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Abstract—This works targets the detection of temperature
triggered HW Trojans, in particular for third party behavioral
IPs (3PBIPs) given in ANSI-C. One of the biggest advantages
of C-Based VLSI design is its ability to automatically generate
architectures with different trade-offs by only setting differ-
ent synthesis options. This work uses this property to detect
temperature-triggered HW Trojan. A complete design flow is
presented. It comprises two main phases: (1) In the first phase, a
design space explorer generates micro-architectures with different
area vs. power trade-offs automatically for the given behavioral
IP. (2) The second phase, maps three of these micro-architectures
with different power profiles onto a reconfigurable computing
board to create a 3-way redundant system. This system combined
with a majority voter scheme is used to detect if a HW Trojan
is present in the behavioral IP. Having different power profiles
implies that each micro-architecture has a different thermal
behavior and thus will trigger the HW Trojan at different
time intervals. The outputs of the three designs are compared
for discrepancies at regular intervals, allowing our method to
therefore exactly pinpoint the exact trigger temperature of the
HW Trojan. A case study is presented showing the effectiveness
of our method.

I. INTRODUCTION

Design for Trust of Integrated Circuits (ICs) has emerged as
an extremely important topic in IC design methodology. The
globalization of IC design and manufacturing process poses
serious concerns about their trustworthiness and security. It is
nowadays virtually impossible to fully design and manufacture
an IC in-house using in-house tools. With the increase time-
to-market pressure, companies further rely on third parties
for the development of ICs. The International Technology
Roadmap for Semiconductors (ITRS) suggests that by 2020
a 10x productivity increase for designing complex System on
Chips (SoCs) is needed. The main factor predicted to help
achieving this goal is the use of Intellectual Properties IPs
(third party or re-used from previous projects). ITRS estimates
that at around 90% of the SoCs will be composed of IP
components [1].
Having relinquished so much control for economic reasons
and needing to rely on so many different third parties, opens
the debate to how trustworthy the HW systems actually are.
In this work, we consider the malicious modifications of
behavioral IP’s behavior. These malicious modifications are
called Hardware Trojans and are intentional modification of
an electronic circuit or design, which results in the incorrect
behavior of an electronic device when in operation. Practical
methods to ensure trustworthiness are needed at the pre and
post-silicon level, which do not disrupt the current VLSI design
flow. These methods and design techniques should seamlessly
integrate with current design flows. We address the issue of
HW trustworthiness for third party behavioral-level intellectual
property protection (3PIPP) to detect HW Trojan which trigger
at particular temperatures. These HW Trojan are extremely
difficult to detect as no functional verification methods can

capture their trigger condition.
Temperature has become in the last years a critical design
parameter. Therefore, most complex IC nowadays include
thermal sensors in order to perform active thermal man-
agement. E.g. Intel’s Core i3/5/7 processors include thermal
sensors and active thermal management support to control the
power consumption and maximum temperature by dynamically
adjusting the operating frequency and voltage of the processor,
based on the thermal sensors’ reading. State of the art FPGAs
also contain thermal sensors that allow the thermal monitoring
of the device. These thermal sensors are often instantiated as
sensor IPs into the FPGA design. The main problem is that
the FPGA vendors cannot provide simulation models of these
sensor, which makes these systems vulnerable to HW Trojans,
as it is not possible detect these during normal functional
verifications.
This work deals with the detection of HW Trojan built into
behavioral IPs which make use of the temperature readings
from these thermal sensors by triggering the malicious behav-
ior at a certain temperature. The detection method proposed
in this work maps different version of the same IP with
different micro-architectures and thus power profiles onto an
FPGA to detect the temperature at which the HW trojan is
triggered. Although in theory the HW trojan used in this work
could be detected by performing a functional simulation for
differen temperature readings, this is impractical as state of
the art thermal sensors can measure temperatures between -
40◦Cto 125◦C, which would mean that a simulation for each
temperature value would be needed, leading to 40+125=165
full functional verification simulations, as the HW trojan
proposed here is triggered at a very unique temperature.
Moreover, more advanced HW trojan which make use of the
fact that gate delay increases with temperature could also be
captured by our method and which cannot be detected with any
functional verification method as these delay increases cannot
be simulated.

II. PREVIOUS WORK

HW Trojans can be broadly classified based on either
the insertion phase (e.g. specification, design, fabrication), the
level of abstraction (e.g. system-level, RT-level, Gate-level,
physical level), its activation mechanism (e.g. always on, inter-
nally triggered, externally triggered) its effects (e.g. downgrade
performance, leak information, change of functionality) and/or
its location (e.g. processor, memory, I/O)[2].
Hardware Trojan are typically only activated under very rare
conditions, which makes them very difficult to detect during
test time. Therefore, so far, statistical approaches have been
proposed for logic testing [3]. Another popular detection
technique is based on side-channel analysis [4] . However large
process variations, noise, and environmental factors can mask
the effect of the Trojan, especially for smaller ones. A survey
on the most relevant protection techniques can be found at [5].



