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Abstract— Very Long Instruction Word Processors (VLIW)
allow to execute multiple instructions in parallel. At the same
time VLIW compilers optimize the source code for maximum
performance by grouping as many instructions in parallel as
possible. This work addresses the problem of thermal-awareness
in VLIW compilers with a temperature control and reduction
techniques with an objective of minimizing the peak temperature
in the VLIW processor’s functional units. We present a main
approach as well as an improved fast version and compare
them with a technique that inserts NOPs in the assembly code
to allow the hottest units to cool down. The main technique,
called temperature-aware instruction binding technique TempIB,
effectively binds the instructions executed in parallel to the
coolest possible functional units for a given fixed schedule. It
generates, for each instruction in a scheduled instruction word,
a priority queue of the coolest functional units that can execute
the instruction, and rebinds it to the coolest possible unit, con-
sidering the temperature as well as the power consumed by the
instruction. Then, an improved version called TempIB-f, which
exploits the power density and local temperature of each unit to
minimize the number of thermal simulations needed, accelerating
the run time dramatically, is proposed. From experimentation
using a set of benchmark designs, it is confirmed that our
temperature reduction techniques are effective, lowering down
the peak temperature of the initial design by up to 13.82% and
12.79% by TempIB and TempIB-f, respectively.

I. INTRODUCTION

Very Long Instruction Word (VLIW) is a concept for process-
ing technology that dates back to the early 1980s. The term
VLIW refers to the size of each instruction that is carried out
by a processor. This process allows multiple operations to be
executed simultaneously to achieve a maximum utilization of
processing power. The VLIW code is ordered for the processor
at compile time. The hardware generally consists of identical
multiple execution units. VLIW was nearly un-implementable
at its early stages due to the prohibitively expensive nature
of memory at the time. The architecture is ideal for quick
computation of complex and repetitive algorithms. VLIW’s
advantages come largely from having an intelligent compiler
that can schedule many instructions simultaneously maximiz-
ing the total instruction level parallelism. In our work we
incorporate temperature awareness to the compiler avoiding
the appearance of hotspots as well as trying to flatten the
processor’s functional units (FUs) temperature distribution.

With the advent of new technology and scaling design
parameters, total performance is not the only parameter that
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needs to be addressed when creating a new design. Power
and now temperature are becoming increasingly as important
factors as performance, especially in embedded systems. In
this paper we address the temperature issue in VLIW proces-
sors. Property vendor compilers do only consider maximum
performance when compiling the source code, but do not
address the temperature issue.

Temperature has an adverse effect on multiple aspects. It
affects the lifetime of the integrated circuit by accelerating
the chemical process taking place inside of the chip following
Arrhenius equation. Studies show the mean time between
failure (MTBF) of an IC is multiplied by a factor 10 for
every 300C rise in the junction temperature [1]. Secondly
leakage power is becoming the dominant source of power
consumption for new process technologies [2] which grows
exponentially with temperature. Moreover, temperature has a
negative effect on carrier mobility and therefore switching
speed of the transistors and thus the overall timing of the
circuit. Consequently it is highly desirable to have an even
temperature distribution on the chip in order to avoid costly
re-design due to timing/temperature as well as simplifying the
verification phase. Furthermore, expensive heat dissipaters are
required to maintain the chip at a reasonable temperature and
in case of embedded systems cannot be possibly used. Studies
have reported that above 30-40 Watts (W), additional power
dissipation increases the total cost per chip by more than $1/W
[3].

Temperature is highly dependent on power consumption but
depends on a multiple of other factors, making power alone
not a valid measure for temperature. Temperature also depends
on the placement of the units in the chip. Placing heavy power
consuming units close together will intuitively generate an
even higher temperature area in the chip as temperature is
additive in nature. In contrast, placing power consuming units
close to units that have a moderate power consumption will
allow the heat generated to dissipate through these units. Other
aspects that affect temperature are the execution order of tasks
in a unit. Executing tasks one after the other will help the
temperature build up whereas spacing the execution of tasks
in a unit will allow the unit to have a time to prevent it from
heating up. Consequently, temperature should be addressed as
an individual design parameter.

