
S2CBench : Synthesizable SystemC
Benchmark Suite for High-Level

Synthesis

Benjamin Carrion Schafer1, Ansuhree Mahapatra2

The Hong Kong Polytechnic University
Department of Electronic and Information Engineering

b.carrionschafer@polyu.edu.hk1, anushree.mahapatra@connect.polyu.hk2

@DARC_lab

2

Outline

• Motivation for a Synthesizable SystemC Benchmark Suite
• S2CBench overview

– 12 synthesizable design
– 1 non synthesizable (tests floating point and trigonometric functions)

• Benchmark composition overview
• Detail benchmark characteristics

– Size
– Complexity
– Arithmetic operations

• How to download
• Conclusions

Motivation for S2CBench (I)

• HLS tools evaluation cycles is typically very long (multiple tools
are evaluated using multiple designs)
– Companies don’t have the expertise in HLS
– Companies don’t have ANSI-C, C++ or SystemC models for their RTL

designs in order to compare the QoR of the HLS tools

• C/C++ supported by most vendors include vendor specific
constructs. E.g. data types, port declarations

• SystemC only true language supported by all major HLS
vendors

3

Vendor Tool Name Supported Languages

Cadence (Forte) Cynthesizer SystemC

Cadence C-to-Silicon C, C++, SystemC

Calypto CatapultC C++, SystemC

NEC CyberWorkBench C, SystemC

Xilinx Vivado HLS C, C++, SystemC

Motivation for S2CBench (II)

• Dedicated HLS benchmarks available are based on
ANSI-C, e.g. CHStone

• Typically Multimedia applications written in ANSI-C
used, e.g. MiBench or MediaBench or need to create
their own ones:
– Need to be edited to be made synthesizable forstate of

the art commercial HLS tools
– Do not support fixed point data types
– Do not test specific HLS features (are just a collection of C

programs)

 SystemC Benchmark suite will enable the direct
comparison of commercial HLS tools

4

S2CBench Overview

• 12+1 SystemC Benchmarks which comply with latest SystemC
synthesizable subset draft (12 synthesizable+1 non synthesizable)

• From different domains
– Automotive
– Security
– Telecommunication
– Consumer

• Control dominated and Data dominant designs
• Each test unique HLS features

1. Tool language support (e.g. templates, structures, fixed point data
types)

2. Synthesis optimizations (e.g. loop unrolling, pipelining, function
inlining, array synthesis)

3. Tool performance (e.g. running time, accuracy of synthesis report)

5

S2CBench : 12+1 designs

6

Design Type Domain Optimizations Tested

qsort dd Auto/In
d

Loops, arrays, functions pointers

sobel dd Auto/In
d

Loops, functions, IO array expansion, multi-dimensional arrays expansion, fixed
arrays (ROM, logic)

aes cipher dd Security IO array expansion, multi-dimensional arrays expansion , large fixed arrays

kasumi dd Security Multi-processes, delay report accuracy

md5c dd Security #define macros, delay report accuracy

snow3G dd Security Templates, delay report accuracy, function synthesis

adpcm Cd Telecom Structure synthesis

FFT dd Telecom Floating point, trigonometric functions

FIR dd Consu IO array expansion, arrays, loops, functions, sum of products

Decimation dd Consum Resource sharing across loops, fixed point data types

Interp dd Consum Polynomial decomposition, fixed point data types, sum or products

IDCT dd Consum #include statement to initialize arrays, loops, functions,

Disparity cd/dd Consum Hierarchical design, multi-dimensional array expansion, synthesis running time

Benchmark Block Diagram

• TB sends stimuli data stored in files (editable) to UUT
• TB receives the data and compares it against golden output (stored in

file)
• TB reports if results match or not
• Option to dump VCD file

7

Detail Benchmark Contents for each
Design

• Makefile
– Make : generates executable binary (default option)
– Make wave : Generates binary which dumps a VCD file
– Make debug: generates debug version (e.g. with gdb)
– Make clean: cleans object file

• SystemC files
– Main.cpp : top module includes UUT and TB
– <benchmark>.cpp/.h : Main design description
– tb_<benchmark>.cpp/.h : Testbench, sends receive and compares results

against golden output

• Stimuli :
– Inputs.txt : test vectors
– Outputs_golden.txt : golden outputs
– BMP : inputs for Sobel and disparity estimator

8

Quick – Quick Sort

• Description

– sort design sorts data in ascending order using the
well-known quick sort algorithm

• Main options to be tested

– loop unrolling

– array synthesis (register or memory)

– function synthesis with pointer argument support

9

Sobel

• Description
– edge-detection algorithm that takes a bitmap image

directly as the input and returns a new bitmap image
solely consisting of the edges of the original image.

