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Abstract—This work presents the design of a complex image 

processing IP developed completely in C. We present the latest 

advanced in ESL-synthesis and demonstrate its main advantages 

over conventional RT-level flows. In particular we focus on the 

ability of behavioral synthesis to shorten the design cycle, 

perform functional verification and explore quickly the design 

space obtaining multiple dominating implementations with 

unique area vs. speed characteristics from an initial untimed 

behavioral description. A feature extraction process is presented 

in detailed showing how automatic design space exploration can 

lead to Pareto optimal (non-dominant) designs ranging from 

524,648 gates to 584,868 gates and latencies of 38 to 69 state 

counts for the smallest and fastest design respectively taking 

approximately 6.3 hours. 

INTRODUCTION 

It has taken behavioral synthesis 3 generations and over one 

decade to be seriously considered at the commercial level. Increase 

design complexity is forcing designers to shift their design 

methodology from RTL to Electronic System Level (ESL). The main 

driving force behind the adoption of ESL is the level of maturity of 

the commercial tools and their capability to deal with system level 

design issues. This is also the main difference between traditional 

High Level Synthesis (HLS) and new generation ESL design tools. 

HLS solves the problems of synthesizing single processes and is still 

a core part of modern ESL, but the main advantage of ESL is its 

capability to deal with complete systems. These capabilities include: 

system level simulation model generation, HW/SW co-simulation, 

bus interface generation and multi-process physical design synthesis 

to name a few. 

Increasing design complexity leads to new challenges which ESL 

can address more efficiently than lower levels of abstractions. In 

many cases the design specifications are unstable and any changes in 

them can lead to different architectural considerations (e.g. on-die 

memory or external memory, bus hierarchies). At the RT-level this 

requires major re-designs, while at the behavioral level these changes 

can be absorbed easier. Another big advantage of raising the level of 

abstraction over traditional design flows is that it allows software and 

hardware designers to speak the same language. Applications to be 

implemented in custom hardware are getting extremely complex and 

are based on complex mathematical models that in many cases are 

difficult to understand by the hardware designer. Using the same 

behavioral description language allows both hardware and software 

designers to communicate at the same abstraction level using the 

same language. Some examples of complex applications include 

dedicated hardware security engines based on complex encryption 

and decryption algorithms [1]. Moreover these complex algorithms 

need to be modified by the hardware designer in order to obtain a 

more efficient architecture. E.g. reduce memory, split memories, 

eliminate recursion, improve throughput and latency and data types’ 

refinement. These manual modifications can be hard to do and might 

lead to the implementation of a design with the wrong functionality. 

Another aspect that is important when verifying the functionality of 

the design is the creation of the golden test data. For standard 

applications this data might already exists, but for complex new 

applications this data might not be available. In this case who will 

generate this data? The software or the hardware designer? One last 

advantage of increasing the level of abstraction is the acceleration of 

time consuming simulations. RTL simulations are slow and do not 

allow to simulate entire SoCs. Behavioral simulation models 

accelerated the simulation and permit the simulation of larger 

designs. 

In this work we present the use of ESL to design a face detection 

application and in particular we focus on the feature extraction 

process which is part of the custom hardware face detection 

accelerator IP designed completely in untimed C. We demonstrate 

how micro-architectural designs space exploration can be easily 

performed at the behavioral level, which is extremely time 

consuming at the RT-level and show how ESL helped the 

implementation of this application more efficiently.  

ESL DESIGN PLATFORM 

For the design of the face detection application we used an ESL 

tool developed in-house at NEC’s Central Research Laboratories for 

the last 20 years called CyberWorkBench (CWB) [2-3]. CWB takes 

untimed C or SystemC and generates Verilog or VHDL in the 

traditional HLS way, by creating an FSM for the control unit and a 

datapath unit. The datapath unit consists mainly of a number of 

functional units (FUs) combined with registers and multiplexers as 

shown in Fig. 1. The main idea behind CWB is an “all-in-C” 

approach. This is built around two principal ideas: (1) All-modules-

in-C, and (2.) all-processes-on-C. All-modules-in-C means that all 

modules in a VLSI design, including control intensive circuits and 

data dominant circuits, should be described in behavioral C language. 

