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Abstract

The COVID-19 pandemic has led to a misinformation
avalanche on social media, which produced confusion and
insecurity in netizens (Tagliabue, Galassi, and Mariani 2020).
Learning how to automatically recognize adoption or rejec-
tion of misinformation about COVID-19 enables the under-
standing of the effects of exposure to misinformation and the
threats it presents. By casting the problem of recognizing mis-
information adoption or rejection as stance classification, we
have designed a neural language processing system operating
on micro-blogs which takes advantage of Graph Attention
Networks relying on lexical, emotion, and semantic knowl-
edge to discern the stance of each micro-blog with respect to
COVID-19 misinformation. This enabled us not only to obtain
promising results, but also allowed us to use a taxonomy of
COVID-19 misinformation themes and concerns to character-
ize the misinformation adoption or rejection that can be best
recognized automatically.

Introduction
With the outbreak of the COVID-19 pandemic, people turned
to social media platforms, such as Twitter, to find information
about this infectious virus, in search to understand a range
of issues, including its origin, efficient preventive measures,
and eventual treatments. However, as information needs were
surging, so was misinformation diffusion. People were ex-
posed to false claims, rumors, and conspiracy theories. There-
fore, as noted in (Tagliabue, Galassi, and Mariani 2020), mis-
information influenced the public perception of COVID-19
risks. Hence, not only is it important to know how misinfor-
mation spreads but it is essential to understand when it is
adopted or rejected.

Recently, epidemiological models originally designed for
the study of the spread of biological viruses (Serrano, Igle-
sias, and Garijo 2015) have been used for in-depth analysis
of the propagation of information about COVID-19 (Cinelli
et al. 2020) on several social media platforms, such a Twitter,
Instagram, Gab, Reddit, and YouTube, finding that unreliable
information was amplified at almost the same rate as reliable
facts. An exploratory study into the propagation, content, and
authorship of misinformation on Twitter around the topic of
COVID-19 was reported in (Shahi, Dirkson, and Majchrzak
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Misinformation Target: Shaking hands cannot infect anyone
since it is Sunnah.

STANCE: Agree
Tweet: NEW CASE: Illinois Health Officials say despite this
new case, people do not need to alter their daily lives, but
should work to stop the spread of germs.
STANCE: Disagree
Tweet: Still many Indians follow this dharma intentionally and
also unintentionally as well. Now WHO says, to maintain 3 feet
distance from one individual to another to prevent from attack
of Corona virus. Never touch anyone. Wash ur hands everytime.
Misinformation Target: The coronavirus outbreak is a
cover-up for a 5G-related illness.
STANCE: Agree
Tweet: @DineshDSouza Who ever said the Coronavirus is a
hoax is correct. It’s 5G radiation disease and its only
going to get worse!!
STANCE: Disagree
Tweet: I just read a tweet where someone claimed Coronavirus
was actually a result of 5g exposure. These idiots walk among
us.

Table 1: Examples of COVID-19 misinformation and tweets
adopting or rejecting it from the COVIDLIES dataset.

2020), revealing that misinformation authors are driven by
affiliations to others, promoting false claims under the guise
of protecting others. The study also finds that COVID-19 mis-
information tweets use relatively less informal language. e.g.
less so-called netspeak (e.g. lol and thx), swearing and assent
(e.g. OK) than tweets referring to factual information. Such
stylistic features along with other content-based characteris-
tics are known to inform the recognition of misinformation
in social media platforms, together with signals of the so-
cial context of the misinformation, represented, as suggested
in (Shu et al. 2017), by the features of the misinformation
propagation and the observed stance.

The stance defines the attitude the author of a micro-blog
manifests towards the misinformation target, as exemplified
in Table 1. When the misinformation is adopted, an agree-
ment stance is observed, whereas when it is rejected, the
stance reflects the disagreement with the targeted misinforma-
tion. Automatic stance recognition is an affect identification



task aiming to capture the attitudes expressed in texts with
respect to some target proposition. The examples listed in
Table 1 originate from COVIDLIES (Hossain et al. 2020), the
first benchmark of COVID-19 misinformation annotated with
stance information, recently released. It is not the first dataset
containing stance annotations. In 2017 and 2019 the data
available in RumourEval (Gorrell et al. 2019) enabled multi-
ple teams to compete in the task of rumor stance prediction
on Twitter and Reddit.

