
Design of Complex Image Processing Systems in ESL

Benjamin Carrion Schafer
1
, Ashish Trambadia

2
, Kazutoshi Wakabayashi

3

NEC Corp. System IP Core Laboratory
1, 3
, NECHCL ST

2

1753, Shimonumabe, Nakahara-Ku, Kanagawa 211-8666 Japan

{schaferb@bq
1
, wakaba@bl

3
}.jp.nec.com, ashish.trambadia@nechclst.in

2
,

Abstract—This work presents the design of a complex image

processing IP developed completely in C. We present the latest

advanced in ESL-synthesis and demonstrate its main advantages

over conventional RT-level flows. In particular we focus on the

ability of behavioral synthesis to shorten the design cycle,

perform functional verification and explore quickly the design

space obtaining multiple dominating implementations with

unique area vs. speed characteristics from an initial untimed

behavioral description. A feature extraction process is presented

in detailed showing how automatic design space exploration can

lead to Pareto optimal (non-dominant) designs ranging from

524,648 gates to 584,868 gates and latencies of 38 to 69 state

counts for the smallest and fastest design respectively taking

approximately 6.3 hours.

INTRODUCTION

It has taken behavioral synthesis 3 generations and over one

decade to be seriously considered at the commercial level. Increase

design complexity is forcing designers to shift their design

methodology from RTL to Electronic System Level (ESL). The main

driving force behind the adoption of ESL is the level of maturity of

the commercial tools and their capability to deal with system level

design issues. This is also the main difference between traditional

High Level Synthesis (HLS) and new generation ESL design tools.

HLS solves the problems of synthesizing single processes and is still

a core part of modern ESL, but the main advantage of ESL is its

capability to deal with complete systems. These capabilities include:

system level simulation model generation, HW/SW co-simulation,

bus interface generation and multi-process physical design synthesis

to name a few.

Increasing design complexity leads to new challenges which ESL

can address more efficiently than lower levels of abstractions. In

many cases the design specifications are unstable and any changes in

them can lead to different architectural considerations (e.g. on-die

memory or external memory, bus hierarchies). At the RT-level this

requires major re-designs, while at the behavioral level these changes

can be absorbed easier. Another big advantage of raising the level of

abstraction over traditional design flows is that it allows software and

hardware designers to speak the same language. Applications to be

implemented in custom hardware are getting extremely complex and

are based on complex mathematical models that in many cases are

difficult to understand by the hardware designer. Using the same

behavioral description language allows both hardware and software

designers to communicate at the same abstraction level using the

same language. Some examples of complex applications include

dedicated hardware security engines based on complex encryption

and decryption algorithms [1]. Moreover these complex algorithms

need to be modified by the hardware designer in order to obtain a

more efficient architecture. E.g. reduce memory, split memories,

eliminate recursion, improve throughput and latency and data types’

refinement. These manual modifications can be hard to do and might

lead to the implementation of a design with the wrong functionality.

Another aspect that is important when verifying the functionality of

the design is the creation of the golden test data. For standard

applications this data might already exists, but for complex new

applications this data might not be available. In this case who will

generate this data? The software or the hardware designer? One last

advantage of increasing the level of abstraction is the acceleration of

time consuming simulations. RTL simulations are slow and do not

allow to simulate entire SoCs. Behavioral simulation models

accelerated the simulation and permit the simulation of larger

designs.

In this work we present the use of ESL to design a face detection

application and in particular we focus on the feature extraction

process which is part of the custom hardware face detection

accelerator IP designed completely in untimed C. We demonstrate

how micro-architectural designs space exploration can be easily

performed at the behavioral level, which is extremely time

consuming at the RT-level and show how ESL helped the

implementation of this application more efficiently.

