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Divide and Conquer High Level Synthesis Design Space Exploration

BENJAMIN CARRION SCHAFER, NEC Corporation
KAZUTOSHI WAKABAYASHI, NEC Corporation

A method to accelerate the design space exploration (DSE) of behavioral descriptions for high level synthe-
sis based on a divide and conquer method called Divide and Conquer Exploration Algorithm (DC-ExpA) is
presented. DC-ExpA parses an untimed behavioral description given in C or SystemC and clusters interde-
pendent operations which are in turn explored independently by inserting synthesis directives automatically
in the source code. The method then continues by combining the exploration results to obtain only Pareto-
optimal designs. This method accelerates the design space exploration considerably and is compared against
two previous methods: an Adaptive Simulated Annealer Exploration Algorithm (ASA-ExpA) that shows good
optimality at high runtimes, and a pattern matching method called Clustering Design Space Exploration
Acceleration (CDS-ExpA) that is fast but suboptimal. Our proposed method is orthogonal to previous explo-
ration methods that focus on the exploration of resource constraints, allocation, binding and/or scheduling.
Our proposed method on contrary sets local synthesis directives that decide upon the overall architectural
structure of the design (e.g. mapping certain arrays to memories or registers). Results show that DC-ExpA
explores the design space on average 61% faster than ASA-ExpA, obtaining comparable results indicated
by several quality indicators e.g. distance to reference Pareto-front, hypervolume and Pareto dominance.
Compared to CDS-ExpA it is 69% slower, but obtains much betters results compared to the same quality
indicators.

Categories and Subject Descriptors: H.4.0 [Information Systems Applications]: General

General Terms: Algorithms, Design

Additional Key Words and Phrases: High level synthesis, design space exploration, acceleration

1. INTRODUCTION
Pressure for faster time to market is growing as IC costs keep increasing and time
to recover the investment (time in the market) is decreasing. The key to shorten de-
sign cycles is to have tools that convert system level descriptions, in any high level
language, into efficient hardware designs as easy and fast as possible.

Currently system designers typically develop their models in high level languages
such as C or C++. This allows an easy and fast way to estimate system performance,
verify the functional correctness of the design and offers higher levels of abstraction,
which helps also for the re-usability of the code. It also offers faster simulations and
the possibility to use already existing legacy code and libraries. Hardware designers
must then analyze the code, figure out a suitable hardware architecture for the code
and either decided to use HLS or create the HW architecture from scratch using any
Hardware Description language (HDL). This task is extremely time consuming and
needs a great amount of experience as this step will decide upon the ultimate system
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performance. Raising the level of abstraction has a distinct advantage over traditional
RTL design approaches. Multiple designs can be easily and quickly generated for the
behavioral code, while RTL designs require major rework in order to modify the un-
derlying architecture. Moreover higher levels of abstraction combined with high level
synthesis allow the architectural trade-off exploration of the behavioral description.
The main problem with architectural exploration is its exponential complexity with
the number of explorable operation, making it practically impossible to fully explore
the entire design space.

Previous work tightly integrates the exploration and the High Level Synthesis (HLS)
steps in order to deterministically estimate the effect of each transformation (e.g. loop
unrolling) and therefore targeting directly during the exploration the transformation
that lead to Pareto-optimal designs. In this work we address the architectural explo-
ration considering HLS as a black box using a commercial HLS tool [NEC 2011]. This
HLS tool performs different transformations and applies different heuristics depend-
ing on the input description which are unknown before hand, making it impossible to
deterministically establish which transformation will lead to better results.

The main objective in design space exploration (DSE) is to find optimal implemen-
tations with respect to several, often conflicting, objectives. In this work we restrict
the exploration objectives to area and latency, but other objectives like power could
also be added. These optimal implementations are called Pareto-optimal designs. The
objective is to find all the designs at the efficient frontier (also called Pareto front).
The tradeoffs can easily be explored within this set rather than considering the en-
tire design space, which would be impractical and irrelevant to the designer. The main
problem in DSE is its exponential nature. A brute force approach would eventually find
all the Pareto-optimal solutions for smaller designs at a cost of extremely high running
time. Heuristics have been developed to reduce runtime, at the expense of finding less
Pareto-optimal designs and some that are not really Pareto-optimal. These designs
are called non-dominated designs as they dominate the exploration result obtained so
far, but not the overall exploration space. Fig. 1 shows the eventual result of some
heuristics classified by regions1. Region 1 shows non-dominated designs that are not
Pareto-optimal found by the heuristic. Further design space exploration would even-
tually end up finding the real Pareto designs. Region 2 shows that some heuristics
might miss Pareto-optimal solutions and region 3 illustrates that some of the Pareto
solutions on the efficient frontier are actually found. The main problem with multi-
objective optimization problems is how to proof Pareto-optimality. In this work we can
only proof Pareto-optimality for small benchmarks as these where compared against
a brute force method. For larger designs this is virtually impossible and we can only
create solutions that are non-dominated.We will consider the combination of the best
non-dominated designs obtained by all the heuristics presented in this work as the
reference Pareto front. 2.

In particular, in this work we present a divide and conquer method to accelerate the
design space exploration and compare it with two previously presented exploration
methods based on simulated annealing [Schafer et al. 2009] and pattern matching
[Schafer and Wakabayashi 2009]. The first method called Adaptive Simulated An-
nealer Exploration method (ASA-ExpA) leads to a good result finding Pareto-optimal
designs compared to a brute force approach at the expense of high running time. The
second method called Clustering Design Space Exploration Acceleration (CDS-ExpA)
is based on a pattern matching method, finding fix sets of clustered operations and as-

1Note that in general these regions are not necessarily adjacent.
2The terms non-dominated and dominating design will be used interchangeably. The reference Pareto front
is the combination of the non-dominated designs of all three exploration methods.
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Fig. 1. Efficient frontier with Pareto-optimal designs and design space exploration results.

signing a fixed set of attributes to each of them based on a global cost function (GCF).
This method is extremely fast at the expense of not finding many of the Pareto-optimal
designs. These two methods will help assessing the quality of the exploration results
obtained by our newly proposed method as the first is optimized for quality while the
latter for runtime.