As it can be seen from the examples listed in Ta-
ble 1, identifying the stance of a tweet with respect to
a target misinformation is a not trivial language process-
ing task. In (Hossain et al. 2020), this problem was cast
as an inference problem, a methodology also used for
stance identification in(Augenstein et al. 2016) as well as
for recognizing the stance in the Fake News Challenge
(www.fakenewschallenge.org), as reported in (Mohtarami
et al. 2018). However, much recent work, e.g. (Sun et al.
2018), (Siddiqua, Chy, and Aono 2019), has cast the prob-
lem of stance identification as a classification problem that
benefits from lexical, sentiment, syntactic and contextual
knowledge.

To find which methodology best serves the recognition
of stance on the COVIDLIES dataset, we have designed a
novel neural stance classification architecture which pro-
duced superior results on the same dataset compared with
the results generated when casting stance identification as
a textual inference problem, as reported in (Hossain et al.
2020). But more importantly, we discerned a taxonomy of
themes and concerns from the misinformation targets avail-
able in COVIDLIES to find what kind of misinformation is
more adopted and what kind is more rejected. Interestingly,
we found that misinformation themes for which adoption is
easier to detect automatically are the same for which misin-
formation rejection is harder to identify automatically, and
vice versa. This important finding can guide future efforts on
inoculation against misinformation in the era of COVID-19.
Moreover, recent research (Loomba et al. 2021) has shown
that exposure to online misinformation around COVID-19
vaccines affects intent to vaccinate in order to protect one-
self or others. Therefore, knowledge about misinformation
adoption or rejection can further explain the impact of misin-
formation on COVID-19 vaccine hesitancy.

Stance Twitter Annotations for COVID-19
Misinformation

The ongoing pandemic has led several researchers to develop
datasets containing social media narratives about COVID-19,
including the multilingual COVID-19 Twitter dataset pre-
sented in (Chen, Lerman, and Ferrara 2020), which is avail-
able to the research community via a COVID-19-TweetIDs
GitHub. In addition, the COAID (Covid-19 heAlthcare mIs-
information Dataset) is another public benchmark dataset
which includes (a) confirmed fake and true news articles
about COVID-19 from fact-checked or reliable websites; and
(b) postings from social platforms (e.g. Facebook, Twitter,
Instagram, Youtube, and TikTok) that contain links to the arti-
cles. This enables the social media postings to be categorized

Figure 1: Taxonomy of Themes and Concerns discerned from
the COVIDLIES Misinformation Targets.

as containing misinformation or not based on their links to
fake or true news articles. However, none of these datasets
have any stance annotations available.

A very different and interesting perspective on COVID-19
misinformation detection on social media was taken in (Hos-
sain et al. 2020), which introduced the COVIDLIES dataset.
The starting point was 86 common misconceptions about
COVID-19 available from the Wikipedia page dedicated to
COVID-19 misinformation, which became misinformation
targets. For each known misinformation target, a set of rele-
vant tweets were automatically retrieved, using BERTSCORE
(Zhang et al. 2020b). The 100 most relevant tweets for each
misinformation target were selected for stance annotation,
performed by researchers in the UCI School of Medicine.
There are three possible values for stance: (1) agree, when the
tweet adopts the target misinformation; (2) disagree, when
the tweet contradicts/rejects the target misinformation; and
(3) no stance when the tweet is either neutral or is irrelevant
to the targeted misinformation. It is to be noted that the an-
notation decisions for no stance conflate the stance decision
with the relevance decision, combining two distinct linguistic
phenomena: attitude and relevance. This may pose significant
issues to the problem of stance identification, as some train-
ing and testing data could have nothing to do with the stance
of the tweet, but only with the relevance of the tweet against
a misinformation target. Of the 6761 annotated tweets, 5,748
(85.02%) received a label of no stance; 670 (9.91%) received
a label of agree and 343 (5.07%) received a label of disagree.

When analyzing the misinformation targets available from
the COVIDLIES dataset, we were able to find that six different
themes of misinformation emerged. They regarded (1) the ori-
gin of the COVID-19 virus; (2) prevention against infection
with COVID-19; (3) treatment; (4) the spread and severity
of the disease caused by COVID-19; (5) predictions related
to COVID-19 and (6) testing. As it can be seen in Figure 1,
the ORIGIN theme of misinformation covers four concerns:



Figure 2: Count of tweet / misinformation target pairs from
COVIDLIES, grouped by Theme and then by Concern.