CWB also supports legacy RTL or gatenetlist blocks as black boxes, 

which are called as C functions. At the same time it allows designers 

to create all new parts in C, although this is not recommended as the 

designer will need to use two different programming languages and 

RTL parts will slow down the simulation. All-processes-on-C means 

Control unit Data path

in   unsigned ter(0:8)  in0;

out  unsigned ter(0:8)  out0;

unsigned var(0:8)  fifo[8] = {0, 0, 0, 0, 0, 0, 0, 0};

process main(){

unsigned var(0:8) , sum,  i;

do {

for (i = 7; i > 0; i--) {

fifo[i(0:8)](0:8) = fifo[i(0:8) - 1](0:8);

fifo[0] = in0; 

sum= fifo[0]; 

for (i= 1; i< 8; i++) { 

sum += fifo[i]; 

}

out0= sum / 8; 

} while (in0 != 0); 

return (0); }

Figure 1 ESL synthesis results example 



that synthesis and verification (including debugging) tasks should be 

done at the C source code for single and multiple processes together. 

Fig.2 shows an overview of the CWB entire design platform the 

input to CWB is a hardware design in extended ANSI-C (C for 

hardware), or SystemC. This is synthesized into synthesizable RTL 

with CWB’s core behavioral synthesizer engine given a set of design 

constraints such as clock frequencies, number and kind of functional 

units and memories. As mentioned before the system can also handle 

legacy RTL blocks as black boxes. These legacy RTL IPs are read 

into the system and if necessary can also be fed to the behavioral 

synthesizer, which can insert extra registers to speed up the original 

RTL and generate new RTL of smaller delay. It also generates 

different types of simulation models depending on the accuracy vs. 

simulation speed required. For cycle accurate verification it generates 

cycle accurate simulation models in C++ or SystemC and for 

functional verification it can generated behavioral models in 

SystemC. The behavioral synthesis can therefore be considered as an 

RTL, C, C++, and SystemC merging step.  

To further increase productivity CWB provides a library of 

behavioral IPs. This library includes trigonometric functions, floating 

points units and encryption applications. All IPs are given in C and 

are highly configurable and optimized to obtain optimal RTL. 

Wire delays of global wires between modules need to be analyzed 

carefully since those delays can be significant when the connected 

modules are placed far away. To account for this the design platform 

provides an RTL FloorPlanner that takes the RTL modules generated 

by the behavioral synthesizer. Accurate timing information is 

extracted from the floorplanner and fed back to the behavioral 

synthesizer. 

Verification Flow 

The functionality of the hardware described in C can be verified 

at the behavioral level, while performance and timing are verified at 

the cycle-accurate level (or RTL) through simulation. Debugging the 

generated RTL is however not an easy task since C variables are 

shared in a register, and various optimizations are applied. CWB 

therefore provides a behavioral C source code debugger linked to the 

cycle-accurate simulation. After verifying each hardware module, the 

entire SoC is simulated in order to analyze the performance and/or to 

find inter-modules problems such as low performance through bus 

collision, or inconsistent bit orders between modules. Since such 

entire chip performance simulation is extremely slow in RTL-based 

HW-SW co-simulation, CWB generates cycle accurate C++ 

simulation models which can run up to hundred times faster than 

RTL models. The simulator allows designers to simulate and debug 

both hardware and software at the C source code level at the same 

time. If any performance problems are found, designers can change 

the hardware-software partitioning or algorithm directly at the C 

level, and can then repeat the entire chip simulation. This flow 

implies a much smaller and therefore faster re-design cycle than in a 

conventional RTL methodology. The C description is the only initial 

and final SoC description language of the entire design. This entire 

chip simulation can be further accelerated using an FPGA emulation 

board. A testbench generator helps designers to run an RTL 

simulation with test patterns for behavioral C simulation faster and 

easier. Its inputs are test patterns for the C simulation and output a 

Verilog and/or VHDL testbench, which generates stimulus for the 

RTL simulation. It also creates a script to run commercial simulators 

to feed the behavioral test patterns and check the equivalence of 

outputs patterns between the behavioral and RTL simulation.  