The contributions of this work can be summarized as follows:

(1) Introduce a design space exploration method called Divide & Conquer Explo-
ration Acceleration (DC-ExpA) to accelerate the design space exploration for be-
havioral descriptions given in C or SystemC. DC-ExpA clusters all interdependent
explorable operations and explores these separately. It then merges the results in
order to obtain the Pareto-optimal designs.

(2) Investigate the effect of using the latency reported by the HLS tool vs. simulation
cycles on the quality of the optimal designs obtained compared to the exploration
runtime.

The paper is organized as follows. Section II shows a motivational example to il-
lustrate the goal of DSE. Section III presents a comprehensive literature review of
high level synthesis architectural exploration. Then in section IV we introduce the two
previously developed methods and describe in detail the newly proposed method to ac-
celerate the design space exploration. Section IV provides a set of experimental results
to show the efficiency of our method. Finally section V gives concluding remarks.

2. MOTIVATIONAL EXAMPLE
Fig. 2 shows the source code of a process that continuously reads in 8 bit numbers and
calculates the average of the last 8 values read (this program corresponds to bench-
mark ave8 of the experimental section). The explorable operations have been high-
lighted and consist of an array where the last 8 numbers are stored, 2 loops and 1
function. These operations are considered explorable because they can be synthesized
in different ways resulting in very different area vs. performance implementations e.g.
the loop can be unrolled partially or completely and the array can be mapped to reg-
isters or memory. The table next to the source code shows the result of the HLS for
different synthesis attributes specified directly at the highlighted explorable opera-
tions using pragmas. As seen, the difference between the smallest but slowest design
and the fastest but largest is substantial, with the area ranging from 1,362 to 4,352
and the latencies from 24 to 1 cycles. There are a multiple Pareto-optimal combina-
tions in-between these designs based on different attribute combinations as well as
sub-attributes like the number of memory ports in the array, but only 5 combinations
are shown here for practical reasons. Manually editing the source code in order to ex-
plore the different area vs. performance trade-offs is a tedious and time consuming
task. An automatic efficient design space exploration method is therefore highly de-
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Fig. 2. Motivational example.

sirable. The main problem in DSE is how to explore the design space in a reasonable
time, finding as many Pareto-optimal designs as possible.

3. RELATED WORK
In order to deal with shorter time to market design cycles, high level languages ex-
tended with hardware specific constructs are being used in combination with high
level synthesis tools. Some examples of C/C++ extensions include SystemC [SystemC
2011], BDL [Kobayashi et al. 1994], SA-C [SA-C 2011] and SpecC [Gajski et al. 2005]
and JHDL for Java [JHDL 2005]. There are currently a multitude of commercial and
academic HLS tools available. Some commercial ones include CyberWorkBench [NEC
2011], CatapultC [Calypto 2011], Cynthesizer [Forte 2011], CtoSilicon [Cadence 2011]
and some academic ones e.g. LegUp [LegUP 2011] (open source) or open binaries e.g
xPilot [xPilot 2011], C2See [C2See 2011], GAUT [Gaut 2011] and Spark [Gupta et al.
2003].

These high level language subsets simplify the design process as designers do not
need to deal with low level Hardware Description Languages (HDLs). However, in
order to efficiently synthesize behavioral descriptions with any of the previously men-
tioned HLS tools, designers still have to analyze the original description to specify e.g.
bit widths, parallelism, operator binding and array mappings. The design space explo-
ration does this step automatically generating a number of designs that meet a set of
constraints (i.e area, latency and power).

Much of the previous research has been focused on system level design exploration
where the number and the type of processing elements and bus size are explored
[Haubelt et al. 2008; Kim et al. 2006;Mamagkakis et al. 2006]. Givargis et al. [2002]
proposed a system-level exploration technique for SoCs by subdividing the design
space based on system parameters dependencies, exploring these individually and
then incrementally adding the results of each partial exploration together to obtain
the Pareto-optimal designs. Although we use a similar approach, they target a fixed
architecture and the design space is relatively small (1014 possible configurations).
Moreover the designer has to manually specify these interdependencies among pa-
rameters, which indicates the explorer the direction to follow.

We call this macro-architectural design space exploration vs. micro-architectural
which is the method presented in this work. Previous work in HLS design space explo-
ration has been focused on the exploration of resource constraint and/or scheduling,
binding and allocation algorithms or on applying source code transformation starting
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from CDFGs using multi-objective function optimizations. Ahmad et al.[1994] stud-
ied the tradeoffs between the control step and area in data flow graphs using genetic
algorithms. Holzer et al.[2007] used a similar approach using an evolutionary multi-
objective optimization approach to generate Pareto-optimal solutions. Krishnan et al.
[2006] use a genetic algorithm for HLS DSE to concurrently perform scheduling and
allocation to find better schedules. Haubelt et al. [2003] use Pareto-Front-Arithmetics
(PFA) to reduce the search space in embedded systems decomposing a hierarchical
search space. Early estimators of area and delay for FPGA implementations where
used in [Haubelt and Teich 2004] to evaluate the design space before any behav-
ioral synthesis. A compiler approach to perform hardware design space exploration is
presented in [So et al. 2002] where parallelization techniques are used to map compu-
tations to FPGAs. So et al. [2003] developed a DSE technique using compiler directed
techniques to perform several code transformations. The starting point in most of these
approaches is the direct transformations at the CDFG level applying different compiler
optimizations techniques to generate new architectures combined with quick estima-
tors. Most of these approaches mainly use Genetic Algorithms (GA) as GA is easy to
implement and has shown to produce good results.