In the case of microprocessors as well as DSPs one could
envision a system where tasks are assigned dynamically based
on the temperature of each functional unit. Each functional
unit, or units where a hotspot is more likely to happen would
have a thermal sensor. [4] proposed a technique to minimize
the number of these thermal sensors. The reading of these



sensors could then be used to determine which units should
be selected to execute the instruction and which units should
be turned off to allow these to cool down. Although the area
used by these sensors is small they complicate the power
supply grid design. An excessive number of thermal sensors
would cause the power supply to interfere significantly with
the power grid design for the rest of the processor. (e.g. the
Cell Processor requires separate power supply grid for the
thermal sensors to achieve the required accuracies [5].) It is
therefore more than desirable to have static techniques that do
not yield to any hardware overhead. The contributions of this
paper are the following:
• Studies of the effects of temperature on VLIW architec-

tures (in particular TI’s C6X DSPs) and the introduction
of temperature-awareness at the compiler.

• Introduction of a tightly integrated framework to study
the thermal behavior of DSP architectures.

• Introduction of a new temperature reduction technique,
(TempIB), and an improved fast version (TempIB-f),
which consider the on-chip thermal distribution when
assigning instructions to the different functional units
(FUs), without any performance degradation.

• Comprehensive experimental results to validate the pro-
posed techniques, compared to the initial thermal un-
aware compilation as well as to a technique that inserts
NOPs in the assembly code to allow FUs to cool down.

This work is made on the assumption that heat flows
laterally inside the chip, as shown in multiple previous works,
especially thermal-aware floorplanners [6], [7], [8]. The in-
fluence of the lateral heat flow will depend on the thermal
conductivity of the primary and secondary heat flows of the
chip (heat flow through the package and through the pins
respectively). In this case we are targeting mostly embedded
systems where DSPs are normally used, which have very strict
space constraints limiting the type and size of heatsink. In
these cases lateral heat flow becomes extremely important. On
the other hand being able to control the lateral heat flow allows
also to use a cheaper package (with lower conductivity).

II. MOTIVATIONAL EXAMPLES

This section shows two motivational examples that clarify the
need to incorporate temperature-awareness into the compila-
tion flow of VLIW processors. A brief description of the target
DSP architecture used in this paper is presented next, to help
to understand the motivational examples.

Texas Instruments C6X family has eight FUs, and the data
path can be divided into two groups of four [9]; Each FU in
one data path is almost identical to the corresponding FU in
the other data path. Table I shows the different FUs and the
operations they can perform. A floorplan of these FUs can be
seen in Fig. 1(a).
Observation 1: Fig. 2 shows a snapshot of a thermal sim-
ulation of one of the benchmarks (IMG CONV3X3). The
temperature as well as the accumulative instructions executed
on each of 4 FUs (out of total 8 to make the graph more
readable) are plotted on the same graph with respect to time,
showing the difference in temperature between two equivalent
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Fig. 1. An example of TI’s C6X DSP floorplan.

TABLE I
FUNCTIONAL UNITES AND INSTR. PERFORMED FOR TI’S C6X FAMILY.

Functional Units Operations
.L unit (.L1, .L2) 32/40-bit arithmetic and compare

operations; 32-bit logical operations
.S unit (.S1, .S2) 32-bit arithmetic operations;

32/40-bit shifts and 32-bit bit-field operations;
32-bit logical operations; Branches,
constant generation and register transfers

.M unit (.M1, .M2) 16×16-bit multiply operations
.D unit (.D1, .D2) 32-bit add, subtract and address calculation;

Loads and stores with 5-bit constant offset;
Loads and stores with 15-bit constant offset

units as well as the load balance of each FU, for the initial
performance-optimized compilation. It can be seen that there is
a room for load balancing as well as for temperature reduction,
by re-assigning instructions to other FUs.
Observation 2: Fig. 3 shows three instructions to be executed
in parallel and the FUs in which they can be executed. Fig. 3(a)
shows a result by random assignment of the instructions to the
FUs. On the other hand, Fig. 3(b) show a result by thermal-
aware reassignment of the instructions to the coolest available
FUs. The instruction executed on the hottest FU (instr1) is
selected first and bound to the coolest possible FU, which
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Fig. 2. Graph indicating the accumulative instructions of 4 different FUs of
the TI C6X DSP and their temperature vs time for IMG CONV3X3.
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Fig. 3. Example showing the effect of instruction binding on the tem-
peratures: (a) Result by a temperature-unaware binding; (b) Result by a
temperature-aware rebinding.