(1) the virus originated as a weapon or warfare; (2) it origi-
nated in a laboratory; (3) it originated in specific countries,
e.g. U.S.A, Canada, China or Israel; and (4) there are some
”wild” concerns, e.g. its origin is motivated by population
control, or it is the result of a spy operation. Similarly, the
PREVENTION and the TREATMENT themes are characterised
by four concerns. The DISEASE SPREAD/SEVERITY theme
is characterized by five concerns whereas the PREDICTION
and TESTING themes cover only two concerns each.

As shown in Figure 2, the largest number of tweets from
COVIDLIES address misinformation regarding the ORIGIN of
the virus, whereas misinformation about TESTING and PRE-
DICTIONS related to COVID-19 are encountered in the small-
est number of tweets. The number of tweets relevant to misin-
formation with TREATMENT, DISEASE SPREAD/SEVERITY,
and PREVENTION is of similar magnitude. However, more
interesting is the distribution of tweets for each concern that
either adopt or reject the misinformation pertaining to each
theme. Figure 3 shows that our taxonomy of misinformation
operating on the COVIDLIES annotations of stance indicates
that most adopted misinformation about the origin of COVID-
19 pertains to its claimed origin in certain countries, whereas,
not surprisingly, the most rejected misinformation pertains to
”wild” concerns. In contrast, for the misinformation covering
the PREVENTION theme, it is not the ”wild” concerns that are
most rejected, but those about the role of food and alcohol on
prevention, while the ”wild” concerns are the most adopted
forms of misinformation. Misinformation falling under the
DISEASE SPREAD/SEVERITY seems to be adopted when
addressing concerns expressing the role of warmer weather,
political effects (promoted by the Trump administration), the
number of deaths recorded, or the virus persistence (on vari-
ous surfaces). The misinformation is mostly rejected when

Figure 3: Distribution of Adoption vs Rejection of Misin-
formation across Themes and Concerns Discerned in the
COVIDLIES dataset.

addressing concerns of social distancing and religious or
ethnic issues. Surprisingly, almost all misinformation about
treatments is adopted, with few exceptions when it concerns
the role of vitamins or herbs (including cannabis) when it
is rejected. Because, as illustrated in Figure 1, the misinfor-
mation for the PREDICTION and TESTING themes expressed
only two concerns, the distribution of adoption vs. rejection
of misinformation pertaining to these themes is not displayed
in Figure 3. For the PREDICTION themes, most adopted mis-
information dealt with the WORKS OF ARTS concern, encom-
passing claims that the coronavirus was predicted in various
works of art, ranging from novels (e.g. ”The Eyes of Dark-
ness”) to shows (e.g. ”The Simpsons”), while the rejected
misinformation covered ”wild” concerns. The misinforma-
tion for the TESTING theme was in general adopted, rather
than rejected.

Given the variation of stance annotations across themes
and concerns, we also contemplated if any data enhance-
ment should be considered. Because currently there are no
additional datasets of COVID-19 misinformation annotated
with stance, we experimented with another recently released
dataset that annotated the severity of COVID-19 misinforma-
tion, rather than the stance. The HeRA (Dharawat et al. 2020)
dataset provides several additional annotations on a subset of
the CoAID (Cui and Lee 2020) dataset, which is annotated
with real and misinformation news articles and claims along
with tweets which discuss these articles or claims. HeRA
refines the CoAID annotations on the tweet-level by further
annotating misinformation-discussing tweets with either a
severity level or as a rebuttal to misinformation. We hypothe-
sized that the severity and rebuttal annotation scheme implies
a likely stance s: if the tweet t is annotated as a rebuttal then



the tweet likely rejects the misinformation in the news article
or claim. If the tweet t is annotated with a certain level of
severity, we assumed that it is likely that the tweet adopts
the misinformation of the news article or claim. In addition,
we extract the misinformation target m from the news article
headline or claim the tweet is discussing.

Given the COVIDLIES dataset and the taxonomy of misin-
formation we have created, as well as the possibility of data
enhancement based on the alignment of annotations of the
HeRA dataset with the COVIDLIES annotations, we were
interested to find how well a neural language processing sys-
tem could find which misinformation is adopted or rejected,
with or without any data enhancement.