In this work we explore the design space of untimed behavioral descriptions using a
commercial high level synthesis tool [NEC 2011] seen as a black box by inserting syn-
thesis directives directly into the source code. We do not have access to it and execute
it every time a new set of directives is generated. Previous work estimates the impact
of each transformation as they have full control over the resultant synthesized circuit
and can deterministically establish the cost of each transformation. The number of
transformations allowed in these cases is very limited and are normally restricted to
the number and/or type of functional units (FUs) and in some cases to loop unrolling.
Our proposed approach could be considered orthogonal to the previous work, as our
method fixes the underlying architecture e.g. if arrays are mapped to memories or
registers or decided upon how many function instantiations the process should have.
Then, previous DSE approaches could continue by exploring the resource constraints,
scheduling, allocation and binding stages for each fixed synthesis scenario created by
our explorer.

The commercial HLS tool used in this study has over 200 different synthesis di-
rectives (pragmas for individual operations) in addition to global synthesis options
and behaves differently in each case based on different internal heuristics. The design
space grows exponentially with the size of the explorable operations and therefore can-
not be exhaustively searched in reasonable time. Moreover, this make is impossible for
the explorer to accurately model and predict the behavior of the HLS tool, which leads
to the need to adopt a different approach.

One further element of study in this work is how performance is measured. In most
high level synthesis DSE work, either control unit state count or latency reported by
the HLS is used to measure the circuit performance. This is only true in some cases.
In other cases e.g. in designs with unbounded loops or data-dependent loops, this does
not hold true anymore and a cycle accurate simulation is needed in order to measure
the design’s performance. In this work we used the latency reported by the HLS tool
in order as a measure of design performance. In order to study the impact of this
assumption on the quality of the DSE results we extended the flow generating a cycle
accurate C model for each design explored and executing it in order to obtain actual
design performance information. We compare the default vs. the extended method and
investigate the results in the experimental section.
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Table I. Explorable Operations

Operation Attribute Description
Loop unroll=0 do not unroll the loop

unroll=x partial loop unroll
unroll=all unroll loop completely
folding=N fold loop N times

Functions func=inline inline each function call
func=goto single function instantiation

func=seq opr function inst as sequential opr
func=pipeline opr function inst as pipeline opr

func=operator function treated as a function unit
Array array=RAM array synthesized as memory

array=logic constant arrays synth. as logic
array= expand expand array

array=reg synthesize array as registers

4. DESIGN SPACE EXPLORATION
The design space exploration method proposed in this work generates a set of non-
dominated designs for a given behavioral description in untimed C or SystemC by
inserting HLS directives directly into the source code. These directives are in the form
of pragmas that the HLS tool processes and in turn synthesizes the instrumented
source code accordingly. In particular our method explores loops, arrays and functions.
Table I shows all the explorable operations and their pragmas. A more comprehen-
sive explorer could also explore global synthesis options and the number of functional
units. The goal of the exploration is to find as many designs as possible on the efficient
frontier, also called Pareto front, or as close as possible. The tool developed around
this exploration methods is called cwbexplorer. Fig. 3 shows an overview of the explo-
ration flow. The inputs are a C or SystemC description and the delay and area library
for the chosen target technology. The behavioral description is read and a new unique
set of attributes is generated for the explorable operations found in the source code.
The global synthesis options, which are kept constant throughout the entire DSE, the
newly instrumented source code and a functional unit constraint file are then passed
to the HLS tool which then synthesizes the new designs. The result of the synthesis is
read back by cwbexplorer to analyze the synthesis results (area and latency). cwbex-
plorer has been extended to run in two modes: The first uses the latency reported by
the HLS tool as a measure of design performance. The second mode calls a cycle accu-
rate model generator right after HLS, which generates a cycle accurate C++ model for
the design just synthesized. It then calls g++ to compile this model and executes the bi-
naries. The simulation cycles are read back by cwbexplorer to get an accurate measure
of the performance of each design. Therefore, the dominating results obtained running
the cycle accurate simulation are the true dominating designs as the main objective of
DSE is to find area vs. performance tradeoffs and the design latency reported by the
HLS tool is only a proxy for performance.

The next two sections will describe briefly the previously developed methods ASA-
ExpA and CDS-ExpA,which will be used to benchmark our proposed method. Then
our newly proposed method will be described in detail. The first method is based on
an adaptive simulated annealer [Schafer et al. 2009] and the second on a pattern
matching method of explorable operations clusters assigning a fix set of attributes to
these clusters based on a global cost function (GCF) state [Schafer and Wakabayashi
2009]. Both previously developed methods will allow us to asses the quality of the
results of our new method as ASA-ExpA has shown to generate good results compared
to a brute force approach at the expense of high runtime. On the other side CDS-ExpA
has shown to be 90% faster on average than ASA-ExpA at the expense of only finding
around 50% of the Pareto-optimal designs.
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4.1. Adaptive Simulated Annealer Design Space Exploration (ASA-ExpA)
The ASA-ExpA method is based on adaptive simulated anealing. Each attribute spec-
ified in the input library has an associated weight based on its ability to typi-
cally contribute either to minimize latency or area. These have been previously pre-
characterized, but can also be manually set by the user. A unique set of attributes is
generated for each new design. Each new design is incrementally generated from the
previous design based on the given Global Cost Function (GCF). The GCF of the simu-
lated annealer is given by GCF = αA+βL, where the area (A) and latency (L) are scaled
due to their units’ differences. The weight factors α and β represent the importance of
minimizing the total area (A) or total latency (L). These weights are adaptively mod-
ified during the exploration in order to explore the entire design space, when after N
consecutive designs no dominating design is created. If α >> β, attributes with highest
minimizing area weights have a higher probability of being used. The randomness of
ASA-ExpA allows it to escape from local minima.

The GCF weights are initially set to find designs with the objective of minimizing
area (α=10 and β=0). A unique new set of attributes is created based on the GCF
and each attribute’s weight, which are used as probabilities by the annealer. The HLS
tool is then called to synthesize the new design with the new attributes set. After the
synthesis ASA-ExpA verifies if all the constraints have been met. If the design has not
improved the previous designs (area or latency) the ASA-ExpA will either restore the
previous attribute list or based on the current annealer temperature keep it.