is S2 in the example. The instruction assigned to the second
hottest FU (instr3) is bound to the next coolest FU, which in
this case is D2. The last instruction (instr2) is then moved to
the coolest available FU by which it can be executed. Some
restrictions need to be taken into account like the fact that
some instructions can only be mapped to a single FU or set of
FUs, in which case these have to be bound first. The register
bank that needs to be accessed should also be taken into
account as each FU reads directly from and writes directly
to the register file within its own data path. On the C62x DSP,
six of the eight FUs have access to the register file on the
opposite side via a cross path.

III. RELATED WORK

There has been some previous work targeting the reduction
of overall temperature at the architectural level. A unified
framework was presented in [11] in order to maximize energy
savings and guarantee the temperature below a given threshold
and performance penalty. Some other techniques tried to repli-
cate some FUs and swap them with FUs used when the current
FUs reached a certain maximum temperature, which was
called migration computing [12]. The main problem of this
approach is that once the threshold temperature is reached at a
FU, the data items in the register file which is connected to the
FU need to be copied every time the FU is migrated, resulting
in performance degradation. In addition, the swapping between
FUs continues with no guarantee that the timing constraint
is met. Moreover, the replication of FUs increases the area.
Another example of migrating computing is the dual-pipeline
scheme proposed in [13] where a secondary scalar pipeline
is added for energy efficiency. However, as indicated in [14]
it incurs a large slowdown of performance. The work in [18]
proposed a dynamic thermal management scheme which also
satisfies a given worst-case power consumption on processors.

Multiple work has been performed at the compiler level with
power-aware scheduling for VLIW [22], [23], [24], in which
the slack in each operation is exploited to reduce the leakage
power by putting unused units in a low power mode. However,
theses approaches do not consider thermal information. Work
has also been performed to reduce the energy used by shared
register file in embedded VLIW architectures [29]. The low
power approaches mentioned above are counter-intuitive with

Fig. 4. A conceptual view of thermal equivalent circuit we used.

thermal management in that the approaches can reduce overall
leakage power by scheduling instructions to maximize the time
period during which FUs are in a low power mode, as this
would increase the power density of some FUs, generating
possible hotspots. Recently, the work in [21] applied a load
balancing heuristic (not using thermal simulation) to the
instruction binding to reduce the peak temperature of FUs. A
variety of temperature-aware instruction scheduling techniques
have been proposed for clustered architectures with additional
hardware supports [19], [20]. On the other side, some work
has been done on peak temperature reduction at high level
synthesis of ASIC hardware design [25], [26].

IV. THE PROPOSED TEMPERATURE CONTROL
TECHNIQUES

The first technique (TempIB) is based on a greedy algorithm
that tries to rebind instructions to the coolest possible FUs
in each execution of instruction words. The second (fast)
technique (TempIB-f), which is based on TempIB, makes use
of additional information in order to reduce the number of
thermal simulations needed. Note that one of the main aspect
in the introduction of thermal-awareness in VLIW compilers
is the thermal simulator. We therefore proceed first explaining
in detail how our thermal simulator works.

A. Thermal Simulator

In order to have a consistent thermal-aware design flow, a
suitable thermal model is needed. On one side it should be
accurate enough and on the other side it should be compu-
tationally efficient. The thermal model used in this case is
based on the known duality between electricity and thermal
flow [15] and is based on the model developed by Skandron,
et al. [10]. Some changes are made from their model as they
only consider one type of package (CBGA) with a specific
heat sink. In our model, the user can choose a package from a
library of different packages so that the equivalent thermal
model is generated according to the chosen package. The
primary and secondary heat flows will depend on the package
type selected. In case of a CBGA package, the primary flow
will dissipate heat through the heat sink and the secondary
flow will propagate heat through pins of the chip to the PCB.

