.

• Suppose � ≤ !. Obtain �2 from �1 by setting
 i = 0 and �i = 0 for all i ∈ P . Since �2 satisfies all con-
straints of (3.2) it is a solution. For i ∈ P , if p�i
 = 0,
then �1 contributes the misclassification penalty of "
to the objective function of (3.2), but �2 contributes
no penalty; If p�i
= 1, �1 contributes the misclassifi-
cation penalty of !, but �2 contributes �. Thus, �1 is
not a better solution than �2.

• Suppose � ≤ ". Obtain �2 from �1 by setting
 i = 1 and �i = 1 for all i ∈ P . Since �2 satisfies all con-
straints of (3.2), it is a solution. For i ∈ P , if p�i
= 0,
then �1 contributes the misclassification penalty of "
to the objective function of (3.2), but �2 contributes �;
If p�i
= 1, �1 contributes the misclassification penalty
of !, but �2 contributes no penalty. Thus, �1 is not a
better solution than �2.

That is, for any solution in which  i > �i for some
i ∈ A, there exists a solution with a same or better
objective-function value in which  i = �i for all i ∈A.
Thus, if � ≤ ! or � ≤ ", then there exists an optimal
solution in which �∗i = ∗

i , for all i ∈A. �
If �∗i =  ∗

i for all i ∈A in an optimal solution �∗ =
��∗i � 

∗
i � i ∈ A� to (3.2), then A∗

0 = B∗
0 and A∗

1 = B∗
1

in (3.3), and thus (3.4) becomes equivalent with (3.1).
Therefore, when creating the separation model of
(3.2), we practically have �> ! and �> ".

For this three-category separation of two-category
data, the same reduction method of §2.3 can be
applied. Specifically, the reduction of A to � as in
(2.11) of Lemma 1 can simplify the separation model
significantly.
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4. Multicategory Separation
Suppose a finite set A of points in a d-dimensional
real space �d, a function p� A→ �0�1� � � � �m� where
m ≥ 1, and a reflexive and transitive binary relation
S on �d are given. While minimizing misclassifica-
tion, we want to obtain n classifications �∗h� A →
�0�1� for 1 ≤ h ≤ n, where m ≤ n ≤ 2m, all of which
are isotonic with respect to S, where �∗h−1�i
 ≥ �∗h�i

for i ∈A. (We may have up to n binary relations for
isotonic consistency. But, we assume that all of them
are the same for the sake of simplicity.) Equiva-
lently, we would like to obtain a classification function
	∗� A→ �0�1� � � � �n� that is isotonic with respect to
S, where 	∗�i
=∑n

h=1 �
∗�i
. (If we have n binary rela-

tions Sh for 1≤ h≤ n, then 	∗ is isotonic with respect
to

⋃n
h=1 Sh.) Here, i ∈ A is classified as g if 	∗�i
 =

g (or �g�i
= 1 and �g+1�i
= 0). The misclassification-
minimization and isotonicity requirements for 	∗ are
as follows:
• For i ∈A where p�i
= g, we have a nonnegative

classification penalty of �g�h if 	�i
= h.
— For each g ∈ �0�1� � � � �m�, there exists exactly

one h ∈ �0�1� � � � �n� such that �g�h = 0.
— �0�0 = 0 and �m�n = 0.
— If �g�h = 0 where 0 ≤ g < m then either

�g+1�h+1 = 0 or �g+1�h+2 = 0.
The classification function 	 must be defined to

minimize the total classification penalties for all i ∈A.
• For i� j ∈ A when �i� j
 ∈ S, if i is classified as h,

then j must be classified as h or h− 1 or � � �0; if j is
classified as h, then i must be classified as h or h+ 1
or � � � n.
Definition 4 (Multicategory Isotonic Separa-

tor). Suppose p is a given function on A to
�1�2� � � � �m�, and �g�h for 0≤ g ≤m and 0≤ h≤ n are
nonnegative real numbers. Suppose functions �∗h on
A to �0�1� for 1≤ h≤ n are isotonic with respect to S
and minimize