The exploration finishes when either N designs are consecutively generated that do
not improve the previous designs or do not meet the constraints, where N is speci-
fied by the user or when the GCF has explored the entire design space starting from
(α=10,β=0),(α=8,β=2),(α=6,β=4) to (α=0,β=10). The exploration is bounded by O(aM )
where a is the number of explorable attributes for each operation and M is the number
of explorable operations in the source code.The most time consuming step in the pro-
cedure is the synthesis performed for each design. The running time for the attribute
generation is negligible compared to the synthesis. This method has shown to create
very good results compared to a brute force method at the expense of high running
time [Schafer et al. 2009]. For small and mid size benchmarks it could find all Pareto-
optimal designs, while for larger benchmarks it created very close Pareto-fronts. It
should be mentioned that in this case we can proof their optimality as we compared
this method against a brute-force search.

4.2. Pattern Matching Design Space Exploration (CDS-ExpA)
CDS-ExpA is based on a pattern matching method assigning a fix set of attributes to
explorable operations clusters. The method starts by parsing the input C or SystemC
code and building a dependency tree of all the explorable operations (loops, functions
and arrays). Fig.4 shows the parse tree of the motivational example (ave8). The parse
tree is then traversed using a breadth first search method and a tree pattern match-
ing algorithm applied to find subgraphs matching a given external operation clusters
library. The clusters library contains the sequences of operations that form a cluster
and the set of pre-defined attributes associated to each cluster for different optimiza-
tion targets e.g. reduce area or latency. The cluster types are all possible 2-3-4-tuples
combination of arrays, functions and loops. A Global Cost Function (GCF) indicates
what exploration objective should be minimized. The GCF changes dynamically dur-
ing the exploration and the attributes assigned to each operation are re-assigned to
minimize the GCF objective.

Two version of CDS-Exp have been developed. The first, called CDS-ExpA(min) tries
to find subgraphs of operations as small as possible. This approach reduces the design
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Fig. 3. Exploration flow overview.

space compared to the ASA-ExpA method, while at the same time still allows a large
number of cluster combinations combined with non-clustered operations that leads to
a smaller probability of missing Pareto-optimal designs. The second approach called
CDS-ExpA(max) findest the largest possible subgraphs reducing the design search
space compared to the CDS-ExpA(min) approach and hence accelerating the design
space exploration even further at the expense of missing more Pareto-optimal de-
signs and generating more non-Pareto-optimal designs. In this work we will use CDS-
ExpA(max) to compare with our method as this as this version leads to the smallest
running times.

The fixed attributes assigned to each subgraph have been empirically determined
based on the study of the typical impact on each attribute on the synthesis on a set
of different benchmarks. In order to avoid local minima a probabilistic component is
added to the attribute assignment of each cluster, allowing clusters to be assigned
attributes that do not minimize the GCF objective. The GCF has 3 states. Minimize
area, minimize latency and an intermediate state. Each state has a unique set of at-
tributes for each cluster stored in the external cluster library. These states target the
exploration of Pareto solutions that minimize area, minimize latency and intermedi-
ate points in the curve. If after N designs no more Pareto designs are found the explo-
ration moves to a new state updating the cost function and re-assigning the clusters’
attributes.

After each HLS CDS-ExpA checks if the design is non-dominated. If it is, it is deleted.
The exploration continues until no more Pareto-optimal designs are found or a given
exit criteria is met e.g. N number of non-optimal designs are created consecutively.

4.3. Divide and Conquer Design Space Exploration (DC-ExpA)
DC-ExpA starts similarly as CDS-ExpA by parsing the untimed behavioral description
(C or SystemC) and building the dependency parse tree of all explorable operations
(hierarchical decomposition). It continues by clustering every set of interdependent op-
erations i.e. all operations on the same parse tree leaf. These are explorable constructs
that affect each other if their synthesis type changes, e.g. an array in a loop. Fig. 4
shows the parse tree of the motivational example (ave8) and the clusters built. Each
cluster is explored independently, by applying all attributes’ combination only to op-
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Cluster 1Cluster 2 Explore1 Explore2

 

Fig. 4. Parse tree of ave8 example, clusters and exploration order.

erations in the cluster being currently explored. No synthesis attributes are assigned
to the explorable operations in the other clusters. Once all combinations have been
exhausted or a given exit criteria is reached the exploration continues with the next
cluster. E.g. in Fig. 4 cluster 1 would be explored first by creating combinations of at-
tributes for the loop and the array until the exit condition is reached. During this time
no synthesis attributes are assigned to the explorable operations in the second clus-
ter. Our method continues exploring cluster 2 once cluster 1 has been fully explored.
After all clusters have been explored independently DC-ExpA proceeds by merging the
results of the local search combining the attributes of all clusters together to obtain
the optimal designs. This step evaluates the result of combining the attributes based
on the synthesis result of each design previously generated and determining if it could
lead to an optimal design. Out method generates a new design by combining all at-
tributes together and re-synthesizing it. Basically the method tries to minimize the
latencies and areas of each individual cluster separately in order to select the combi-
nation of attributes that lead to the global Pareto-optimal designs. Fig. 1 summarizes
the procedure of our design space exploration method. The method consists of 4 main
steps:
Step1: Subgraph Construction: For the given untimed C or SystemC source code
SC a dependency parse tree T with the explorable operations E (loops, functions and
arrays) is built. All interdependent operations are then clustered together in a sub-
graph Si as any synthesis directive (attribute A) applied to any of the clustered op-
erations will only impact the operations in this same cluster. Exploring independent
cluster operation limits the effect of the HLS transformations to the cluster itself . The
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ALGORITHM 1: Summary of our design space exploration method, DC-ExpA, for exploring
Pareto-optimal designs.
DC-ExpA: Design and Conquer Exploration(SC,E)
/* SC: Source code for HLS (untimed C or SystemC)