A thermal mesh is generated on top of the given floorplan,
as shown in Fig. 4. The size of each thermal cell is established
by the user. A finer mesh will yield a more precise result while
taking a longer computational time, whereas a coarser mesh
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Fig. 5. Flow graph of our proposed temperature-aware instruction binding
technique

will provide a less accurate result while being faster. Each
cell consists of 6 resistors, a capacitor and a current source.
The thermal capacitor models the transient behavior of the heat
flow and the current source of the generated heat. The resistors
in the X-Y plane model the 2-D heat flow on the X-Y plane
while the resistors in the Z axis model the heat flow through
the primary and secondary flows. The thermal resistors are
proportional to their length in the direction of the heat transfer
and inversely proportional to its heat transfer surface area and
thermal conductivity as given by: Rthermal = L/(k ·A). On the
other hand the thermal capacitor is proportional to the area
and the thickness: C = cp · τ · L ·A, where cp is the specific
heat and τ the specific density of the material. The thermal
resistance duality allows to solve the heat transfer problem
in an analogous manner to electric circuit problems, using
the equivalent thermal resistance network, where temperature
T is equivalent to the voltage and the heat conduction Q is
equivalent to the current. Therefore ∆T = Q ·R.

The thermal simulation starts once the equivalent thermal
model is generated. A power profile for each unit in the system
is passed to the model and the temperature is computed for
each thermal cell on each time step. Finite difference equation
is used for this propose in order to speed up simulation times.
The temperature of each neighboring cell is updated at every
time step. The computational time step needs to be small
enough so that the heat cannot transfer to the neighboring
cell in one time step.

B. Temperature-aware Instruction Binding Technique

Instruction Word (IW) is a grouping of instructions in a single
memory location that can be read at the same cycle step
by the processor. Our temperature-aware instruction binding

conflict

Instr.1 Instr.2 Instr.3

  D1 (90ºC)  

  S1 (97ºC)  

  L1 (100ºC)  

  D1 (90ºC)  

  M1 (94ºC)   M1 (94ºC)  

  M2 (112ºC)  
swap

Instr.1 Instr.2 Instr.3

  D1 (90ºC)  

  S1 (97ºC)  

  L1 (100ºC)  

  D1 (90ºC)  

  M1 (94ºC)  

 M1 (94ºC)  

  M2 (112ºC)  

(a)

Instr.1 (X mW) Instr.2 (Y mW) Instr.3(Z mW)

  D1 (90ºC)  

  S1 (97ºC)  

  L1 (100ºC)  

  D1 (90ºC)  

  M1 (94ºC)  

 M1 (94ºC)  

  M2 (112ºC)  

conflict

(b)

(d)

Instr1 .L1 || Instr2 .M1 || Instr3 .M2

Instr1:{L1,S1, D1} 

Instr2:{D1, M1}

Instr3:{M1, M2}

 L1        S1        M1       D1       D2         M2       S2        L2

  100ºC    97ºC    94ºC    90ºC     84ºC    112ºC  109ºC  99ºC

Instr.1 Instr.2 Instr.3

  D1 (90ºC)  

  S1 (97ºC)  

  L1 (100ºC)  

  D1 (90ºC)  

  M1 (94ºC)  

 M1 (94ºC)  

  M2 (112ºC)  

fix

(c)conflict

fix

 

Fig. 6. An example showing the instruction binding by TempIB: (a) Initial
priority queue; (b) Binding conflicts; (c) Binding conflicts after FU-swapping;
(d) Final bind.

technique, TempIB, is based on a greedy algorithm that tries
to bind the instructions in IW to the coolest possible FUs.
Fig. 5 shows the flow of TempIB. It starts from any thermal-
unaware binding produced by an initial compilation of the
C or assembly code. In this first compilation, the compiler
tries to maximize the parallelism involved in the source code
by packing as many instructions as possible in parallel. (In
the case of the TI’s C6x family, up to 8 instructions can be
executed in parallel [9].) After this step, the power profile of
each FU is generated. The profile depends on which instruction
the FU executes. Once this is performed, TempIB will be
applied.

The main steps involved in this algorithm are as follows
(See Fig. 7.) and an example can be seen in Fig. 6:

Step 1: For each instruction a priority queue is created,
sorting the FUs on which the instruction can be executed from
minimum to maximum temperatures as shown in Fig. 6(a), as
well as considering the power consumption of the instruction
in order to estimate the temperature of the FUs once the
instruction has been executed1.