Automatic Identification of Stance toward
COVID-19 Misinformation

While the creators of the COVIDLIES dataset have cast the
problem of stance identification as an inference problem,
which can benefit from existing textual inference datasets,
we believe that the language uses of agreement or disagree-
ment with a certain misinformation target, as expressed in
the tweets of the dataset, are a function of the deep pragmatic
cues of the context of the tweet, and may be further signaled
by lexico-syntactic, semantic, and emotion features. Con-
sequently, we have designed a neural language processing
system that exploits the pre-trained domain-specific language
model COVID-Twitter-BERT-v2 (Müller, Salathé, and Kum-
mervold 2020) and refines it by stacking several layers of
lexico-syntactic, semantic, and emotion Graph Attention Net-
works (GATs) (Veličković et al. 2018) to learn and refine all
the possible interactions between these different linguistic
phenomena, before classifying a tweet as (a) agreeing; (b)
disagreeing or (c) having no stance towards a misinformation
target. For this purpose, we have designed the architecture
of the Lexical, Emotion, and Semantic Graph Attention Net-
work system for Stance Identification (LES-GAT-StanceId),
illustrated in Figure 4.

Figure 4 shows how, given a misinformation target m
composed of a word-piece tokens (Devlin et al. 2019)
m1,m2, ...,ma and a tweet t composed of b word-piece to-
kens t1, t2, ..., tb, the pre-trained domain-specific language
model COVID-Twitter-BERT-v2 (Müller, Salathé, and Kum-
mervold 2020) produces contextualized embeddings for each
word-piece token in the joint misinformation target / tweet se-
quence [CLS],m1,m2, ...,ma, [SEP ], t1, t2, ..., tb, [SEP ],
where [CLS] represents a special classifier token which
marks the beginning of the first sequence of tokens and
[SEP ] represents a special separator token used to mark the
end of a sequence of tokens. COVID-Twitter-BERT-v2 was
pre-trained on 97M COVID-19 tweets, providing domain-
specific language modeling for tasks concerning COVID-19.
The contextualized embeddings C = {c1, c2, ..., cL} of size
L = a + b + 3 generated by COVID-Twitter-BERT-v2 are
further enriched with lexico-syntactic, emotion and semantic
information through three corresponding Graph Attention
Networks (GATs). Each GAT operates on a different graph.

The Lexical Graph, on which the Lexical GAT illustrated
in Figure 4 operates, consists of each word from the misin-

Figure 4: Neural architecture of the Lexical, Emotion, and
Semantic Graph Attention Network for Stance Identification
(LES-GAT-StanceId) system.

formation target m or the tweet t which are spanned by some
syntactic dependency relation generated with SpaCy (Hon-
nibal et al. 2020), whereas the edges are the product of the
dependency parse. For example, the word ”shaking” from the
first misinformation target illustrated in Table 1 is connected
to the words ”hands” and ”infect”. To build the Emotion
Graph on which the Emotion GAT operates, words are pro-
vided with emotion tags available from SenticNet 5 (Cambria
et al. 2018) which follow the Hourglass of Emotions model
(Cambria, Livingstone, and Hussain 2011) for emotion cate-
gorization of words. For example, the word ”virus” has both
the ”fear” and the ”disgust” emotion tags. Edges between
words which share one or more emotion tags complete the
Emotion Graph. The generation of the Semantic Graph, on
which the Semantic GAT operates, is using semantic similar-
ity information. SenticNet 5 (Cambria et al. 2018) provides
information about the semantic similarity between pairs of
words. For example, the word ”contagious” is considered
semantically similar to the words ”infectious”, ”communi-
cable”, ”epidemic”, ”pandemic”, and ”epizootic”. An edge
spans all pairs of semantically similar words. To expand the
Semantic Graph, edges are generated between pairs of words
which are deemed semantically similar within h edge hops,



as in (Zhang et al. 2020a). Furthermore, self-loops are also
added for every word in the Lexical, Emotion, and Seman-
tic Graphs to allow for contextual information to inform the
graph representations and to produce stable training when
words have no edges. Each Graph Attention Network (GAT)
operates on one of these graphs with the purpose to refine
the representations of each word from each graph through
self-attention, taking into account the contributions of the
adjacent connections available in each graph.

For simplicity reasons, Figure 4 does not illustrate the
fact that LES-GAT-StanceId first projects the large 1024-
dimensional contextualized embeddings C from COVID-
Twitter-BERT-v2 down to F << 1024 with a linear layer
for each of the Lexical, Emotion, and Semantic Graphs. The
respective linear layers are implemented as:

G0
l = CWl + bl (1)

G0
e = CWe + be (2)

G0
s = CWs + bs (3)

where Wl,We,Ws are weight matrices of size 1024×F and
bl, be, bs are weight vectors of size F (where all these matri-
ces and vectors are model parameters that are learned during
training). These layers reduce the complexity and increase
the efficiency of the following Graph Attention Networks by
reducing the number of trainable parameters and improving
the speed.