The main problem with these previous approaches is that they
all require a golden Trojan-free IC or functional model.
In the case of detecting HW Trojan in third party IPs (3PIP),
this is not the case. IP providers only provide a single version
of the IP and there is no reference model against which the IP
received can be verified.
To address the detection of 3PIPs HW Trojan Rajendran et
al. [6] proposed to source the IP from different vendors, and
consider that it is unlikely that both IPs are infected. The
system can detect malicious outputs by duplicating the 3PIPs
and comparing their outputs. Cui et al. [7] extended this work
by proposing a run-time recovery system which rebinds at
runtime the IPs from different vendors in case that a malicious
output is detected. The main drawbacks of these methods are
that they involve large overheads, because all 3PIPs need to
be duplicated and also require that all of the IPs are available
from different vendors. Moreover the runtime recovery method
proposed in [7] does not clarify how the rebinding of IPs
is done at runtime. This previous work mainly targeted RTL
3PIPs.
Another approach that does not require a golden model at
the RT-level makes use of the fact that Trojans are not
activated during normal operation [8]. The authors present the
term Unused Circuits Identification (UCI) to identify potential
Trojan, for circuit parts not sensitized during the verification
stage. Because their method might remove legitimate circuits,
it inserts logic to detect if the removed circuits would have
been activated, and triggers an exception if the hardware
encounters this condition at runtime.
This work presents a framework to detect temperature-
triggered HW Trojan without any golden model. Our proposed
method is based on the design of fault tolerant systems based
on redundant systems combined with a majority voter scheme.
By instantiating three different implementations of the same
design onto an FPGA, the temperature triggered HW Trojan
will be triggered at different time intervals, and thus can
be exposed, without the need of a golden reference design,
required by most previous work.

III. PROPOSED DETECTION METHOD

Our proposed method consists of two phases. In the
first phase, different micro-architectures (designs) with unique
power profiles are generated using a HLS design space ex-
plorer. Three of these micro-architectures are in turned in-
stantiated on a reconfigurable computing platform. Because
they have different power profiles, they will also have different
thermal behaviors. The same input data are applied to the three
designs and their internal temperatures measured using a ring
oscillator instantiated within each design in order to accurately
capture their temperature. The output values are then compared
and the system checks for any discrepancies. A HW Trojan
exists if one of the three designs generates different outputs at
a specific temperature. This is reported through the serial port
to the computer connected to the FPGA board. Our proposed
method is not meant to be in the final design released in the
field, but only as a detection platform. If the IP passes the
check, then it can be deployed safely in the field.

HLS Design Space Explorer : Fig. 1 shows an overview
of the first phase of our method. Our proposed method
takes as inputs the behavioral description given in ANSI-C
or SystemC (behavioral IP) to be verified for temperature
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Fig. 1. Design space exploration flow starting from the behavioral description
(ANSI-C/SystemC) or synthesizable RTL (Verilog/VHDL).

triggered HW Trojans, a pragma library and the general HLS
synthesis options (target frequency and technology libraries).
Commercial HLS tools make heavy use of synthesis directives
in the form of pragmas (comments) to guide the synthesizer.
Some of the most common pragmas include how to synthesizes
arrays (RAM or registers), unroll or pipeline loops and inline
or not functions. By setting these pragmas the synthesizer will
generate micro-architectures with unique area, performance
and power trade-offs. Out of all these micro-architectures, we
are normally only interested in the Pareto-optimal designs.
These are the designs on the trade-off curve shown in Fig. 1.
The usual exploration criteria is area vs. performance, where
performance is normally specified as the latency or throughput
of the design, depending on the application. In this case, our
method explores area vs. power. Area is important because
the designs will be mapped onto an FPGA board with limited
resources, while power is critical for our work as it will
determine the temperature of the design. Power is the most
important factor when it comes to thermal-build up in any
digital circuit. Other factors like the sequence of execution of
tasks [10] and the placement of components [11] have also
been shown to play a major role. In order to avoid the effect
of the placement on the temperature of each design, these will
be placed symmetrically on the FPGA as shown in the next
section.
Because most of the IPs are currently provided at the RT-
level, our method can also take synthesizable RTL as its input
as shown in Fig. 1. Many commercial HLS tools provide RTL
parsers in order to co-simulated newly generated C/SystemC
code with legacy RTL code. These parsers read synthesizable
RTL code and convert it to the tools’ intermediate represen-
tation so that a simulation model of the entire design can
be generated. This intermediate representation can in turn be
converted to synthesizable C/SystemC. Our method can thus
take as input any behavioral C/SystemC description or any
synthesizable RTL code for exploration.
Out method then continues by generating a new unique set
of synthesis directives. This is done by creating a new header
file (pragma.h) with the synthesis directives. This source code
is in turn parsed and synthesized. The HLS tool reports the
area, latency and average power for the generated micro-
architecture. In our case only the area and power are extracted
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Fig. 2. Temperature-triggered HW Trojan Detection System Overview

as we are interested in finding 3 designs which fit on the FPGA
board, with the largest possible average power difference.
Because the search space is extremely large a genetic algorithm
meta-heuristic is used to generate new pragma configurations,
as genetic algorithms have shown to obtain good results for
multi-objective optimization problems.