Step 2: In case when there are no conflicts2 the instructions
are bound to the FUs at the bottom of the queue. However,
when there is a conflict this needs to be resolved as shown in
Fig. 6(b). Instr.1 and Instr.2 try to be bound to D1, which is
the coolest FU to which the two instructions can be bound. As
only one instruction can be executed on that FU, we look at the
next FU in the priority queue and the coolest unit of the second
element of the queue is swapped by the conflicting FU in the
queue. In this case the FUs in Instr.2 are swapped as M1 is
cooler than S1. After this step it is checked again for conflicts
until no more conflicts exist. Every time an instruction is

1Not all instructions consume the same amount of power
2Two instructions do not try to be executed on the same FU.



TempIB: Temperature-aware Instruction Binding(F ,M,ρ,C,L)
/* F : input floorplan of VLIW processor

M: n×n thermal mesh
ρ: thermal simulation interval
C: *.c or *.asm code*/
L: power library of each asm instruction */

• Compile *.asm or *.c file, generating maximum parallelism;
• Generate power profile for each unit IW ;
• Set count = 0;
foreach (IW in C) /* rebind instructions */

/* Step 1 */
• Create priority queue for each instruction of the FUs

where they can be executed;
/* Step 2 */
• Resolve conflicts by analyzing next FU in the

queue and the power of the conflicting instructions;
• count = count +1;
if (count = ρ)

• Regenerate power profile of each FU;
• Rerun thermal simulation;
• count = 0;

endif;
endfor;
return C;

Fig. 7. A summary of TempIB.

bound to an FU it is deleted from the priority queue of the
rest of the instructions as shown in Fig. 6(c). This algorithm
guarantees that each instruction is always bound to the coolest
possible unit in each IW .

A new thermal simulation is performed after ρ IWs are
bound, where ρ is a (positive integer) parameter set by the
user. The smaller ρ is the more precise the results will be, but
the longer the run time will be. On the other hand, a large ρ
will decrease the accuracy as thermal data is needed to perform
the binding, but the technique will run faster. The best results
will be achieved if a thermal simulation is performed every
time when each of IW s are bound, as an accurate information
of the temperature of each FU is available.

C. Enhanced Instruction Binding Heuristic

Note that the most time consuming part of TempIB is the
thermal simulation (i.e., if-block in Fig. 7), which takes around
95% of the entire run time in practice. However, to get the
best results, TempIB needs (ideally) to perform a thermal
simulation after the binding of each new IW to use the
previously refreshed new power profile of each FU. This
would guarantee that the temperature of each FU is up to
date after each rebinding is performed. However, it leads
to a computationally expensive run time as every thermal
simulation has to iteratively update the temperature of each
thermal node. On the other hand, it looks obvious not to
perform a thermal simulation after each IW as one single IW
does not increase the FUs’ temperature too much. We found
in the experiments that the minimum number of IWs that can
be bound before a new thermal simulation was applied while
maintaining the accuracy of thermal estimation is around 50
(estimated performing some initial tests).
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 Fig. 8. Example showing the application of TempNOP: (a) Initial temper-
ature curve; (b) Temperature curve after applying TempNOP.

D. Temperature-aware NOP Insertion Technique

We describe what we called temperature-aware NOP insertion
technique (TempNOP), which is quite natural to be included
as a postprocessing to the conventional compilers which bind
instructions for maximizing performance. We will compare
and discuss, in the experimentation section, the results pro-
duced by TempIB and TempIB-f with that by TempNOP.

TempNOP: Temperature-aware NOP Insertion(F ,M,C)
/* F : input floorplan of VLIW processor

M: n×n mesh
C: *.c or *.asm code*/

/* Step 1 */
• Compile *.asm or *.c file; /* maximize parallelism */
• Generate power info. for each unit for each step;
/* Step 2 */
while (Time constraint met with ∆L)

• Apply thermal simulation to F and obtain thermal
signature of FUs;

• Find longest instruction sequence on the hottest FU;
• Insert X NOPs in the middle of the instruction sequence;

endwhile;
return F ;

Fig. 9. A summary of temperature-aware NOP insertion technique
TempNOP.