As illustrated in Figure 4, the LES-GAT-StanceId system
stacks n layers of GATs. A GAT at layer n ∈ {1, ..., d}
computes a hidden representation for every word-piece node
embedding gn−1i ∈ Gn−1 as hni = Wngn−1i , where Wn

is a weight matrix of varying size. At n = 1 the size
of W 1 is of size F × F from the linear projection layer,
while at n > 1 we set Wn to size F × 3F , since the
input at layers n > 1 consider inputs from the Lexical,
Emotion, and Semantic GATs at the previous layer n − 1:
Gn−1 = [Gn−1

l , Gn−1
e , Gn−1

s ]. This hidden representation is
utilized to compute self-attention weights with the following
equation:

αn
i,j =

exp(LeakyReLU((an)T [hni , h
n
j ]))∑

k∈adj(i) exp(LeakyReLU((an)T [hni , h
n
k ]))

(4)

where an is a weight vector of size 2F , [.., ..] represents con-
catenation, LeakyReLU(x) = max(0.2x, x), and adj(...)
produces the list of adjacent nodes for a given node in either
the Lexical, Emotion, or Semantic graphs. These attention
weights are utilized along with the hidden representations of
word-piece node embeddings to produce the final GAT layer
representation as:

gni = σ(
∑

j∈adj(i)

αn
i,jh

n
j ) (5)

where σ is an exponential linear unit (ELU) nonlinearity
(Clevert, Unterthiner, and Hochreiter 2016).

The final output for each GAT on layer n is therefore
Gn = {gn1 , gn2 , ..., gnL}. Each of the GATs at each layer pro-
duces a graph representation Gn

l , Gn
e , and Gn

s respectively,

which each utilize Lexical, Emotion, and Semantic edges re-
spectively for their adjacency function. These Lexical, Emo-
tion, and Semantic Graph representations are concatenated
together to formGn = [Gn

l , G
n
e , G

n
s ].G

n is then provided as
input to all three Lexical, Emotion, and Semantic GATs for
the next layer, producing Gn+1. The LES-GAT-StanceId sys-
tem has d layers of separate Lexical, Emotion, and Semantic
Graph Attention Networks. This allows each Lexical, Emo-
tion, and Semantic GAT to consider previous Lexical, Emo-
tion, and Semantic Graph representations jointly, learning
graph node embeddings which consider interactions between
different graphs. This process results in a final LES-GAT-
StanceId graph node representation Gd = [Gd

l , G
d
e , G

d
s ].

The misinformation stance classification layer of the LES-
GAT-StanceId system is provided as a fixed-length represen-
tation by taking the average embedding of the final LES-GAT-
StanceId layer d as z = 1

L

∑L
i=1 g

d
i . This embedding z is pro-

vided to the stance classification layer, which employs a fully
connected layer with a softmax activation function to produce
final probabilities P (Agree|m, t), P (Disagree|m, t), and
P (No Stance|m, t).

The LES-GAT-StanceId system is trained end-to-end on
the cross-entropy loss function:

L = −
∑

(s,m,t)∈D

logP (s|m, t; θ) (6)

where s ∈ {Agree,Disagree,No Stance}, D is a set
of all training examples of labeled tweet / misinformation
pairs, and θ is a set of all trainable parameters from LES-
GAT-StanceId. These parameters are optimized with ADAM
(Kingma and Ba 2015), a variant of gradient descent, to min-
imize L.

The HeRA (Dharawat et al. 2020) dataset is also utilized
as additional pre-training data. Therefore, a dataset D′ is
constructed of stance s, misinformation target m, and tweet t
triples from the HeRA dataset. This dataset contains likely
examples of agreement and disagreement between tweets and
misinformation targets, which provides a good source of pre-
training for the task of stance identification in COVIDLIES.
First, the trainable parameters θ of LES-GAT-StanceId are
initialized randomly or to pre-trained values for COVID-
Twitter-BERT-v2. The parameters are then optimized on the
loss L′ using D′, and then fine-tuned on the loss L using D,
the training data from COVIDLIES. This system is referred
to as LES-GAT-HeRA-StanceId.

A thresholding technique is also implemented due to the
imbalance of data in the COVIDLIES dataset. A tweet / mis-
information pair is classified as the maximum probability
stance between Agree or Disagree if P (Agree|m, t) > T or
P (Disagree|m, t) > T . This thresholding method is sim-
ilar to prior work (Hossain et al. 2020), but the same joint
LES-GAT-StanceId stance system is used as opposed to a
separate relevancy model.