Another important feature of CWB is the formal verification tool, 

which is tightly linked to the behavioral synthesizer. With the 

behavioral synthesis information the formal verification tools can 

handle larger circuits than usual RTL tools and have C-source level 

debugging capability even though the model checker works on the 

generated RTL model. “C-RTL equivalence prover” checks the 

functional equivalence between a behavioral (un-timed or timed) C 

description and the generated RTL, using information of the 

optimizations performed such as loop unrolling, loop merge and 

array expansion performed by the behavioral synthesis. Without such 

information, the equivalence check is almost impossible for large 

circuits.  

Designers can specify assertions or properties at the behavioral C 

level, similar to our cycle accurate simulator. Such behavioral level 

properties/assertions are converted into RTL ones automatically, and 

are passed to our RTL model checker.  

Power Estimation and Minimization 

Much work has been done in the past in order to estimate power 

at different levels of the VLSI design flow ranging from behavioral, 

RT-level and gatenetlist level Estimation at higher levels of 

abstraction are needed in order to implement power reduction 

techniques at the earliest possible design stages avoiding costly re-

designs. Moreover powers saving techniques at earlier design stages 

have larger impact on the power consumption. Fig 3 shows an 

overview of the main power optimization options at different level of 

abstraction. The main problem at earlier design stages is that power 

estimation methods at these stages are not accurate, which can lead 

 
Figure 2 CWB design platform overview 
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Figure 3 Power estimation accuracy vs. power savings options 



to the wrong diagnosis. 

In order estimate power, CWB generates apart of the 

synthesizable RTL, RTL for power estimation. This RTL instantiates 

shadow components for each atomic unit in the RTL code [4]. These 

shadow components read the input activity and based on the inputs’ 

values and hamming distance output the power consumption. The 

power profile of each atomic unit has been pre-characterized in a set 

of power libraries for different technology [5] as shown in Fig. 4. 

Based on the power estimation CWB performs different power 

savings measures e.g. clock gating. 

Design Space Exploration 

One of the main features of behavioral synthesis is its ability to 

generated different designs with completely different area vs. 

performance characteristics. This can be manually performed by 

manually modifying the initial untimed description or by specifying a 

number of global synthesis options. CWB also performs design space 

exploration automatically instrumenting the source code by inserting 

synthesis directives in the form of pragmas automatically. These 

pragmas tell the behavioral synthesizer how to synthesize each 

instrumented operation. Explorable operations are operations that 

have multiple hardware implementations. In behavioral synthesis 

their implementation is controlled through either (i) global synthesis 

options or (ii) synthesis directives in the form of pragmas inserted 

directly at the source code. Global synthesis options have the 

advantage of being applied at the command prompt and are easy to 

use. The drawback is the lack of controllability i.e. all the loops will 

be unrolled if specified as a global options or all functions will be 

inlined. Pragmas solve this problem by allowing full controllability 

as they are declared at each operation directly at the source code, but 

have the drawback that the source code needs to be modified and 

maintained manually. E.g. loops can be completely unrolled or 

partially unrolled for lower latency designs. Also arrays can be 

mapped to registers, memory or hard wired logic for constant arrays. 

Functions can be inlined which forces the behavioral synthesis tool 

to instantiate a hardware block whenever the function is called or 

instantiate a single hardware block sharing it among all the function 

calls. Fig. 5 shows the source code of a small program that 

continuously reads in 8 bit numbers and calculates the average of the 

last 8 values read (same as shown in Fig. 1). The explorable 

operations have been highlighted and consist of an array where the 

last 8 numbers are stored, 2 loops and 1 function. The table next to 

the source code shows the result of the HLS for different synthesis 

attributes specified directly at the highlighted explorable operations 

using pragmas. As seen the difference between the smallest but 

slowest design and the fastest but largest is substantial, ranging from 

1362 to 4352 gates and latencies from 24 to 1 cycle. There are a 

multiple of Pareto optimal combinations in between these designs 

based on different attribute combinations as well as sub-attributes 

like the number of memory ports in the array, but only 5 are shown 

here. Manually editing the source code in order to explore the 

different area vs. performance trade-offs is a tedious and time 

consuming task. An automatic efficient design space exploration 

(DSE) method is therefore highly desirable. The main problem in 

DSE is how to explore the design space in a reasonable time, finding 

as many Pareto optimal points as possible.  