ESL DESIGN PLATFORM

For the design of the face detection application we used an ESL

tool developed in-house at NEC’s Central Research Laboratories for

the last 20 years called CyberWorkBench (CWB) [2-3]. CWB takes

untimed C or SystemC and generates Verilog or VHDL in the

traditional HLS way, by creating an FSM for the control unit and a

datapath unit. The datapath unit consists mainly of a number of

functional units (FUs) combined with registers and multiplexers as

shown in Fig. 1. The main idea behind CWB is an “all-in-C”

approach. This is built around two principal ideas: (1) All-modules-

in-C, and (2.) all-processes-on-C. All-modules-in-C means that all

modules in a VLSI design, including control intensive circuits and

data dominant circuits, should be described in behavioral C language.

CWB also supports legacy RTL or gatenetlist blocks as black boxes,

which are called as C functions. At the same time it allows designers

to create all new parts in C, although this is not recommended as the

designer will need to use two different programming languages and

RTL parts will slow down the simulation. All-processes-on-C means

Control unit Data path

in unsigned ter(0:8) in0;

out unsigned ter(0:8) out0;

unsigned var(0:8) fifo[8] = {0, 0, 0, 0, 0, 0, 0, 0};

process main(){

unsigned var(0:8) , sum, i;

do {

for (i = 7; i > 0; i--) {

fifo[i(0:8)](0:8) = fifo[i(0:8) - 1](0:8);

fifo[0] = in0;

sum= fifo[0];

for (i= 1; i< 8; i++) {

sum += fifo[i];

}

out0= sum / 8;

} while (in0 != 0);

return (0); }

Figure 1 ESL synthesis results example

that synthesis and verification (including debugging) tasks should be

done at the C source code for single and multiple processes together.

Fig.2 shows an overview of the CWB entire design platform the

input to CWB is a hardware design in extended ANSI-C (C for

hardware), or SystemC. This is synthesized into synthesizable RTL

with CWB’s core behavioral synthesizer engine given a set of design

constraints such as clock frequencies, number and kind of functional

units and memories. As mentioned before the system can also handle

legacy RTL blocks as black boxes. These legacy RTL IPs are read

into the system and if necessary can also be fed to the behavioral

synthesizer, which can insert extra registers to speed up the original

RTL and generate new RTL of smaller delay. It also generates

different types of simulation models depending on the accuracy vs.

simulation speed required. For cycle accurate verification it generates

cycle accurate simulation models in C++ or SystemC and for

functional verification it can generated behavioral models in

SystemC. The behavioral synthesis can therefore be considered as an

RTL, C, C++, and SystemC merging step.

To further increase productivity CWB provides a library of

behavioral IPs. This library includes trigonometric functions, floating

points units and encryption applications. All IPs are given in C and

are highly configurable and optimized to obtain optimal RTL.

Wire delays of global wires between modules need to be analyzed

carefully since those delays can be significant when the connected

modules are placed far away. To account for this the design platform

provides an RTL FloorPlanner that takes the RTL modules generated

by the behavioral synthesizer. Accurate timing information is

extracted from the floorplanner and fed back to the behavioral

synthesizer.

Verification Flow

The functionality of the hardware described in C can be verified

at the behavioral level, while performance and timing are verified at

the cycle-accurate level (or RTL) through simulation. Debugging the

generated RTL is however not an easy task since C variables are

shared in a register, and various optimizations are applied. CWB

therefore provides a behavioral C source code debugger linked to the

cycle-accurate simulation. After verifying each hardware module, the

entire SoC is simulated in order to analyze the performance and/or to

find inter-modules problems such as low performance through bus

collision, or inconsistent bit orders between modules. Since such

entire chip performance simulation is extremely slow in RTL-based

HW-SW co-simulation, CWB generates cycle accurate C++

simulation models which can run up to hundred times faster than

RTL models. The simulator allows designers to simulate and debug

both hardware and software at the C source code level at the same

time. If any performance problems are found, designers can change

the hardware-software partitioning or algorithm directly at the C

level, and can then repeat the entire chip simulation. This flow

implies a much smaller and therefore faster re-design cycle than in a

conventional RTL methodology. The C description is the only initial

and final SoC description language of the entire design. This entire

chip simulation can be further accelerated using an FPGA emulation

board. A testbench generator helps designers to run an RTL

simulation with test patterns for behavioral C simulation faster and

easier. Its inputs are test patterns for the C simulation and output a

Verilog and/or VHDL testbench, which generates stimulus for the

RTL simulation. It also creates a script to run commercial simulators

to feed the behavioral test patterns and check the equivalence of

outputs patterns between the behavioral and RTL simulation.