Evaluation Results
Stance identification performance on the COVIDLIES dataset
was evaluated on three systems: (1) the Domain-Specific



Stance Recognition Agree Disagree No Stance Macro
System P R F1 P R F1 P R F1 P R F1

(Hossain et al. 2020) 63.3 30.6 41.2 14.4 34.1 20.3 90.0 88.0 89.0 55.9 50.9 50.2
DS-StanceId 73.5 73.5 73.5 52.3 44.2 46.2 95.3 96.2 95.8 73.7 71.3 71.8
LES-GAT-StanceId 72.2 72.7 72.5 57.6 48.7 52.8 95.6 96.4 96.0 75.1 72.6 73.7
LES-GAT-HeRA-StanceId 69.4 78.8 73.8 54.4 52.3 53.3 96.3 95.2 95.7 73.4 75.4 74.3

Table 2: Results from the 5-fold cross-validation stance identification experiments on the COVIDLIES dataset.

Stance Identification (DS-StanceId) system; (2) the Lexi-
cal, Emotion, and Semantic Graph Attention Network for
Stance Identification (LES-GAT-StanceId) system; and (3)
the Lexical, Emotion, and Semantic Graph Attention Network
enhanced with HeRA for Stance Identification (LES-GAT-
HeRA-StanceId) system. The DS-StanceId system utilizes
the ”[CLS]” embedding from COVID-Twitter-BERT-v2 as
the misinformation stance classification input embedding z.
The LES-GAT-StanceId system utilizes Lexical, Emotion,
and Semantic Graph Attention Networks architecture illus-
trated in Figure 4. The LES-GAT-HeRA-StanceId system
utilizes HeRA as pre-training data, but otherwise is the same
as the LES-GAT-StanceId system.

We performed 5-fold cross-validation on the unique tweets
within the COVIDLIES dataset. Hyper-parameters were se-
lected based on initial experiments on an independent 80/20
split. The number of semantic hops h was set to 3, the size
of the GATs F was set to 64, the depth of GAT layers d was
set to 6, and the threshold T was set to 0.2. The LES-GAT-
HeRA-StanceId system shares the same hyper-parameters as
the LES-GAT-StanceId system except for the learning rate
of the HeRA pre-training step, which is set to 5e − 5. All
systems follow the same training schedule on each of the
five splits: 10 epochs, a linearly decayed learning rate of
5e − 4 with a warm-up for 10% of training steps, an atten-
tion drop-out rate of 10%, and gradient norm clipping of
1.0. We compare against the best results from Hossain et al.
(2020), which utilize a pre-trained domain-adapted (DA) nat-
ural language inference (NLI) Sentence-BERT (Reimers and
Gurevych 2019) system along with a DA misinformation
retrieval model BERTScore (Zhang et al. 2020b). Results are
provided in Table 2.

Performance was determined based on Precision (P), Re-
call (R), and F1

1 score for detecting the three values of stance,
namely Agree, Disagree, and No Stance. We also compute a
Macro averaged Precision, Recall, and F1 score. Evaluation
metrics were computed over detected stances for all 5 cross-
validation splits. The DS-StanceId system produced a Macro
F1 score of 71.8, which demonstrates the advantage of fine-
tuning stance identification systems. The LES-GAT-StanceId
system produced a Macro F1 score of 73.7, which indicates
that integrating Lexical, Emotional, and Semantic Graphs im-
proves stance identification. The LES-GAT-HeRA-StanceId
system produced a Macro F1 score of 74.3, supporting our
hypothesis that misinformation deemed as severe or rebutted
in the HeRA dataset contributes to the improvement of stance
identification. The results also show that detecting disagree-

1F1 is defined as F1 = 2× P ×R/(P +R)

ment, thus misinformation rejection, is more difficult than
detecting agreement, thus misinformation adoption.

Stance identification results for the DS-StanceId system
in Table 2 demonstrate that significant performance gains
can be attributed to fine-tuning stance identification systems.
Major performance gains, from an F1 score of 41.2 to 73.5
for the Agree stance and 20.3 to 46.2 for the Disagree stance
represent the value of fine-tuning on tweet / misinformation
pairs as opposed to using only general Natural Language
Inference (NLI) datasets, as it was done in (Hossain et al.
2020).