Parallelization and Pipelining 

Pipelining is extremely important to increase throughput and 

exploit parallelism further. CWB allows pipelining using a pipeline 

scheduling engine which generates pipelined circuits from the initial 

C code with stall signals, which have various Data Initial Intervals 

(DII). It also speeds up loop execution by folding loop and nested 

loop bodies like software loop pipelining. Global parallelization 

capabilities are very important even for loop pipelining. Loop carry 

variables that will be read in the next loop iteration should be 

scheduled into the states within the given DII cycles sequence. 

Parallelization beyond control dependencies is one key technique to 

make loop pipelining possible with a small DII. 

FACE DETECTION DESIGN 

In this work we present the implementation of a complete face 

detection design based on Intel’s OpenCV library [6] designed and 

implemented completely in C. Face detection is a process of 

identifying all image regions with a face regardless of the position in 

the image [7]. The complete face detection application comprises 

various processes where the output of each process is passed to the 

subsequent process. Fig. 6 shows a block diagram of the architectural 

overview of the system. The system starts by performing a color 

conversion (rgb2gray) of the image. It then continues by shrinking 

the image, histogram equalization and sub-image selection. The most 

computational intensive task of the face detection design is the 

feature calculation performed next. The face detection process 

finishes with the face positioning. A control unit synchronizes all the 

processes working in parallel and makes sure that the all the data is 

synchronized properly between processes.  

When implementing this application the HW designer usually 

gets the algorithmic description in any high level language e.g. C. 

This algorithmic description can then be easily converted to 

hardware, but the designer still needs to have the picture of the 

overall architecture in mind and manually design the control unit of 

  
Figure 5 Source code example highlighting the explorable operations and 

summary of HLS results using different set of attributes  
Figure 4 RTL for power estimation 



the system. This control unit is again written in untimed C. All these 

blocks are developed at the behavioral level using untimed C as input 

language and synthesized with CWB. In this paper focus only on the 

feature extraction unit as this is the most complex and computational 

intensive task.  

Feature Extraction 

The feature extraction process implemented in this work is based 

on the AdaBoost cascaded algorithm from OpenCV’s library [7]. The 

AdaBoost algorithm uses the boosting classification method of 

calculating classifiers over the image region and eliminating non-

face regions. These classifiers are called HAAR features were each 

feature consists of a set of black and white rectangles as shown in 

Fig. 8. The value of each feature is calculated as the weighted sum of 

the pixels under the white rectangle minus the weighted sum of 

pixels under black rectangle. A group of different features composes 

a stage and the stage sum is calculated from the outcome of the 

features. The result of the stage decides whether the processed region 

contains a face or not. To speed up the classification process, the 

original image is transformed to integral and integral squared images. 

The location of the integral image holds the sum of the intensity 

values of the pixel located above and to the left of the location in the 

original image. 

The feature calculation unit presented in this work includes all 

stages mentioned in flow diagram (Fig. 7) based on [7]. The process 

starts by scanning 20x20 sub windows vertically and horizontally 

over an original image of a size of 400x300. Scanning is done by 

shifting 20x20 windows by one row from top to bottom. Once one 

vertical scan is finished the 20x20 window is shifted by one column 

from left to right as seen in Fig. 9. At each scanning stage integral 

and integral squared image values are calculated using following 

formulas: 

)','(),( yxOyxi ∑=    (1) 

[ ]∑= )','()','(),( yxOyxOyxisq   (2) 

with yyxx ≤≤ ',' , where i(x,y) is the integral sum at 

location (x,y) of the integral image and  isq(x, y) is the integral 

squared sum at location (x,y). O(x’,y’) is the location on the source 

image. The Calculated integral sum and integral squared sum values 

are stored in a 20x20 array matrix which is then used to calculate the 

pixel sum of the rectangular region of the white and black area. One 

feature line is calculated using the sum of pixels of two rectangular 

regions. On the other hand one rectangle sum is calculated with four 

array references, i.e. one line feature calculation requires eight 

integral values from the 20x20 array matrix. Similarly, two line 

features can be calculated using the sum of the pixel of three 

rectangular regions, thus requiring twelve integral values from the 

matrix. It seems intuitive that this procedure requires  many array 

references which can easily be parallelized using ESL synthesis by 

synthesizing arrays registers with the desired number of ports using 

pragmas inserted directly at the source code as shown: 

 

int matrix[512] /* Cyber array=REG, rw_port=RW10 */; 

 

This matrix declaration is synthesized as a 32x512 register bank 

with 10 RW ports making it possible increase data parallelism and 

therefore reduce latency. 