Another important feature of CWB is the formal verification tool,

which is tightly linked to the behavioral synthesizer. With the

behavioral synthesis information the formal verification tools can

handle larger circuits than usual RTL tools and have C-source level

debugging capability even though the model checker works on the

generated RTL model. “C-RTL equivalence prover” checks the

functional equivalence between a behavioral (un-timed or timed) C

description and the generated RTL, using information of the

optimizations performed such as loop unrolling, loop merge and

array expansion performed by the behavioral synthesis. Without such

information, the equivalence check is almost impossible for large

circuits.

Designers can specify assertions or properties at the behavioral C

level, similar to our cycle accurate simulator. Such behavioral level

properties/assertions are converted into RTL ones automatically, and

are passed to our RTL model checker.

Power Estimation and Minimization

Much work has been done in the past in order to estimate power

at different levels of the VLSI design flow ranging from behavioral,

RT-level and gatenetlist level Estimation at higher levels of

abstraction are needed in order to implement power reduction

techniques at the earliest possible design stages avoiding costly re-

designs. Moreover powers saving techniques at earlier design stages

have larger impact on the power consumption. Fig 3 shows an

overview of the main power optimization options at different level of

abstraction. The main problem at earlier design stages is that power

estimation methods at these stages are not accurate, which can lead

Figure 2 CWB design platform overview

P
o
w
e
r
s
a
v
in
g
s

Power estimation

accuracy

Behavioral description

(C, SystemC)

RTL (VHDL, Verilog)

Gate netlist

Layout

Automate

Clock gating

Optimizing mem access

DVFS

State machine encoding

Resource allocation &

binding (number & type

of FU)

Resource sharing

(sequential designs)

Switching activity

minimization

Clock gating

Optimizing memory

access

DVFS

State machine

encoding
Clock tree

Power & ground

nets optimizations

Gate sizing

Clock gating

Macro-model Power estimation

Figure 3 Power estimation accuracy vs. power savings options

to the wrong diagnosis.

In order estimate power, CWB generates apart of the

synthesizable RTL, RTL for power estimation. This RTL instantiates

shadow components for each atomic unit in the RTL code [4]. These

shadow components read the input activity and based on the inputs’

values and hamming distance output the power consumption. The

power profile of each atomic unit has been pre-characterized in a set

of power libraries for different technology [5] as shown in Fig. 4.

Based on the power estimation CWB performs different power

savings measures e.g. clock gating.

Design Space Exploration

One of the main features of behavioral synthesis is its ability to

generated different designs with completely different area vs.

performance characteristics. This can be manually performed by

manually modifying the initial untimed description or by specifying a

number of global synthesis options. CWB also performs design space

exploration automatically instrumenting the source code by inserting

synthesis directives in the form of pragmas automatically. These

pragmas tell the behavioral synthesizer how to synthesize each

instrumented operation. Explorable operations are operations that

have multiple hardware implementations. In behavioral synthesis

their implementation is controlled through either (i) global synthesis

options or (ii) synthesis directives in the form of pragmas inserted

directly at the source code. Global synthesis options have the

advantage of being applied at the command prompt and are easy to

use. The drawback is the lack of controllability i.e. all the loops will

be unrolled if specified as a global options or all functions will be

inlined. Pragmas solve this problem by allowing full controllability

as they are declared at each operation directly at the source code, but

have the drawback that the source code needs to be modified and

maintained manually. E.g. loops can be completely unrolled or

partially unrolled for lower latency designs. Also arrays can be

mapped to registers, memory or hard wired logic for constant arrays.