Improvements in stance identification for the LES-GAT-
StanceId system are driven largely by improvements in the
Disagree stance. The Disagree stance has the fewest number
of examples, with only 343 instances in a dataset of 6,761
examples. The LES-GAT-StanceId system overcomes this re-
source constraint by integrating additional Lexical, Emotion,
and Semantic information. The LES-GAT-StanceId system
gains 6.6 points of F1 score over the DS-StanceId system for
the Disagree stance, which can be attributed to the utilization
of Lexical, Emotion, and Semantic Graph edges and their
learned interactions in the LES-GAT-StanceId system. Find-
ing aligned emotions and shared semantics between words
in misinformation targets and words in tweets, along with
a lexical consideration of the role of those words, allows
the LES-GAT-StanceId system to improve Disagree stance
identification.

While the Disagree stance is the stance with the fewest
number of examples, the Agree stance also only has 670
examples in the COVIDLIES dataset. The LES-GAT-HeRA-
StanceId system adds an additional 7,632 Agree and 443
Disagree inferred stance tweet / misinformation pairs from
the HeRA dataset. The LES-GAT-HeRA-StanceId system is
pre-trained on these inferred stance examples and fine-tuned
on the examples in COVIDLIES, which produces improve-
ments over the LES-GAT-StanceId system in both the Agree
and Disagree stance F1 scores, gaining 1.3 points and 0.5
points respectively.

Discussion
Because in our experiments we have obtained the best stance
detection when using the LES-GAT-HeRA-StanceId system,
as illustrated in Table 2, we performed an analysis of the
performance of the system for each of the themes of misin-
formation that we have discerned on the COVIDLIES dataset,
both for adoption and rejection of misinformation, as illus-
trated in Figure 5. Detecting the Agree stance, and thus the
adoption of misinformation, is shown to be more difficult for



Figure 5: F1-scores of the misinformation adoption vs. re-
jection discovered by the LES-GAT-HeRA-StanceId system
across misinformation themes from the COVIDLIES dataset.

the TESTING, PREVENTION, and ORIGIN themes, while it is
easier for misinformation considering PREDICTION, TREAT-
MENT, and DISEASE SPREAD / SEVERITY themes. Detect-
ing the Disagree stance, and thus the rejection of misinfor-
mation is shown to be more difficult for the PREDICTION,
TREATMENT, and ORIGIN themes, while it is easier for the
TESTING, DISEASE SPREAD / SEVERITY, and PREVENTION
themes. Interestingly, misinformation themes for which adop-
tion is easier to detect are the same for which misinformation
rejection is harder to identify, and vice versa.

To find the reason for the relative ease of identifying mis-
information adoption for some themes, which also present
difficulty in identifying misinformation rejection (and vice
versa), we investigated the percentage of [tweet / misinfor-
mation target] pairs in the COVIDLIES dataset which exhibit
misinformation adoption or rejection, illustrating the find-
ings in Figure 6. A high adoption percentage indicates that
a given misinformation theme tends to be easily adopted on
Twitter, with most users having stances of agreement. For
example, misinformation surrounding fake, ineffective, or
harmful TREATMENT of COVID-19 appears to be largely
accepted on Twitter along with misinformation surrounding
the ORIGIN of COVID-19, such as the conspiracy of COVID-
19 being a bio-engineered virus. A high rejection percentage
indicates a misinformation theme is largely rejected, meaning
most Tweets disagree with misinformation falling within that
theme. For example, misinformation surrounding TESTING
or PREVENTION, such as the availability of tests in the United
States or the United States’ early response to the pandemic, is
largely rejected on Twitter. A balanced acceptance and rejec-
tion percentage indicates a highly contentious theme which
has balanced levels of adoption and rejection on Twitter. For
example, themes of DISEASE SPREAD/ SERIOUSNESS and
PREDICTION appear to be relatively balanced on this Twitter
dataset.

Figure 5 also helps explain why misinformation rejection

Figure 6: Adoption vs Rejection of misinformation for each
[tweet/misinformation target] pair across misinformation
themes from the COVIDLIES dataset.