E: Library with explorable operations their attributes
/* Step 1 Cluster construction */
• Parse source code(SC) and generate parse tree (T )

for all explorable operations E (loops, arrays, functions);
• Create clusters S of interdependent set

of explorable operations;
/* Step 2 Cluster exploration */
foreach(cluster (Si)) do /* explore each clusters */
do {
• Generate a new attribute set (ALi) for this cluster;
• Insert attribute list (ALi) in source code;
• Perform HLS on the instrumented source code;
• Backannotate HLS results (area and latency);

}while(AL != 0); /* while unique sets of attrs can be generated */
endforloop;
/* Step 3 Create non-dominated designs*/
do {

• Combine attr lists (ALs) of clusters to build new Pareto;
• Insert attributes in source code;
• Perform HLS of the instrumented source code;
if(exit condition==true) /* exit condition set by user*/

break;
}while((P )); /*while new Pareto designs are created*/
/* Step 4 Delete dominated designs */
• Analyze all generated designs

and delete all dominated designs;
return Pareto Optimal designs ((P ));

only explorable operation that can have a global effect on the total synthesis are arrays
accessed by different clusters and shared functions. We define terms:
Definition: Subgraph (cluster) of parse tree T of all explorable operations E (Table I
column 1), is a subset S of ∀E in T that satisfies: (i) for each Si = {E1, E2, ..., Ex} such
that T = {S1, S2, ..., Sz} there is a Ei ∈ S such that Ei is unique in T , (ii) if S1 ∩ S2 6= 0
then ∀E in S1 ∩ S2 have the same A and (iii) each E gets assigned a single A. While
exploring single subgraphs Si the ∀E∈ T − Si have no A assigned to it. It should be
noted that the HLS tool has built in a default synthesis behavior for each E meaning
that all unassigned E have assigned the default A to it.

Step2: Clusters Exploration: Our method explores each subgraph S separately gen-
erating a unique new set of attributes {A1, A2, ..., An} for each operation E in the given
subgraph, performing HLS on the entire design for each new combination. The result
(area and latency) of the HLS is backannotated and stored with each unique set of at-
tributes. This step is repeated until either all combination of attributes are exhausted
or a given exit criteria is reached e.g. max number of combinations per cluster given
by the user. The method continues until all existing cluster are explored. Formally
defined:
Exploration of S1, S2,..., Sn is performed separately obtaining a set of designs such that
S1 = {d1,1, d1,2, ..., d1,x}, S2 = {d2,1, d2,2, ..., d2,y},..., Sn = {dn,1, dn,2, ..., dn,z}, where d1,1
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is the first design belonging of cluster 1, such that each design has a unique list of
attributes di,j = {A1, A2, ..., Ay} for each E ∈ S.

Step3: Creating Pareto-optimal designs: This step merges all the attributes
A1, A2, ..., An of a design di,j generated during subgraph Si exploration in order to
get Pareto-optimal P designs. This step is based on a greedy algorithm. First, the
smallest design dn,m based on the combination of all clusters attribute is found. This
serves as the initial Pareto reference design. The method recursively finds new Pareto-
optimal designs closest to the previously found Pareto design. The closest Pareto-
optimal design candidate is built by merging the list of attributes of each design,
where dnew = {A1, A2, ..., An} = di,j ∪ dk,l, ... ∪ dy,z. This procedure continues until all
Pareto-optimal designs are found. It is important to stress that the merging stage only
considers designs explored, which have the same attributes for all shared explorable
operations (shared arrays and functions).

Step4: Delete non-dominating designs: The last step involves deleting all non-
dominating designs. In some cases (especially for small benchmarks) some designs
obtained during the cluster exploration are actually Pareto-optimal. In this case these
have to be included into the solution space. For this purpose a postprocessing step is
needed to check all generated designs for Pareto optimality and non Pareto-optimal
designs are deleted.

The main weakness of DC-ExpA is the estimation part in step 3, where of the impact
of the combined set of attributes on the final design is estimated. Based on this esti-
mate a set of attributes is chosen over the other sets. In many cases the combination of
all attributes allows the HLS to do some global optimizations that cannot be captured
by our method leading to the generation of designs that are sub-optimal.

The most time consuming part in DC-ExpA is step 2 and in particular the inner
while-loop which is bounded by O(pn), where p is the number of explorable attributes
for each operation and n is the number of explorable operations in the cluster. Although
the order of complexity is exponential, n is normally small between 1 to 3. The total
exploration runtime is bounded by O(kpn), where k is the number of clusters. In the
worst case when k=1, our method has the same order of complexity as an exhaustive
approach. In the best case when p=1 the order of complexity is linear as the runtime
is equal to the summation of the exploration of each cluster, which is in turn only
composed of a single operation.

5. EXPERIMENTAL RESULTS
First, we describe the experimental setup for the evaluation of our proposed method.
Then, we show a set of comprehensive results obtained, together with the explanation
and implication of the analysis of the data.

5.1. Experimental Setup
10 different test cases written in C and SystemC are used to validate our method. 8
are used at in-house designs and 2 taken from the CHStone open source HLS bench-
marks suite [Hara et al. 2009] for reproducibility purpose, shown in Table II. The first
benchmark (ave8) corresponds to the motivational example case. Gfilter is a graphical
filter, CSC, FD shrink, FD ISS and FCU are part of a face detection IP, where CSC
is the color space conversion, FD image shrink the window resizing, FD ISS the sub-
window selection and FCU the feature detection unit. Reed Solomon represents only
the encoder part and FPU mult a floating point multiplication described in C. Adpcm
is a adaptive differential pulse code modulation decoder and encoder and aes the ad-
vanced encryption standard. These benchmarks belonging to the CHStone suite were
modified to make them synthesizable by the HLS tool used in this work.
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Table II. Attributes of explorable operations