Functions can be inlined which forces the behavioral synthesis tool

to instantiate a hardware block whenever the function is called or

instantiate a single hardware block sharing it among all the function

calls. Fig. 5 shows the source code of a small program that

continuously reads in 8 bit numbers and calculates the average of the

last 8 values read (same as shown in Fig. 1). The explorable

operations have been highlighted and consist of an array where the

last 8 numbers are stored, 2 loops and 1 function. The table next to

the source code shows the result of the HLS for different synthesis

attributes specified directly at the highlighted explorable operations

using pragmas. As seen the difference between the smallest but

slowest design and the fastest but largest is substantial, ranging from

1362 to 4352 gates and latencies from 24 to 1 cycle. There are a

multiple of Pareto optimal combinations in between these designs

based on different attribute combinations as well as sub-attributes

like the number of memory ports in the array, but only 5 are shown

here. Manually editing the source code in order to explore the

different area vs. performance trade-offs is a tedious and time

consuming task. An automatic efficient design space exploration

(DSE) method is therefore highly desirable. The main problem in

DSE is how to explore the design space in a reasonable time, finding

as many Pareto optimal points as possible.

Parallelization and Pipelining

Pipelining is extremely important to increase throughput and

exploit parallelism further. CWB allows pipelining using a pipeline

scheduling engine which generates pipelined circuits from the initial

C code with stall signals, which have various Data Initial Intervals

(DII). It also speeds up loop execution by folding loop and nested

loop bodies like software loop pipelining. Global parallelization

capabilities are very important even for loop pipelining. Loop carry

variables that will be read in the next loop iteration should be

scheduled into the states within the given DII cycles sequence.

Parallelization beyond control dependencies is one key technique to

make loop pipelining possible with a small DII.

FACE DETECTION DESIGN

In this work we present the implementation of a complete face

detection design based on Intel’s OpenCV library [6] designed and

implemented completely in C. Face detection is a process of

identifying all image regions with a face regardless of the position in

the image [7]. The complete face detection application comprises

various processes where the output of each process is passed to the

subsequent process. Fig. 6 shows a block diagram of the architectural

overview of the system. The system starts by performing a color

conversion (rgb2gray) of the image. It then continues by shrinking

the image, histogram equalization and sub-image selection. The most

computational intensive task of the face detection design is the

feature calculation performed next. The face detection process

finishes with the face positioning. A control unit synchronizes all the

processes working in parallel and makes sure that the all the data is

synchronized properly between processes.

When implementing this application the HW designer usually

gets the algorithmic description in any high level language e.g. C.

This algorithmic description can then be easily converted to

hardware, but the designer still needs to have the picture of the

overall architecture in mind and manually design the control unit of

Figure 5 Source code example highlighting the explorable operations and

summary of HLS results using different set of attributes
Figure 4 RTL for power estimation

the system. This control unit is again written in untimed C. All these

blocks are developed at the behavioral level using untimed C as input

language and synthesized with CWB. In this paper focus only on the

feature extraction unit as this is the most complex and computational

intensive task.

Feature Extraction

The feature extraction process implemented in this work is based

on the AdaBoost cascaded algorithm from OpenCV’s library [7]. The

AdaBoost algorithm uses the boosting classification method of

calculating classifiers over the image region and eliminating non-

face regions. These classifiers are called HAAR features were each

feature consists of a set of black and white rectangles as shown in

Fig. 8. The value of each feature is calculated as the weighted sum of

the pixels under the white rectangle minus the weighted sum of

pixels under black rectangle. A group of different features composes

a stage and the stage sum is calculated from the outcome of the

features. The result of the stage decides whether the processed region

contains a face or not. To speed up the classification process, the

original image is transformed to integral and integral squared images.

The location of the integral image holds the sum of the intensity

values of the pixel located above and to the left of the location in the

original image.