TempNOP is based on a very intuitive assumption that in
order to cool down a unit, the unit needs to “rest” in order
to stop the temperature build-up. An example can be seen
in Fig. 8. Fig. 8(a) shows the initial temperature build-up
of an FU with time as well as the accumulative instruction
executions on it. On the other hand, Fig. 8(b) shows the
temperature build-up after TempNOP is run, indicating that
NOPs have been inserted and how this influences on the total
execution time overhead, which is given by ∆L in the figure.

Fig. 9 shows the pseudo code of TempNOP. Temperature
is additive in nature and this temperature reduction technique
considers the entire thermal history of each unit. Once the
original C or assembly code is compiled and optimized for
parallelism, TempNOP performs an initial thermal simulation



of the entire system (i.e., Step 1 in Fig. 9). A thermal signature
is obtained for each FU of the processor. The thermal signature
is basically the thermal history of each FU. These signatures
are analyzed and the highest peak temperature is then singled
out in order to be treated. A hard timing constraint is also given
by the user not allowing the code to be executed in more than
a given amount of time (∆L) (i.e., Step 2 in Fig. 9). As the
initial code is optimized for performance only, a worse result
can be achieved by the new instruction assignment. For each
peak temperature, a set of NOPs is inserted in the code. This
allows the unit to cool down. The number of NOPs inserted
depends on the peak temperature, its duration, and by the size
of the hotspot compared to the next largest temperature peak
as inserting too many NOPs would decrease the temperature
of the current hotspot too much not allowing room to reduce
the temperature of the next hotspot. TempNOP searches from
the first to the last instruction that contributes to the peak
temperature of the FU. It then inserts the NOPs in the middle
of the longest consecutive instruction sequence. We assume
this is the point where the largest temperature build-up is most
likely to happen.

V. EXPERIMENTAL RESULTS

First, we describe the experimental setup for the generation
of initial floorplan and our proposed thermal-aware design
flow. Then, we show a set of comprehensive results obtained
together with explanations on the implication and analysis of
the data.

A. Experimental Setup

To validate the temperature reduction and control techniques
proposed, the Texas Instruments C6200 architecture was cho-
sen [9], as it is one of the most popular VLIW architectures.
The disadvantage of using a commercial processor is the lack
of detailed information provided by the vendor. Some assump-
tions had to be made to bridge this lack of information like
the exact floorplan and the power consumption of each unit.
Fig. 1(a) shows the DSP floorplan used for the experiments
based on the TI’s logic diagrams from their datasheet [9].
On the other hand, the power consumption values for each
unit in the design are based on [16], which uses a look up
table approach for each executed instruction, where the power
consumed by each unit when executing an instruction is given
in a power library. The power values used were validated using
[17].

The benchmarks tested were also downloaded from the
Texas Instrument’s web page [9]. Six of them are DSP
applications while the remaining are image processing bench-
marks. We extracted the representative assembly code from the
benchmarks. Table II shows the name of the benchmarks, their
number of instruction words, and the parallelism involved in
the benchmarks. This is obtained by going through all the IWs
and checking how many instructions of the total maximum of
8 instructions (the maximum number of instructions per IW is
8 for the C6X TI DSP family) that can be executed in parallel
are really executed, as indicated by:

Parallelism(%) =
tot exe instructions

(tot IWs) · (max instr per IW )
×100 (1)

TABLE II
BENCHMARK DESCRIPTION USED AT THE EXPERIMENTAL SECTION

Benchmark #IWs #Instructions Parallelism (%)

DSP BLK MOVE 54 120 27.78
DSP FIR LMS2 95 98 12.89

IMG BOUNDARY 104 109 13.10
MPEG2 VLD 107 457 53.39
DSP MUL32 147 150 12.76

DSP FLTOQ15 148 225 19.00
DSP AUTOCOR 179 395 27.58
IMG CONV3X3 196 420 26.79
DSP FIR CPLX 221 295 16.69
IMG PIX SAT 241 411 21.32
IMG SOBEL 371 489 16.48