• Main options to be tested
– nested loop unrolling and pipelining optimizations
– I/O ports expansion (expand inputs specified as arrays

to individual ports)
– multi-dimensional arrays expansion
– fixed arrays synthesized as logic or ROMs
– pointer arguments to functions

10

AES - Advanced Encryption Standard
Cipher

• Description
– Advanced Encryption Standard Cipher encryption

algorithm performs AES encryption

• Main options to be tested
– contains a large number of small for loops having

inter-loop data dependencies.

– input port expansion

– array synthesis (memory or registers)

– function synthesis (inline, goto)

– large fixed arrays synthesized as logic or ROMs.

11

Kasumi

• Description
– block cipher algorithm used in mobile communication

systems

– Composed of two sc_threads and multiple functions

• Main options to be tested
– Contains large amount of logic operations (e.g. and, or,

xor). HLS tools are notably not efficient, for accurately
estimating the critical path of these applications,
because the discrete delay of all the operations are
simply added, thus overestimating the critical path

– Multi-process systems verification

12

MD5C - Message Digest Algorithm

• Description

– generates hash functions and check data integrity.

• Main options to be tested

– functions synthesis

– arrays of different bit widths

– different levels of loop nesting

– extensive use of define macros (language support)

13

Snow3G

• Description

– stream cipher that produces a key stream that
consists of 32-bit blocks using a 128-bit key

• Main options to be tested

– Support of templates. A variable length
multiplication operation is performed in this
algorithm, which may be easily simplified using
templates

– Loops, functions and array synthesis

14

ADPCM -Adaptive Differential Pulse-
Code modulation (encoder part only)

• Description

– accepts 16-bit Pulse Code Modulation (PCM)
samples as input and converts them into 4-bit
samples

• Main options to be tested

– loop unrolling, function synthesis, array synthesis

– support for structures synthesis

15

FFT – Fast Fourier Transform (not
synthesizable)

• Description
– converts time/space to frequency and vice versa

• Main options to be tested
– floating point operations and trigonometric functions
 not synthesizable as per latest synthesis draft

Included because most commercial HLS provide
tools to deal with floating points and trigonometric
functions

Helps evaluation engineers understand how these
operations are supported

16

FIR – Finite Impulse Response Filter

• Description

– 10- tap FIR filter algorithm designed for 8- bit
integer operations.

• Main options to be tested

– loop unrolling and pipelining

– automatic array expansion of the I/O ports

– pointers to functions

17

Decimation Filter

• Description
– 5-stage decimation filter. Consists of 5 FIR filters

cascaded together where the output of one stage is
the input to the next stage.

• Main options to be tested
– resource sharing of the Multiply Accumulate (MAC)

operations across loops
– generated RTL is able to preserve the sum of product

(SoP) construct logic synthesis tool can optimize
the construct further

– fixed-point data types and its different rounding and
saturation modes.

18

Interpolation Filter

• Description
– 4-stage interpolation filter

• Main options to be tested
– automatic polynomial decompositions. Significant

area reduction can be obtained if polynomials can
be decomposed into terms, so that the total
number of arithmetic operations required is
reducedMathematical optimization of HLS tool

– fixed- point data types and its different rounding
and saturation modes

19

IDCT - Inverse Discrete Cosine Transform

• Description

– expresses a finite sequence of data points in terms
of, a sum of cosine functions of different
frequencies

• Main options to be tested

– initialization of an array using #include statement

– loops, functions, array synthesis

20

Disparity – Stereoscopic Disparity
Estimator

• Description
– estimates the disparity in a stereoscopic image.

– It is the largest of all the designs and consists of 4
processes executed in parallel

• Main options to be tested
– Almost all previously mentioned optimizations

– Synthesis running time of the HLS tool (main thread
contains a large number of loops leading to extreme
long synthesis run times)

– Verification of Multi-process (threads) systems

21

Detailed Benchmark Characteristics

• Size, complexity, arithmetic operations

22

Publicly Available

www.s2cbench.org
http://sourceforge.net/projects/s2cbench/

23

Summary and Conclusions

• A benchmark suite in a common language
supported by all major HLS vendors

• Each benchmark tests unique HLS features
1. Tool language support

2. Synthesis optimizations

3. Tool performance

• Benchmarks include testbench with inputs,
golden outputs and option to generate VCD file

• Publicly available at www.s2cbench.org or
sourceforge.net

24