The feature calculation unit presented in this work includes all

stages mentioned in flow diagram (Fig. 7) based on [7]. The process

starts by scanning 20x20 sub windows vertically and horizontally

over an original image of a size of 400x300. Scanning is done by

shifting 20x20 windows by one row from top to bottom. Once one

vertical scan is finished the 20x20 window is shifted by one column

from left to right as seen in Fig. 9. At each scanning stage integral

and integral squared image values are calculated using following

formulas:

)','(),(yxOyxi ∑= (1)

[]∑=)','()','(),(yxOyxOyxisq (2)

with yyxx ≤≤ ',' , where i(x,y) is the integral sum at

location (x,y) of the integral image and isq(x, y) is the integral

squared sum at location (x,y). O(x’,y’) is the location on the source

image. The Calculated integral sum and integral squared sum values

are stored in a 20x20 array matrix which is then used to calculate the

pixel sum of the rectangular region of the white and black area. One

feature line is calculated using the sum of pixels of two rectangular

regions. On the other hand one rectangle sum is calculated with four

array references, i.e. one line feature calculation requires eight

integral values from the 20x20 array matrix. Similarly, two line

features can be calculated using the sum of the pixel of three

rectangular regions, thus requiring twelve integral values from the

matrix. It seems intuitive that this procedure requires many array

references which can easily be parallelized using ESL synthesis by

synthesizing arrays registers with the desired number of ports using

pragmas inserted directly at the source code as shown:

int matrix[512] /* Cyber array=REG, rw_port=RW10 */;

This matrix declaration is synthesized as a 32x512 register bank

with 10 RW ports making it possible increase data parallelism and

therefore reduce latency.

The flow diagram in Fig. 7 shows the selection of the 20x20 sub

window for the area to be scanned. Various features are placed on a

20x20 sub window (Fig. 9) one by one and feature value and

similarity value of every feature then calculated with the following

formula:

∑ ∑+= wT AwAwFv 21 (3)

Where Fv is the feature value, AT the total area, Aw the white area

and w1 and w2 the respective weights

A similarity value of each feature is accumulated for all features

in every stage based on it’s comparison with a pre-trained feature

threshold value stored in an LUT. A window contains a face if a

selected sub window passes all the threshold values at all stages. The

OpenCV library provides pre-trained data of threshold values for

features as well as for stages stored in an LUT to be used during the

feature calculation process. Coordinate value (x,y), width, height and

weight of every feature are also stored in an LUTs in order to be used

during the feature calculation. At the behavioral level these LUTs are

Figure 6 Face detection block diagram

Figure 8 Example of features

Figure 7 Feature extraction flow graph

declared as arrays. This leads to one of the major benefits of

behavioral level design. Inserting synthesis directives at array

declarations changes the way these arrays are synthesized e.g. the

features can be stored in a memory, registers, ROM or hardwired

logic. The number of read/write ports to access this data can also be

modified with a simple synthesis directive allowing the generation of

different architecture with the modifying only the synthesis

directives.

The complete face detection process performs extensive

calculations involving integral image calculation and feature value

calculations. Multiple parallel data accesses are also needed to access

the pre-trained data stored in the LUTs. The complete process

involves different stages, where each stage is composed of many

features which make its performance highly dependent on the

number of features calculated and how fast each of them can be

calculated. To increase the performance it is obvious that multiple

features should be calculated in parallel and the integral image

calculation should be pipelined to re-use previously calculated data.

Parallel processing will require multiple parallel hardware units

which will in turn increase the required circuit area. Shi et al. [8]

studied this trade-off at the RT-level. In the case of behavioral

synthesis this area vs. performance trade-off exploration is done

much faster and easier directly from the initial untimed behavioral

description. Moreover the same functionality can be described in a

behavioral language with less number of lines of code compared to

low level RTL descriptions. High level Synthesis tools can generate

different architectures of same C description creating e.g. a fully

sequential implementation, partial parallel implementation and fully

parallel implementation to measure the trade off between area and

speed automatically without any manual intervention. This

characteristic of HLS proves extremely useful to hardware designers

who can the select the design that meets their requirements better.