Bench Type #lines explorable operations
ave8 C 58 loop(8),loop(8),array(1)

gfilter C 420 loop(6),loop(7),loop(6),
loop(6), array(4), func(4)

csc C 644 loop(256),loop(3),loop(d),array(2), func
fd shrink C 783 loop(255), loop(256), loop(8), loop(8),

loop(d), loop(d), array(2), func(1)
fd iss C 357 loop(4),loop(8), loop(20), array(3), func(1)

fcu C 2940 loop(20),loop(20), loop(20), loop(20), loop(20),
loop(20), loop(20), loop(20),loop(20), loop(20),

loop(8), loop(d), loop(d), loop(d), array(8), func(2),
Reed Solomon SC 530 loop(16), loop(16), loop(7), loop(7), array(8),

loop(d), loop(d), loop(d), loop(d), func(4)
fpu mult C 720 loop(23), loop(23), loop(23), loop(23), loop(23),

loop(23), loop(23), loop(23), array(8), func(4)
adpcm C 547 loop(10), loop(22), loop(10), loop(6), loop(6),

loop(24), loop(11), loop(30), loop(6), loop(100),
loop(100), loop(100), array(9), func(12)

aes C 723 loop(14), loop(16), loop(d), loop(13), loop(32),
loop(16), loop(8), loop(4), loop(8), loop(8),
loop(4), loop(33), loop(4), array(3), func(9)

The first column shows the benchmark’s name. The second column indicates if it is a
C or SystemC (SC) design. The third column shows the size of the benchmarks denoted
by the total number of lines of code. It should be noted that 1 line of code of a high level
language description is approximately equivalent to 10 lines of RTL code [Coussy and
Moraweic 2008]. The last column depicts the total number of explorable constructs,
where the number in brackets of the loops represent the number of iterations ( d means
data dependent), and the number at the arrays and functions indicate the total number
of arrays and functions in each test case.

We compare our proposed method DC-ExpA with two previously presented methods:
ASA-ExpA based on an adaptive simulated anealer based method and CDS-ExpA(min)
based on the clustering of operation and assignment of fixed attributes. For each
method the number of non-dominated designs found, the complete exploration run-
time, the number of gates of the smallest design and the latency of the fastest design
are recorded. As these methods are probabilistic they are executed 5 times using dif-
ferent random seeds. The best results of all three methods are combined to obtain
the reference Pareto-front used to compare the different methods. The running time
reported for each test case is the mean of all 5 runs.

The HLS tools reports the maximum, the minimum and the average latency. Our
method uses the average latency to measure performance, which is indicated here. As
the anealer can take extremely long time to run, especially for the larger benchmarks,
it was decided to exit the exploration if after 100 newly generated designs no new
Pareto-optimal design is found as this number was found experimentally to be a good
compromise between runtime and quality of results.

The main problem when comparing different multi-objective function optimization
methods is how to measure the quality of the results. Closeness to the Pareto front,
wider range of diverse solutions, or other properties. Several studies can be found in
the literature that address the problem of comparing approximations of the trade-
off surface in a quantitative manner. Most popular are unary quality measures, i.e.
the measure assigns each approximation set a number that reflects a certain quality
aspect, and usually a combination of them is used ( [Kalyanmoy et al. 2000], [David
et al. 2000]). A multitude of unary indicators exist e.g. hybervolume indicator, average
best weight combination, distance from reference set and spacing. Zitzler et. al provide
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Table III. Experimental results

ASA-ExpA
Bench Type # # Run Min Min

lines Pareto (s) Gates Latency
ave8 C 58 6 2,792 1,496 2

gfilter C 420 5 11,266 10,461 3
CSC C 644 7 19,920 18,764 5

FD shrink C 783 6 31,193 45,996 17
FD ISS C 357 4 4,323 18,882 6

FCU C 2,940 8 127,500 356,545 21
Reed Solomon SC 530 7 11,512 8,327 7

FPU mult C 720 6 22,821 153,039 5
adpcm C 547 3 27,599 8,974 4

aes C 723 6 54,547 98,820 7
Geomean 6 18,321 25,187 6

CDS-ExpA(min)
ave8 C 58 3 78 1496 2

gfilter C 420 4 428 11898 3
CSC C 644 3 561 20837 5

FD shrink C 783 3 2106 65743 18
FD ISS C 357 4 180 19167 6

FCU C 2940 5 31517 356545 21
Reed Solomon SC 530 3 328 13,740 7

FPU mult C 720 1 3,169 186,711 5
adpcm C 547 2 7,887 10,574 4

aes C 723 4 9,788 98,820 7
Geomean 3 1,335 29,174 6

Ratio CDS/ASA 0.51 0.07 1.16 1.01

DC-ExpA
ave8 C 58 6 349 1,496 2

gfilter C 420 5 2,163 10,461 3
CSC C 644 7 2,317 18,764 5

FD shrink C 783 5 3,780 45,996 17
FD ISS C 357 4 1,364 19,005 6

FCU C 2,940 10 73,455 356,545 21
Reed Solomon SC 530 6 8,346 8,327 7

FPU mult C 720 3 14,190 154,787 5
adpcm C 547 3 23,142 8,974 4

aes C 723 5 12,885 98,820 7
Geomean 5 5,456 25,232 6

Ratio DC/ASA 0.88 0.30 1.0 1.0
Ratio DC/CDS 1.71 4.09 0.86 0.99

a good review of all existing methods in [Zitzler et al. 2003], indicating that there isn’t
any single indicator able to measure the quality of the results. Nevertheless quality
measures are necessary in order to compare the outcome of the DSE. In this work we
follow the guidelines suggest by [Knowles et al. 2006]. In our case we measure the
quality of the different methods using the following criteria described in [Ascia et al.
2007]:

(1) Distance: This measure (D) indicates how close a Pareto-front is to the reference
front. It can be defined as follows:

Davg. =
∑
∀xiεP

min∀yjεP (d(xi, yi))

Dmax. = max∀xiεP (min∀yjεP (d(xi, yi))
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Table IV. Experimental results. Relative comparison between previous methods and DC-ExpA.