 

The flow diagram in Fig. 7 shows the selection of the 20x20 sub 

window for the area to be scanned. Various features are placed on a 

20x20 sub window (Fig. 9) one by one and feature value and 

similarity value of every feature then calculated with the following 

formula: 

∑ ∑+= wT AwAwFv 21   (3) 

Where Fv is the feature value, AT the total area, Aw the white area 

and w1 and w2 the respective weights  

A similarity value of each feature is accumulated for all features 

in every stage based on it’s comparison with a pre-trained feature 

threshold value stored in an LUT. A window contains a face if a 

selected sub window passes all the threshold values at all stages. The 

OpenCV library provides pre-trained data of threshold values for 

features as well as for stages stored in an LUT to be used during the 

feature calculation process. Coordinate value (x,y), width, height and 

weight of every feature are also stored in an LUTs in order to be used 

during the feature calculation. At the behavioral level these LUTs are 

 
Figure 6 Face detection block diagram 

   

 

Figure 8 Example of features 

 

Figure 7 Feature extraction flow graph 



declared as arrays. This leads to one of the major benefits of 

behavioral level design. Inserting synthesis directives at array 

declarations changes the way these arrays are synthesized e.g. the 

features can be stored in a memory, registers, ROM or hardwired 

logic. The number of read/write ports to access this data can also be 

modified with a simple synthesis directive allowing the generation of 

different architecture with the modifying only the synthesis 

directives. 

The complete face detection process performs extensive 

calculations involving integral image calculation and feature value 

calculations. Multiple parallel data accesses are also needed to access 

the pre-trained data stored in the LUTs. The complete process 

involves different stages, where each stage is composed of many 

features which make its performance highly dependent on the 

number of features calculated and how fast each of them can be 

calculated. To increase the performance it is obvious that multiple 

features should be calculated in parallel and the integral image 

calculation should be pipelined to re-use previously calculated data. 

Parallel processing will require multiple parallel hardware units 

which will in turn increase the required circuit area. Shi et al. [8] 

studied this trade-off at the RT-level. In the case of behavioral 

synthesis this area vs. performance trade-off exploration is done 

much faster and easier directly from the initial untimed behavioral 

description. Moreover the same functionality can be described in a 

behavioral language with less number of lines of code compared to 

low level RTL descriptions. High level Synthesis tools can generate 

different architectures of same C description creating e.g. a fully 

sequential implementation, partial parallel implementation and fully 

parallel implementation to measure the trade off between area and 

speed automatically without any manual intervention. This 

characteristic of HLS proves extremely useful to hardware designers 

who can the select the design that meets their requirements better. 

EXPERIMENTAL RESULTS 

This section presents the results of the design space exploration of 

the feature detection unit. First, we describe the experimental setup 

for the evaluation. Then, we show a set of comprehensive results 

obtained, together with the explanation and implication of the 

analysis of the data. 

Experimental Setup 

The design was completed written in untimed C. This initial C 

code description was automatically explored using a previously 

developed automatic exploration tool [9] in order to investigate the 

area vs. latency trade-off curve. The number of Pareto optimal 

designs found, the complete exploration runtime, the number of gates 

of the smallest design and the latency of the fastest design are 

investigated. Fig. 10 shows the overall design space exploration flow. 

The exploration tool called cwbexplorer generates for given C or 

SystemC file a set of attributes that are inserted directly into the 

parsed C code (.IFF file) a functional unit constraint file specifying 

the maximum number of FUs allowed and a global synthesis file 

(.prm) with the commands for the behavioral synthesis. For each 

unique set of these inputs cwbexplorer calls the behavioral 

synthesizer and reads back the results in order to evaluate the impact 

of these con the synthesized results in order to proceed generating a 

new set of inputs. 