EXPERIMENTAL RESULTS

This section presents the results of the design space exploration of

the feature detection unit. First, we describe the experimental setup

for the evaluation. Then, we show a set of comprehensive results

obtained, together with the explanation and implication of the

analysis of the data.

Experimental Setup

The design was completed written in untimed C. This initial C

code description was automatically explored using a previously

developed automatic exploration tool [9] in order to investigate the

area vs. latency trade-off curve. The number of Pareto optimal

designs found, the complete exploration runtime, the number of gates

of the smallest design and the latency of the fastest design are

investigated. Fig. 10 shows the overall design space exploration flow.

The exploration tool called cwbexplorer generates for given C or

SystemC file a set of attributes that are inserted directly into the

parsed C code (.IFF file) a functional unit constraint file specifying

the maximum number of FUs allowed and a global synthesis file

(.prm) with the commands for the behavioral synthesis. For each

unique set of these inputs cwbexplorer calls the behavioral

synthesizer and reads back the results in order to evaluate the impact

of these con the synthesized results in order to proceed generating a

new set of inputs.

The main problem analyzing the results of multi-objective

function optimization methods is how to measure the quality of the

results. Closeness to the Pareto front, wider range of diverse

solutions, or other properties. Several studies can be found in

literature that addresses the problem of comparing approximations of

the trade-off surface in a quantitative manner. Most popular are

unary quality measures, i.e. the measure assigns each approximation

set a number that reflects a certain quality aspect, and usually a

combination of them is used [12-13]. A multitude of unary indicators

exist e.g. hybervolume indicator, average best weight combination,

distance from reference set and spacing. Zitzler et al. provide a good

review all existing methods in [14]. Although a single unary

indicator can not completely measure the quality of the result they

are widely used due to their simplicity. In our case we measure the

quality of the exploration by comparing the number of non-

dominating designs and the smallest and the fastest design. The

experiments were run on an Intel Xeon running at 3.20GHz machine

with 3Gbytes of RAM running Linux Red Hat 3.4.26.fc3. The

running time given comprises the entire exploration process

including the behavioral synthesis runtime and the time taken by the

cycle accurate simulation for 1,000 inputs.

Experimental Result

Table 1 shows the main characteristics of the feature extraction

process. The first column indicates the total number of lines of C

code, where the functionality takes 585 lines and the LUTs where the

features are stored 2,245 lines. The second column indicates the

exploration runtime The third column shows the number of Pareto or

at least non-dominating designs found. The last two colums indicate

the smallest and the fastes design found.

Figure 9 Feature mapping to a 20x20 pixel image

Figure 10 Exploration flow

Table 2 shows the detailed exploration result of each of the non-

dominating designs in terms of their area, control unit state count,

and critical path delay using a 130nm design process library. The

control unit state count is used to measure the performance of the

design as the process has no un-bounded loop and the latency is

equivalent to the state count. In some other cases a cycle accurate

simulation is needed in order to obtain the true latency. The

drawback is the increase in runtime to perform the exploration. The

complete exploration took 22,845 seconds (~6.3 hours) and found 6

non-dominated designs with state counts raging from 38 states to 49

states with an area ranging from 524,648 to 587,956 gates.

Fig.11 displays the Pareto front obtained from the exploration.

The 6 design obtained correspond to a highly parallelized design,

designs with an intermediate amount of parallelism and a serial

design. A more detailed exploration could find some more points on

the efficient frontier at the expense of increasing the runtime

substantiatlly. RTL is generated automatically for the selected design

complete with its testbench and logic synthesis scripts simplifying

the designers work even further. On other major advantages of C-

based design is that the test data used during the behavioral level

model can be completely re-used at the RT-level togther with the

golden models, which is very important in the case of novel

applications where goldgen models do not exist.