∑
i∈A

m∑
g=0

(
�1− �1�i
�wg�0�i
+

n−1∑
h=1

��h�i
− �h+1�i
�wg�h�i


+ �n�i
wg�n�i


)

in the class of all functions �h on A to �0�1� for 1 ≤
h≤ n (where �h−1�i
≥ �h�i
 for i ∈A) that are isotonic
with respect to S, where

wg�h�i
=
{
�g�h if p�i
= g
0 otherwise

for 0 ≤ g ≤ m, 0 ≤ h ≤ n, and i ∈ A. Then, a classifi-
cation function 	∗ = ∑n

h=0 �
∗
n on A to �0�1� � � � �n� is

called a multicategory isotonic separator of A under p
with weight �g�h for 0≤ g ≤m and 0≤ h≤ n. �

Define the variables

�i�h =




1 if i is classified as h
or h+ 1 or � � � or n

0 else

for i ∈A and
1≤ h≤ n

�i�0 = 1 for i ∈A
�i�n+1 = 0 for i ∈A.

For i ∈ A, let ag� i = 1 if p�i
 = g, otherwise ag� i = 0.
Also let SA = ��i� j
 ∈ S � i� j ∈A�. Then, we have

minimize
�i�h� i∈A�0≤h≤n+1




m∑
g=0

n∑
h=0

∑
i∈A
�g�hag�i

·��i�h−�i�h+1


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�i�h−�j�h≥0
for �i�j
∈SA and 1≤h≤n

�i�h−1−�i�h≥0
for i∈A and 1≤h≤n

�i�h∈�0�1�
for i∈A and 1≤h≤n

�i�0=1 for i∈A
�i�n+1=0 for i∈A




�

After dropping the integer requirements, we finally
have the following formulation for multicategory
separation:

minimize
�i�h� i∈A�0≤h≤n+1




m∑
g=0

n∑
h=0

�g�h
∑
i∈A
ag�i

·��i�h−�i�h+1


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�i�h−�j�h≥0
for �i�j
∈SA and

1≤h≤n
�i�h−1−�i�h≥0

for i∈A and 1≤h≤n
0≤�i�h≤1

for i∈A and 1≤h≤n
�i�0=1 for i∈A
�i�n+1=0 for i∈A




�

(4.1)

The dual of the multicategory separation problem is
also a maximum-flow network model, as described
below:

minimize
fi�j�h� �i�j
∈SA�1≤h≤n
ui�h� i∈A�0≤h≤n
vi�h� i∈A�1≤h≤n




n∑
h=1

∑
i∈A
vi�h

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi
fi�j�h−

∑
j∈Ci

fj�i�h+ui�h−1

−ui�h−vi�h
≤

m∑
g=0

ag�i��q�h−�g�h+1


for i∈A and 1≤h≤n
fi�j�h≥0 for �i�j
∈SA and

1≤h≤n
ui�h≥0 for i∈A and

0≤h≤n
vi�h≥0 for i∈A and

1≤h≤n




�

Let �∗ = ��∗i�h � i ∈ A�0 ≤ h ≤ n + 1� be an optimal
solution to (4.1) and define �∗h�i
 = �∗i�h for 0≤ h≤ n.
Then, we have functions �∗h on A, but we would like
to extend them to functions on �d. For 1 ≤ h ≤ n,
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define sets of undominated data points

A∗
h�0 =

{
i� �∗i�h = 0 and ��∗j� h ∈�∗ such that
i �= j , �∗j� h = 0, and �j� i
 ∈ SA

}
A∗
h�1 =

{
i� �∗i�h = 1 and ��∗j� h ∈�∗ such that
i �= j , �∗j� h = 1, and �i� j
 ∈ SA

}
�

First, for i ∈�d,
�∗0 �i
= 1�

For 0 ≤ g ≤m− 1, suppose �g�h = 0 and �g+1�h+1 = 0.
(Note that if g =m−1, then h= n−1.) Then, for i ∈�d,