# # Min Min Min Min
Bench Pareto Pareto Runtime Runtime Gates Gates Latency Latency

DC-ASA DC-CDS DC-ASA DC-CDS DC-ASA DC-CDS DC-ASA DC-CDS
[%] [%] [%] [%] [%] [%] [%] [%]

ave8 0.0 50.0 -700.0 77.65 0.0 0.0 0.0 0.0
gfilter 0.0 20.0 -420.85 80.21 0.0 -13.74 0.0 0.0
CSC 0.0 57.14 -759.73 75.79 0.0 -11.05 0.0 0.0

FD shrink -20.0 40.0 -725.21 44.29 0.0 -42.93 0.0 -5.88
FD ISS 0.0 0.0 68.45 -216.94 -0.65 -0.85 0.0 0.0

FCU 20.0 50.0 42.39 -73.58 0.0 0.0 0.0 0.0
Reed Solomon -16.67 50.0 27.5 -37.93 0.0 -65.01 0.0 0.0

FPU mult -100.0 66.67 37.82 -60.82 -1.14 -20.62 0.0 0.0
adpcm 0.0 33.33 16.15 -19.26 0.0 -17.83 0.0 0.0

aes -20.0 20.0 76.38 -323.34 0.0 0.0 0.0 0.0

Table V. DSE Quality Results Assessment

Distance Avg(%)/Max(%)
Bench ASA-ExpA CDS-ExpA(min) DC-ExpA
ave8 0.00/0.00 1.25/4.54 0.00/0.00

gfilter 0.00/0.00 0.68/0.68 0.00/0.00
CSC 0.04/0.04 2.45/5.67 0.89/0.89

FD shrink 0.13/0.13 3.24/12.25 0.22/0.64
FD ISS 0.25/0.25 5.21/10.45 1.20/1.20

FCU 0.85/4.67 4.12/14.32 0.64/3.76
Reed Solomon 0.00/0.00 3.74/10.36 0.78/4.34

FPU mult 0.00/0.00 2.31/7.25 0.59/5.67
adpcm 0.00/0.00 10.23/10.23 0.00/0.00

aes 3.56/9.56 8.36/25.53 0.02/0.02
Avg. 0.48/0.1.47 4.16/10.13 0.54/1.65

Hypervolume (%)
Bench ASA-ExpA CDS-ExpA(min) DC-ExpA
ave8 0.00 50.47 0.00

gfilter 0.00 20.64 0.00
CSC 19.34 62.87 18.74

FD shrink 16.52 78.67 23.56
FD ISS 13.12 72.35 14.27

FCU 14.24 65.88 11.45
Reed Solomon 0.00 63.71 20.20

FPU mult 0.00 47.99 24.45
adpcm 0.00 26.56 0.00

aes 27.63 82.41 6.67
Avg. 9.09 57.82 11.83

Pareto Dominance (%)
Bench ASA-ExpA CDS-ExpA(min) DC-ExpA
ave8 100.00 50.0 100.00

gfilter 100.00 80.00 100.00
CSC 88.89 33.33 88.89

FD shrink 83.33 16.67 66.67
FD ISS 80.00 20.00 80.00

FCU 81.82 27.27 90.91
Reed Solomon 100.00 28.57 85.71

FPU mult 100.00 50.00 66.67
adpcm 100.00 66.67 100.00

aes 50.00 16.67 86.22
Avg. 88.40 38.92 86.22
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where xi and yj are vectors whose size are equal to the number of objectives M and
d() is the Euclidean distance. The lower the distance value (D) is, the more similar
two Pareto sets are. E.g. a high value of maximum distance (Dmax.) suggests that
some reference points are not well approximated, and consequently a high value of
average distance (Davg.) tells us that an entire region of the reference Pareto-front
is missing in the approximation set.

(2) Hypervolume: This index measures the hypervolume of the part of the explo-
ration space that is weekly dominated by the Pareto set to be evaluated. In order
to measure this index the exploration space must be bound. In our case, we define
the bounding point, as the point which has coordinates in the objective space equal
to the highest value obtained. The smaller the value, the higher the quality of the
result is.

(3) Pareto Dominance: This index is equal to the ratio between the total number of
points in the Pareto set being evaluated, also present in the reference Pareto set.
The higher the value, the better the Pareto set is.

(4) Miscellaneous Indicators: We also report the number of dominating designs
found by each method (Cardinality). A high cardinality indicates a larger number
of solutions to choose from, which should be considered to be positive, although it
needs to be interpreted carefully with the rest of the results. We also report the
smallest and the fastest design. These designs are important, because these are
the designs that in most of the cases will be finally chosen by the user.

The results reported where computed by comparing the Pareto-front of each method
compared to the reference Pareto-front(the combination of the best non-dominated re-
sults of each method over the 5 runs).

Another set of experiments presented in this section is the comparison of the domi-
nating designs found by our proposed default method which uses the average latency
reported by the HLS tool compared to the exploration results when a cycle accurate
simulation is performed during the exploration using the simulation cycles as design
performance measure.

For these tests the same benchmarks where re-run in simulation exploration mode
using 1,000 test vectors used for the verification of these designs. It is important to
use real data as random data could miss-capture the real circuit’s behavior. Control
signals need to be synchronized; if not we risk the case that designs iterate through
the same state. The HLS tool used in this work includes a cycle accurate simulation
model generator, which generates a cycle accurate C++ model and the make files for
each newly generated design. The compiler (g++) is in turn called by our method in
order to create the simulation model binary, execute it and read back the simulation
cycles.

The experiments were run on an Intel Xeon running at 3.20GHz machine with
3Gbytes of RAM running Linux Red Hat 3.4.26.fc3 and we used CyberWorkBench
[Kobayashi et al. 1994] for HLS. The running time given comprises the entire explo-
ration process including the HLS.