IMG PIX EXPAND 454 691 19.03

B. Experimental Results

Table III shows the results of the temperature reduction
techniques for the different benchmarks described in Table II.
The first two columns show the benchmark names and the peak
temperature (Tinit) produced by a temperature-unaware code
compilation. Columns 3 to 5 show the peak temperature (Tpeak)
and the amount of decrease of temperature in % over Tinit by
our TempIB, and the run time where our thermal simulation is
performed whenever each IW is rebound. On the other hand,
columns 6 to 8 show the results by TempIB, performing the
thermal simulation at rebinding of every 50 IWs. Similarly,
columns 9 to 11 show the results by TempIB-f with the thermal
simulation interval of 50 IWs. The last columns from 12 to 15
show the results by TempNOP, allowing up to 15% timing
degradation. The best TempIB (i.e., performing a thermal
simulation after each rebinding) reduces the peak temperature
by 10.91% on average, but takes about 132 seconds to execute.
TempIB which calls a thermal simulation after 50 IWs on the
other hand reduces the peak temperature by 8.37%, but runs
around 40 times faster. However, we can see that TempIB-f
reduces the temperature by 10.19%, almost the same as the
best case where a thermal simulation is performed in each
rebinding step, and is around 14 times faster. TempNOP on
the other hand can only reduce the peak temperature by 4.03%
even sacrificing 15% of performance.

VI. CONCLUSIONS

Temperature is increasingly becoming important in VLSI
circuits and needs to be addressed as a separate factor
when designing ICs. This work addressed a new problem
of temperature-aware instruction binding and proposed two
effective techniques, TempIB and TempIB-f. In summary,
TempIB was able to reduce the peak temperature of FUs by up
to 13.82% and TempIB-f by up to 12.70%. The effectiveness
of the techniques was also validated by comparing them with
an NOP insertion method, which could only reduce the peak
temperature by up to 8.23% even with a timing penalty of
15%.



TABLE III
A COMPARISON OF PEAK TEMPERATURE AND RUN TIME OF THREE TEMPERATURE-AWARE INSTRUCTION BINDING TECHNIQUES TempIB, TempIB-f AND

TempNOP (ρ = THERMAL SIMULATION EVERY n IWS).

TempIB (ρ = 1 IWs) TempIB (ρ = 50 IWs) TempIB-f (ρ = 50 IWs) TempNOP (∆L = 15%)
Tinit Tpeak ∆T %) run (s) Tpeak ∆T (%) run (s) Tpeak ∆T (%) run (s) Tpeak ∆T (%) run (s)

DSP BLK MOVE 57.30 49.38 13.82 9.42 51.67 9.83 0.25 50.55 11.78 1.9 55.21 3.65 1.39
DSP FIR LMS2 52.39 48.15 8.09 29.53 49.39 5.73 0.28 48.39 7.64 3.36 51.49 1.72 4.78

IMG BOUNDARY 52.48 47.9 8.73 35.15 49.19 6.27 0.93 48.19 8.17 4.05 51.33 2.19 5.88
MPEG2 VLD 66.46 57.39 13.65 44.83 58.85 11.45 1.11 57.96 12.79 4.48 63.95 3.78 4.26
DSP MUL32 52.36 48.19 7.96 65.31 48.78 6.84 1.12 48.39 7.58 5.85 51.38 1.87 11.64

DSP FLTOQ15 57.36 50.36 12.20 87.17 51.75 9.78 1.57 50.65 11.70 5.92 54.21 5.49 10.99
DSP AUTOCOR 60.52 53.24 12.03 95.21 54.79 9.47 2.77 53.23 12.05 8.53 57.38 5.19 17.3
IMG CONV3X3 61.87 53.77 13.09 125.29 54.04 12.66 3.09 54.01 12.70 9.01 56.78 8.23 21.58
DSP FIR CPLX 58.35 51.19 12.27 153.56 53.19 8.84 3.02 51.88 11.09 10.17 56.08 3.89 36.69
IMG PIX SAT 54.93 50.96 7.23 201.41 51.99 5.35 3.79 51.17 6.85 13.73 54.87 0.11 50.21
IMG SOBEL 59.38 52.13 12.21 309.11 53.88 9.26 9.87 52.87 10.96 15.14 54.93 7.49 35.53

IMG PIX EXPAND 57.48 51.97 9.59 429.42 54.63 4.96 10.83 52.31 8.99 28.16 54.78 4.70 67.39

Avg. 57.57 51.22 10.91 132.12 52.68 8.37 3.22 51.63 10.19 9.19 55.20 4.03 22.30
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