�∗h+1�i
 =
(
�g+1�h min

j∈A∗
h+1�0

eT �i− j
+

−�g�h+1 min
j∈A∗

h+1�1

eT �j− i
+
)
∗
�

For 0 ≤ g ≤m− 1, suppose �g�h = 0 and �g+1�h+2 = 0.
(Note that if g =m−1, then h= n−2.) Then, for i ∈�d,

�∗h+1�i
 =
(

min
j∈A∗

h+1�0

eT �i− j
+
)
∗

�∗h+2�i
 = 1−
(

min
j∈A∗

h+2�1

eT �j− i
+
)
∗
�

From �∗h for 1≤ h≤ n, we can obtain the classification
function

	∗�i
=
n∑
h=1

�∗h�i
�

5. Continuous Outcome Cases
So far, we considered the classification/prediction
problems of data points with binary or discrete out-
comes. In this section, we will consider cases with
continuous outcomes. Suppose we have a finite set A
of points in �d, a function p� A→ �0�1�, and a reflex-
ive and transitive binary relation S on �d. We want to
obtain a function 	∗� A→ �0�1� that is isotonic with
respect to S and minimizes

∑
i∈A +�p�i
−	�i

 where

+ is a piecewise convex penalty function that may
look like Figure 4.

This problem is known as isotonic regression
(Gebhardt 1970, Barlow et al. 1972, Dykstra and
Robertson 1982, Block et al. 1994) if +�p�i
 − 	�i

 =
wi�p�i
 − 	�i

2 with weight constants wi ≥ 0 and S
is a partial order on A. The main difference between
this continuous outcome isotonic model and iso-
tonic regression is that isotonic regression requires a
stronger condition S (i.e., at least a partial order) due to
the computability. Specifically, efficient algorithms are
known to exist (Wyatt 1997) only when S is a special
type of partial order such as a linear order (i.e., an anti-
symmetric, transitive, and strongly complete order), a
simple tree order (i.e., S constructs a simple tree), and

x

φ(x)

−bi,1 bi,2

−αi βi

Figure 4 A Convex Penalty Function

a matrix order (i.e., the rectangular array of data being
monotonic in rows and columns). The continuous-
outcome isotonic model has a simpler form of penalty
function; thus without tight requirement of the iso-
tonic consistency condition, it can be efficiently solved.
As shown in the following, the continuous-outcome
isotonic model is a minimum-cost network problem,
of which efficient algorithms are known (Tardos 1985,
1986; Ahuja et al. 1993).

Let 	i = 	�i
 and pi = p�i
 for i ∈ A. Then, with
the piecewise convex penalty function of Figure 4,
we have the following continuous-outcome isotonic
model:

minimize
	i�si�1�si�2�ti�1�ti�2 � i∈A




∑
i∈A
�isi�2+

∑
i∈A
�iti�2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

	i−si�1−si�2+ti�1
+ti�2=pi for i∈A

	i−	j≥0 for �i�j
∈SA
0≤	i≤1 for i∈A
bi�1≥si�1≥0 for i∈A
si�2≥0 for i∈A
bi�2≥ ti�1≥0 for i∈A
ti�2≥0 for i∈A




�

Here bi�1 and bi�2 represent the flat portion of the
curve drawn as a dashed line in Figure 4; −�i and �i
represent the slopes of the dotted line and the solid
line, respectively. This problem is a kind of monotone
network (Minty 1960) and can be solved by network
techniques.

Let Bi = �j ∈ A � �i� j
 ∈ SA� and Ci = �j ∈ A � �j� i
 ∈
SA�. The dual formulation is given as:

maximize
fi�j � �i�j
∈SA

gi�hi�ki�ui � i∈A




∑
i∈A
pigi−

∑
i∈A
bi�1hi

−∑
i∈A
bi�2ki−

∑
i∈A
ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi
fi�j−

∑
j∈Ci

fj�i+gi
−ui≤0 for i∈A

−gi−hi≤0 for i∈A
gi−ki≤0 for i∈A
−�i≤gi≤�i for i∈A
fi�j≥0 for �i�j
∈SA
ui�hi�ki≥0 for i∈A




�



Chandrasekaran et al.: Isotonic Separation
INFORMS Journal on Computing 17(4), pp. 462–474, © 2005 INFORMS 471

Because bi�1 and bi�2 are nonnegative, at optimality the
following relations hold, defining the values of hi and
ki in terms of the values of gi:

hi =max�0�−gi�
ki =max�0�gi�

for i ∈A.