5.2. Experimental Results
Table III and Table IV show the results of the different DSE methods. The average
values in Table III represent the geometric mean (geomean), as the absolute indicators
vary significantly between benchmarks, due to their size differences. The ratio between
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Fig. 5. Pareto-fronts of benchmarks (a) ave8 (b) gfilter (c) csc (d)FD image shrink (e) FD ISS (f )FCU (g)
Reed Solomon Enconder (h) FPU multiplication (i) adpcm (j) aes.
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Table VI. Experimental results DC-ExpA using Latency vs. DC-ExpA with
cycle accurate simulation

DC-ExpA(Latency) DC-ExpA(Sim)
Bench # Run[s] # Run[s] Correlation
Ave8 6 349 5 770 0.97
gfilter 5 2,163 6 4,678 0.97
CSC 7 2,317 16 3,057 0.83

FD Shrink 5 3,780 16 78,725 0.83
FD ISS 4 1364 15 7,698 0.33

FCU 10 73,455 8 220,365 0.49
Reed Solomon 6 8,346 9 29,631 0.78

FPU mult 3 14,190 5 78,088 0.83
adpcm 3 14,190 5 78,088 0.83

aes 5 14,190 5 78,088 0.83
Geomean 5 5,456 9 15,541

Ratio 1 1 1.8 2.84
Avg. 0.77

the results indicates the proportionality of these differences. Table IV compares each
benchmark individually for a more detailed view of the differences between the three
methods.

From the experiments it can be observed that our divide and conquer method is
on average (geomean) 70% faster than the annealer method while around 4x (75.5%
)slower than the pattern matching method. Column 4 in Table III shows the cardinality
(number of non-dominated designs) of the different methods. Our method finds 12%
less non-dominated designs compared to ASA-ExpA, but finds on average 1.7x (40%)
more than CDS-ExpA. In terms of finding the smallest and fastest design our method
finds in almost all cases the smallest and fastest design compared to ASA-ExpA. The
smallest design is found in all of all of the cases with the exception of FD ISSS and
FPU mult, while the designs with smallest latency were found in all cases. This is
important, because in most cases these are the designs that are finally chosen by the
designer and provide the boundary of the exploration space. Table IV shows a detailed
comparison of each test case. E.g. testcase FD shrink shows that our method finds 20%
less non-dominated designs, compared to ASA-ExpA and 40% more than CDS-ExpA.
Moreover our newly proposed method executes 725.21% faster than ASA-ExpA, while
only 44.29% slower than CDS-ExpA. The last four columns indicate that for this test
case our method could find the same smallest and fastest design found by ASA-ExpA,
while the smallest design was 42.93% smaller and the fastest design 5.88% faster than
the smallest and fastest designs found by CDS-ExpA.

Fig. 5 show the Pareto-front (efficient frontier) of the three methods for all the bench-
marks. This gives a quick and intuitive visual summary of the exploration results. It
can be observed that the ASA-ExpA and DC-ExpA fronts are almost identical in most
of the cases, further proving the validity of our method.

Table V shows the quality assessment of the different explorations methods based
on the quality measures described previously, compared to the reference Pareto-front.
All indicators show that our method outperforms the fixed pattern assignment method,
while leading to very close results to the simulated annealer method, while being
around much faster.

Based on these results it is safely to conclude that our method very effectively ex-
plores the designs space compared to the two previously developed designs and shows
a very good compromise between running time and quality of results. It should also
be noted that many different combinations of attributes lead to designs with the very
same area and latency characteristics. In this case only one design is reported.
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Table VI shows the results of the default DSE method vs. the extended method
where a cycle accurate simulation is ran during DSE. The result show that the latency
reported by the HLS tool is in some cases a very effective measure of performance
while in some other cases quite poor. The correlation column indicates how latency cor-
relates with simulation cycles. The correlation is computed taken the latency reported
by the HLS and the simulation cycles reported by the cycle-accurate model simulation
for each design generated during the entire exploration. Especially FCU and FD ISS
benchmarks show a poor correlation between total simulation cycles and average la-
tency. These results indicates that in order to perform DSE accurately a full circuit
simulation is needed as the latency reported by the HLS is not a reliable measure for
performance. The drawback is that the running time increased by a factor of 2.84x.
It is also interesting to observe that using a cycle accurate simulation increases the
number of Pareto-optimal design by a factor of 1.8x due larger combination of designs
with different simulation cycles.

6. CONCLUSIONS
High level synthesis is becoming a must in state of the art hardware designs. Design-
ers can no longer describe and model entire SoCs in low level languages and need to
raise the level of abstraction. Tools that bridge the gap between untimed high level
languages and RTL are needed. In this paper we present a design space exploration
method to speed up the exploration of high level language descriptions given in C and
SystemC. The presented method, called DC-ExpA, is based on a divide and conquer
method that clusters explorable operations and explores these separately and then
combines the attributes in order to obtain Pareto-optimal designs. We compare our
method with two previously developed methods based on adaptive simulated anneal-
ing (ASA-ExpA) and pattern matching method (CDS-ExpA). Results show that the DSE
with out newly proposed method (DC-ExpA)dramatically reduces the runtime com-
pared to ASA-ExpA (61.3% faster) while obtaining comparable results. Compared to
CDS-ExpA our method is 68.6% slower, but generates much better results. We believe
that our proposed exploration method provides a very good quality vs. runtime trade-
off. In this work we also examined the effect of using the average latency as a measure
of performance vs. a cycle accurate simulation concluding that in many cases average
latency is not an accurate measure for performance and that a simulation is needed
in order to obtain the actual non-dominated designs. Finally, one extra benefit of our
method is that due to division of the exploration in independent clusters, runtime could
be further decreased by performing each single cluster exploration on different proces-
sors/machines. The speed-up that could be achieved is linearly proportional with the
number of clusters (considering that the the computation takes much longer than the
initial and final communication overhead).
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