is easier to identify in some themes, which also provides a
more difficult case for identifying misinformation adoption.
Themes such as TREATMENT and ORIGIN show a higher
percentage of adopted misinformation than rejected misinfor-
mation, while misinformation about themes such as TEST-
ING are predominantly rejected. The theme of PREDICTION
stands as an outlier, in that it is the most balanced theme
on Twitter with respect to adoption and rejection, but the
performance of the LES-GAT-HeRA-StanceId system is ex-
tremely poor for rejection. This discrepancy can be partially
explained by considering the concerns within the PREDIC-
TION theme, which are provided in Figure 2. The WORKS OF
ART concern is comprised entirely of examples of Agreement
stance or No Stance, while the DEATHS concern only has
examples of Disagreement stance or No Stance. The LES-
GAT-HeRA-StanceId system therefore performs well on the
WORKS OF ART concern, with an F1 score of 0.88, while
the DEATHS concern is entirely incorrect, with an F1 score
of 0. An inspection of the 9 examples of the DEATHS con-
cern indicate that these mistakes are largely due to a lack
of common sense knowledge available to the system. For
example, given the misinformation target: Misinformation
Target 212: ”There will be 500 deaths at the end of the pan-
demic” and the following tweet:

”AureliaCotta @ungubunugu1274 @McBlondeLand @trvrb
@seattleflustudy Should people be afraid if we are on the
brink of a pandemic which will likely kill more people than
died in WW1 and WW2 combined? That’s what Spanish flu
did, and coronavirus is looking as bad or worse.”, in order to
recognize that the content of the tweet is expressing a stance
of Disagreement with the misinformation target, common
sense knowledge in the form that much more than 500 people



Misinformation Tweet RoB-RT- LES-GAT- Annotation
Target Sentiment HeRA-StanceId

216: Everything you said is true plus 1 more thing. Positive Disagree Disagree
We’re very close @StacyLStiles @drdrew 3....TRUMP: “We are
to a vaccine. rapidly developing a vaccine. ... The vaccine is

coming along well, and in speaking to the doctors,
we think this is something that we can develop very
rapidly.” — news conference Wednesday
THE FACTS: No vaccine is imminent for the
coronavirus

157: @MykeCole @KarenFlemingPhD @amayor Positive Disagree Disagree
Hand sanitiser Hand sanitizer works on enveloped viruses
sold commercially as long as they have at least 60% alcohol
does not destroy content. However, soap is better because you’re
the coronavirus. actually washing away the virus, not just killing it.

So when you can’t wash, hand sanitizer is a good
second option. <link>

225: @denmeow The care act I think it’s Neutral Disagree Disagree
Anybody in the called is to protect people against payments
U.S. who wants of federally required tests. That means that
a COVID-19 test if you have to take a test for COVID-19 then
can get a test. your insurance company HAS TO PAY In full

idk about no insured tho

Table 3: Misinformation Targets and Tweets which demonstrate the advantage of stance identification as compared to sentiment
analysis.

died in World War 1 (WW1) and World War 2 (WW2), is nec-
essary. Commonsense Knowledge (or pragmatics) like this
dominates the DEATHS concern’s 9 examples of Disagree-
ment stance which the LES-GAT-HeRA-StanceId system
incorrectly identifies as No Stance.

Furthermore, to highlight the importance of designing
stance detection systems for identifying the adoption or re-
jection of misinformation in the COVID-19 era, we also con-
sidered a sentiment detection system. Often, it is incorrectly
believed that sentiment detection is sufficient for identify-
ing a multitude of linguistic affect phenomena. Comparison
of the LES-GAT-HeRA-StanceId system with the RoB-RT-
Sentiment system (Barbieri et al. 2020), a state-of-the-art
Twitter sentiment detection system, is presented in Table 3.
This comparison demonstrates that sentiment detection alone
is not sufficient for stance identification, as sentiment and
stance values can often be misaligned. The sentiment of a
tweet entirely ignores the misinformation target, and there-
fore can miss the user’s stance towards that target. The first
and second examples from Table 3 demonstrate how a tweet
can contain a Positive sentiment, in both cases as tweet re-
sponses to other users, but it expressed Disagreement with
respect to certain misinformation targets. The third example
demonstrates how the user’s uncertainty surrounding various
facts leads the sentiment analysis system to decide on a Neu-
tral value, while the tweet actually expresses a Disagreement
stance with respect to the misinformation target.

Conclusion
In this paper we described a neural stance classification sys-
tem using COVID-Twitter-BERT-v2 and stacked Graph At-

tention Networks operating on lexico-syntactic, emotion, and
semantic knowledge. The system obtains significant improve-
ments over stance detection methods relying on natural lan-
guage inference. In addition, informed by a misinformation
taxonomy that we discerned from the COVIDLIES dataset,
we present an analysis of misinformation themes for which
misinformation adoption or rejection is easier to automati-
cally identify. This work is a stepping stone in the direction
of developing misinformation inoculation interventions on
social media platforms in the era of COVID-19.
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