The main problem analyzing the results of multi-objective 

function optimization methods is how to measure the quality of the 

results. Closeness to the Pareto front, wider range of diverse 

solutions, or other properties. Several studies can be found in 

literature that addresses the problem of comparing approximations of 

the trade-off surface in a quantitative manner. Most popular are 

unary quality measures, i.e. the measure assigns each approximation 

set a number that reflects a certain quality aspect, and usually a 

combination of them is used [12-13]. A multitude of unary indicators 

exist e.g. hybervolume indicator, average best weight combination, 

distance from reference set and spacing. Zitzler et al. provide a good 

review all existing methods in [14]. Although a single unary 

indicator can not completely measure the quality of the result they 

are widely used due to their simplicity. In our case we measure the 

quality of the exploration by comparing the number of non-

dominating designs and the smallest and the fastest design. The 

experiments were run on an Intel Xeon running at 3.20GHz machine 

with 3Gbytes of RAM running Linux Red Hat 3.4.26.fc3. The 

running time given comprises the entire exploration process 

including the behavioral synthesis runtime and the time taken by the 

cycle accurate simulation for 1,000 inputs. 

Experimental Result 

Table 1 shows the main characteristics of the feature extraction 

process. The first column indicates the total number of lines of C 

code, where the functionality takes 585 lines and the LUTs where the 

features are stored 2,245 lines. The second column indicates the 

exploration runtime The third column shows the number of Pareto or 

at least non-dominating designs found. The last two colums indicate 

the smallest and the fastes design found.  

  

 

 

 

 

Figure 9 Feature mapping to a 20x20 pixel image 

   

Figure 10 Exploration flow 



Table 2 shows the detailed exploration result of each of the non-

dominating designs in terms of their area, control unit state count, 

and critical path delay using a 130nm design process library. The 

control unit state count is used to measure the performance of the 

design as the process has no un-bounded loop and the latency is 

equivalent to the state count. In some other cases a cycle accurate 

simulation is needed in order to obtain the true latency. The 

drawback is the increase in runtime to perform the exploration. The 

complete exploration took 22,845 seconds (~6.3 hours) and found 6 

non-dominated designs with state counts raging from 38 states to 49 

states with an area ranging from 524,648 to 587,956 gates. 

Fig.11 displays the Pareto front obtained from the exploration. 

The 6 design obtained correspond to a highly parallelized design,  

designs with an intermediate amount of parallelism and a serial 

design. A more detailed exploration could find some more points on 

the efficient frontier at the expense of increasing the runtime 

substantiatlly. RTL is generated automatically for the selected design 

complete with its testbench and logic synthesis scripts simplifying 

the designers work even further. On other major advantages of C-

based design is that the test data used during the behavioral level 

model can be completely re-used at the RT-level togther with the 

golden models, which is very important in the case of novel 

applications where goldgen models do not exist. 

CONCLUSIONS 

In this work we present the complete custom hardware face 

detection implementation in C and describe in detail how raising the 

level of abstraction simplifies the design. We focus on the feature 

extraction unit, which is the most computational intensive process in 

order to further demonstrate how C-base design makes micro-

architectural design space exploration possible from the original 

untimed behavioral description for a fast and easy evaluation of 

different implementation, something extremely time consuming at 

the RT-level. System level design capabilities help the design of 

complete SoCs helping further the faster adoption of ESL design 

methodologies. We have presented the design platform and its key 

features to develop complex SoC. Although the presented design is 

only a single IP block in the SoC it consists of multiple processes 

that can be designed and verified directly at the C level. State of the 

art ESL tools have extended system capabilities allowing the 

evaluation of not only micro-architectural exploration, but also 

macro, system-level architectural exploration. 
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Table 2 Design space exploration results of feature detection process  

# design Area  [gates] State count Critical Path [ns] 

1 524,648 69  9.790  
2 525,028  68  9.790 
3 559,637  61  8.120  
4 562,655  49  11.810 
5 584,868  48 10.450 
6 587,956  38  11.610 

 

 

 
 

Figure 11 Pareto front results (Area vs. state count) 
 

 

Table 1 Design space exploration results of feature detection process  

# lines 

of C 

# 

explorable 

opr. 

# Pareto-

optimal 

designs 

Runtime 

[s] 

State 

count 

fastest 

Area 

smallest 

[gates] 

585 

2,245 
22 6 22,845 38 524,648 

 