CONCLUSIONS

In this work we present the complete custom hardware face

detection implementation in C and describe in detail how raising the

level of abstraction simplifies the design. We focus on the feature

extraction unit, which is the most computational intensive process in

order to further demonstrate how C-base design makes micro-

architectural design space exploration possible from the original

untimed behavioral description for a fast and easy evaluation of

different implementation, something extremely time consuming at

the RT-level. System level design capabilities help the design of

complete SoCs helping further the faster adoption of ESL design

methodologies. We have presented the design platform and its key

features to develop complex SoC. Although the presented design is

only a single IP block in the SoC it consists of multiple processes

that can be designed and verified directly at the C level. State of the

art ESL tools have extended system capabilities allowing the

evaluation of not only micro-architectural exploration, but also

macro, system-level architectural exploration.

ACKNOWLEDGMENTS

The authors would like to acknowledge the work of everyone

NEC Corp. Central Research Laboratory, NEC Informatec Systems

and NEC-HCL-ST for all their work helping the development of

CWB and the face detection IP.

REFERENCES

[1] S. Morioka, K. Wakabayashi, B. Carrion Schafer, “Complex

Security Engine Design with High Level Synthesis”. MPSoC,

2009.

[2] P. Coussy and A. Moraweic, “High-Level Synthesis from

Algorithm Digital Circuit”, Springer, ISBN 978-1-4020-8587-

1, pp 113-127, 2008.

[3] CyberWorkBench,

“http://www.necst.co.jp/product/cwb/english/”

[4] S Ravi, A Raghunathan and S. Chakfadhar, ``Efficient RTL

Power Estimation for Large Designs,'' International

Conference on VLSI Design (VLSI'03), pp.431-440, 2003.

[5] S. Gupta and F. Najm, ``Power Macromodeling for High

Level Power Estimation,'' Proceedings of Design Automation

Conference, pp.365-370, Jun. 1997.

[6] Intel Open Source Computer Vision Library, “OpenCV Object

Detection: Theory and Practice”

[7] P. Viola and M. Jones, “Robust Real-time Object Detection”,
Technical Report CRL 20001/01, Cambridge Research

Laboratory, 2001

[8] Y. Shi, F. Zhao and Z. Zhang, “Hardware Implementation of

ADABOOST ALGORITHM and Verification”, 22nd

International conference on Advanced Information

Networking and Applications, 2008

[9] B. Carrion Schafer, T. Takenaka and K. Wakabyashi,

“Adaptive Simulated Annealer for High Level Synthesis

Design Space Exploration”, VLSI-DAT, 2009

[10] D. Kalyanmoy , S. Agrawal, A. Pratap, and T. Meyarivan, “A

fast elitist non-dominated sorting genetic algorithm for multi-

objective optimization: NSGA-II”, Parallel Problem Solving

from Nature – PPSN VI, pages 849–858, Berlin, 2000.

Springer.

[11] A. David, Van Veldhuizen and Gary B. Lamont. ”On

measuring multiobjective evolutionary algorithm

performance”, Congress on Evolutionary Computation (CEC

2000), volume 1, pages 204–211,

[11] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da

Fonseca,“Performance assessment of multiobjective

optimizers: an analyss and review,'' IEEE Trans. on

Evolutionary Computation, Vol. 7, Issue 2, pp 117-132, 2003.

Table 2 Design space exploration results of feature detection process

design Area [gates] State count Critical Path [ns]

1 524,648 69 9.790
2 525,028 68 9.790
3 559,637 61 8.120
4 562,655 49 11.810
5 584,868 48 10.450
6 587,956 38 11.610

Figure 11 Pareto front results (Area vs. state count)

Table 1 Design space exploration results of feature detection process

lines

of C

explorable

opr.

Pareto-

optimal

designs

Runtime

[s]

State

count

fastest

Area

smallest

[gates]

585

2,245
22 6 22,845 38 524,648