Using these relations and by letting gi = gi�1 − gi�2
where gi�1 ≥ 0 and gi�2 ≥ 0, we can simplify the above
problem to:

maximize
fi�j � �i�j
∈SA

gi�1�gi�2�ui � i∈A




∑
i∈A
�pi−bi�2
gi�1
−∑
i∈A
�pi+bi�1
gi�2

−∑
i∈A
ui

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
j∈Bi
fi�j−

∑
j∈Ci

fj�i+gi�1
−gi�2−ui≤0

for i∈A
0≤gi�1≤�i for i∈A
0≤gi�2≤�i for i∈A
fi�j≥0 for �i�j
∈SA
ui≥0 for i∈A




�

This is a minimum-cost network problem.
A solution to the above problem gives a value for

each of the points in A, but no form for the function
	 on �d. However, it provides a method for obtain-
ing tight bounds for the 	 value of any point in �d.
If it is necessary to have a 	 value of each point in
�d, we may use some approximate interpolation on
the tight bounds using the given isotonic consistency
condition S. Even though the co-domain of p and 	
is �0�1� in the above model, it can be replaced by �
without sacrificing simplicity of the model. Then, the
continuous-outcome isotonic model can be used for
prognosis problems such as predicting whether the
breast cancer will recur within two years after surgical
removal of the malignant tumor or, more generally,
when the cancer will recur.

6. Applications
The proposed isotonic-separation method is currently
tested for breast-cancer diagnosis (Chandrasekaran
et al. 1998), breast-cancer prognosis (i.e., cancer recur-
rence time prediction) (Ryu et al. 1999), heart-attack
prognosis (i.e., recurrence and survival-time predic-
tion) (Ryu et al. 1999), Internet information filtering
(Jacob et al. 1999), firm-bankruptcy prediction (Ryu
and Yue 2004), and other problems such as and con-
sumers’ brand-selection prediction.

In the Internet-information filtering study (Jacob
et al. 1999), isotonic separation was shown to outper-
form ID3/C4.5 decision-tree induction (Quinlan 1986,
1993) and OC1 axis-parallel decision-tree induction
(Murthy et al. 1994). In firm-bankruptcy prediction
experiments (Ryu and Yue 2004), isotonic separation
was shown to outperform linear and logistic discrimi-
nant analysis (Anderson 1972, Cox 1966, Fisher 1936),

robust linear programming discrimination (Bennett
and Mangasarian 1992), back-propagation neural net-
works (Bishop 1995), learning vector quantization
(Kohonen 1992, 1995), ID3/C4.5 decision-tree induc-
tion, and OC1 oblique decision-tree induction. In
heart attack recurrence and survival-time prediction
(Ryu et al. 1999), the continuous outcome isotonic pre-
diction model was shown to outperform incremental
hyper-rectangle generation (Salzberg 1988) and recur-
rence surface approximation (Mangasarian et al. 1999,
Street et al. 1995).

This section summarizes the experiments in breast-
cancer diagnosis and prognosis.

6.1. Breast-Cancer Diagnosis
The breast-cancer diagnosis data set (Merz and
Murphy 1998) used for isotonic separation contains
683 data points. Each data point in the data set on
fine-needle aspirates taken from patients’ breasts con-
sists of nine input features: clump thickness, unifor-
mity of cell size, uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, and mitoses measured in
the integer range of 1–10, with the higher value cor-
responding to a more abnormal state of the tumor. Of
683 data points, 239 are diagnosed to be malignant
and 444 benign.

We performed ten-fold cross-validation experi-
ments (using the same data partition used in the Lim
et al. 2000 study) with �/�= 1, �/�= 2, and �/�= 3.
The prediction accuracies calculated as the number
of misclassified testing data points over the num-
ber of all testing data points were 97.81%, 96.64%,
and 95.91%, respectively. However, when the accuracy
measure considered differences in � and �, that is,
when the following weighted accuracy measure was
used:

� ∗ (no. of type 1 errors)+� ∗ (no. of type 2 errors)
� ∗ (no. of malignant data)+� ∗ (no. of benign data)

�

where a type 1 error occurs when a malignant data
point is predicted as benign, and a type 2 error
occurs when a benign data point is predicted as
malignant, prediction accuracies were 97.81%, 97.29%,
and 97.59%, respectively. We also performed ten-
fold, eight-fold, six-fold, and five-fold cross-validation
experiments with � = 1 and � = 1 in order to see
the effect of training-data-set size on prediction accu-
racy. The prediction accuracies were 97.81%, 97.66%,
97.51%, and 97.35%, respectively. As more training
data were used, the overall accuracy increased.

The isotonic separation experiments were per-
formed using AMPL/CPLEX 7.1.0 on a single Pen-
tium 4 (2.0 GHz) processor system running Linux. The
average elapsed time of the ten-fold cross-validation
experiments (which included the CPU time, the tem-
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porary file access time, etc.) was 0.0015 second for
training alone, and 0.0018 second for training and
testing together.

The comparative study of Lim et al. (2000) of
33 data-classification methods reported the predic-
tion accuracies on the same breast-cancer-diagnosis
data set using ten-fold cross-validation. Among the
tested 33 methods, the learning vector quantization
algorithm performed the best with a 97.22% accu-
racy; the logistic-discriminant-analysis method per-
formed the best among discriminant-analysis meth-
ods with a 96.63% accuracy. Isotonic separation with
97.81% prediction accuracy performed better than all
33 methods.

The study by Lim et al. did not include the
multisurface-separation method (Mangasarian 1965,
1968; Mangasarian et al. 1990; Wolberg and Man-
gasarian 1990), robust linear-programming method
(Bennett and Mangasarian 1992), and the support vec-
tor machines (Burges 1998, Vapnik 1998). Therefore,
we performed ten-fold cross-validation experiments
on the same data set using these methods. Their
results of 93.77%, 97.32%, and 96.73% prediction accu-
racies, respectively, were worse than the isotonic sep-
aration result.

6.2. Breast-Cancer Prognosis
The breast-cancer prognosis data set (Merz and
Murphy 1998) contains 198 data points, among which
4 data points have a missing value. After remov-
ing these data points, we used 194 data points. Each
data point consists of 32 input features, one class
attribute (whether cancer recurred or not), and one
recurrence/survival-time attribute. The input features
consist of data on fine-needle aspirates taken at the
time of diagnosis and data on the tumor observed
at the time of surgery. Among 194 data points, 46
belong to the class Ar of cancer recurrence data
with the recurrence time varying between 1 month
and 125 months (with an average of 53.58 months)
and 148 belong to the class As of nonrecurrence
data with the survival-time varying between 1 month
and 79 months. Note that the survival-time of the
second class denotes the latest relative time after
the surgery when a patient was observed to be
cancer-free; because no further records were collected
on these patients, it is not known whether cancer
recurred later or not.

Mangasarian et al. (1995) and Street et al. (1995)
conducted a breast-cancer recurrence prediction study
on a subset of these data using a linear-programming
method called the recurrence surface approximation
(RSA) technique. Following the exact same exper-
imental setup, we used the RSA technique on
the whole data set and observed overall errors of
18.1 months and 14.7 months on two different param-
eter settings.

We performed isotonic prognosis experiments
using a variation of the continuous outcome isotonic
model (Ryu et al. 1999). The experiments were done
with leave-one-out testing, in which the prediction
model was created using all data points except one
and tested on the left-out data point. Experiments
were repeated for each of the 194 data points being
left out for prediction-model creation and used for
testing. This experimental setup was adopted from
the RSA technique experiments of Mangasarian et al.
(1995) and Street et al. The isotonic prognosis experi-
ment resulted in overall average errors of 15.7 months
(versus 18.1 months of RSA) and 13.4 months (versus
14.7 months of RSA) on two different parameter
settings.

7. Concluding Remarks
The study of historical data classification, and out-
come prediction based on it, has received both theoret-
ical and practical attention. Statistical, mathematical-
programming, and artificial-intelligence methods have
been developed for this purpose. However, we have
proposed another framework called isotonic separa-
tion, which models a data-classification problem as a
maximum-flow or minimum-cost problem in a net-
work. Isotonic separation is characterized by this net-
work formulation, for which efficient algorithms are
known, and the explicit utilization of domain knowl-
edge that is expressed as an isotonic consistency
condition.

We have obtained several data sets to imple-
ment isotonic separation and the work has begun
to test it. The application of the two-category iso-
tonic separation technique in breast-cancer diagnosis
(Chandrasekaran et al. 1998) and the application of
the continuous outcome isotonic model in breast-
cancer prognosis (Ryu et al. 1999) were summarized
in §6. A preliminary study on firm-bankruptcy
prediction (Ryu and Yue 2004) showed that iso-
tonic separation outperformed various other methods.
A variation of isotonic separation was developed
to address a marketing-management problem of
product-brand-selection prediction based on cus-
tomers’ demographic and financial data and retailers’
promotion tactics. We also proposed an isotonic-
separation approach to Internet-information filtering
with the PICS rating scheme (Jacob et al. 1999).

More theoretical work remains to be done in order
to improve the robustness and applicability of isotonic
separation. The following list illustrates some issues
currently under investigation.

7.1. Reduction of the Problem Size
We have already addressed the issue of several data
points having the same coordinate vector. We have
also dealt with the issue of redundant constraints.
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Third, more significant methods for problem-size re-
duction were discussed in §2.3. However, in cases of
a very large data set involved in a data-classification
problem, we may need further reduction of the prob-
lem size. One possibility is to divide the region in
�d into a number of cells (i.e., small regions) and
think of an approximation in which points that are
within a cell are considered to be one point hav-
ing the same coordinates (say the center of the cell),
and this new heavy point has weights corresponding
to the numbers of original points belonging to dif-
ferent classes. Once we have the separation for this
approximation, we may refine the division further,
near the separation area to get a better approximation
and so on.

7.2. Feature Reduction/Selection
Another important issue is to reduce the number of
features used in the model. It is generally believed
that the more parsimonious the model, the better its
predictive ability. There is some work in this direction
by Bradley and Mangasarian (1998) and Bradley et al.
(1998), who have done a significant amount of work
in planar separation and the use of neural networks
in this area. We could use their ideas in our work
as well for feature reduction/selection. Other possi-
bilities include the use of genetic algorithms (Punch
et al. 1993) and statistical methods (Liu 1997). For the
breast-cancer-prognosis study (Ryu et al. 1999), we
adopted the backward-sequential-elimination method
(Marill and Green 1963, Kittler 1986), which gave
reasonable outcome prediction results, as reported
in §6. However, other methods are currently being
tested for better outcome prediction in this and other
problems.

7.3. On the Isotonic Consistency Condition
So far, the notion of consistency has been related to
geometric ideas of vectors being ordered. Any quasi-
order can be used for this purpose. For example, if
the data sets are matrices, we could use submatrices
to define a quasi-order. This idea has tremendous the-
oretical potential for discovering the smallest viola-
tors of various properties. We have begun some work
in this area. Another possibility is to consider a rota-
tion of the given points first, and then separate them
by isotonic separators in the rotated space. For this,
we need to find an orthonormal matrix R and then
consider the set of points j = Ri and use them for
defining the sets S. The number of possible sets S
under such rotations is polynomial in the number
of data points, but not in the number of features or
dimensions. Using this idea, we can have a multi-
level approach as Mangasarian (1968) did with linear
separators. Clearly, the isotonic multilevel approach is
stronger than linear multilevel approach.
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