FPGA Implementation: Once the explorer finishes, the
three designs with largest average power differences, which fit
in the selected FPGA, are chosen and mapped onto a reconfig-
urable computing board as shown in Fig. 2. The three designs
(D1, D2 and D3) correspond to the ones with the largest
average power differences. These normally also correspond to
the fastest, slowest and one with intermediate performance. It
should be noted that because the three designs are generated
from the same behavioral description, they all contain the HW
Trojan. They are placed at the FPGA at different corners so
that the temperature build up of one instance does not affect
the others as temperature also spreads laterally.
Because the FPGA that we target in this work (Virtex 4) does
not contain any thermal sensors, these are replicated building
ring oscillators (RO). A RO is placed inside each design, in
order to accurately measure their temperature. It should be
noted that each design requires its own thermal sensor, because
if the same temperature reading is used for all three designs,
then all three HW trojan would be triggered at exactly the
same time.
ROs have been shown to be a very effective way of measuring
internal die temperatures in FPGAs [12]. Each RO is composed
of an odd number of inverters. As temperature increases, the
mobility and threshold voltage (Vth)decrease. This leads to
longer propagation delays. Using different configurations, it
was found that for 51 inverters lead to a good compromise
between area and accuracy.
The fact that each of the three designs have a different latency

poses the following challenges: First, in order to verify that
they produce the exactly same outputs, each of them has to be
passed the exact same inputs, but because the designs have
different latencies, this means that one design will always
lead of the others. Moreover, because our method wants to
detect temperature-triggered HW Trojan, the execution cannot

be stopped as this would allow the design to cool down and
hence the HW Trojan would never be triggered. To overcome
these issues, in order to apply the same inputs to the three
designs, a pseudo random number generator (PRNG) is created
for each of the designs, generating the exact same sequence
for each of the designs.
The problem now is when to assign the new inputs to each of
the designs. For this, our system makes use of a useful feature
that most commercial HLS tool include to re-use untimed input
and output test vectors used during the pure SW verification
for verifying the synthesized, timed circuits. This verification
method is called Dynamic Equivalence Checking (DEC), be-
cause it is allows to fully re-use the untimed input and output
test vectors to compare the functionality of the initial untimed
behavioral description and the synthesized timed circuit (either
cycle-accurate model or RTL). During timed simulations, the
timing of when data needs to be read and when a valid output is
generated, needs to be made visible to the testbench. To enable
DEC, commercial HLS environments generate for each input
and output port an output valid signal. These valid signals
are raised each time an input needs to be either read or a
valid output has been written to the output port. HLS tools can
very easily create these signals because they know in which
particular state the inputs are read and in which states the
outputs are generated. This feature is used by our method to
apply test vectors from the PRNG, only when the valid signal
of one of the three designs requests it. It is very important
that all of the three implementations receive the same inputs
in order to verify if the outputs match. Thus our system is
independent of the actual latencies of the three designs making
it extremely flexible for verifying any IP.
The next problem arises when deciding when to compare the
output values. As each design has a different latency, the fastest
design will generate outputs at a faster rate compared to the
other designs. In order to solve this problem, the outputs are
only stored into the output FIFO of each process when the
a thermal threshold is reached. This is currently set to 1◦Cin
this work, but it is parameterizable. This means that whenever
the temperature of any design increases by 1◦C, the output
value is stored in the FIFO. The problem now is that the three
designs will not reach the same temperature at the same time.
Therefore the system also counts the output valid signal pulses
of each of the three designs and stores the counter value with
the actual output values at each temperature interval at the
FIFO. The output of the slower and cooler designs will in turn
be compared when the valid signal pulses match the counted
value of the hottest unit. Once the valid counter values match
the outputs are compared. Any mismatch of the hottest unit
indicates a possible HW Trojan and an LED starts flashing.
This method also allows to dimension the FIFOs in such a
way that it can be guaranteed that even if one of the units
becomes hotter at a much faster rate than the other units, the
system will still work. The size of the FIFO (SFIFO) is set
to SFIFO = bwoutputs × (Tmax − Tamb), where bwoutputs

is the bitwidth of the outputs of the design under verification,
Tmax is the maximum expected temperature,by default set to
100 and Tamb is the ambient temperature (in this work set to
20◦C). The system is also connected through a UART to the
PC to display the values stored in the FIFOs. The LCD on the
FPGA board also constantly displays the temperature at each
of the three designs.



IV. ADPCM CASE STUDY

The adaptive differential pulse code modulation (ADPCM)
design from the SystemC Synthesizable Benchmark suite
(S2CBench) [13] is used as a behavioral IP to test the proposed
detection flow. The IP was modified to include a thermal
management unit, which turns the clock off if a certain temper-
ature is reached (100◦C). The output of the thermal sensor is
therefore connected to the adpcm for temperature monitoring.
The HW Trojan built into the design was programmed to
when TTrigger =45◦C, is reached. In this case the output of
the adpcm is shifted by one to emulate the faulty behaviors
of the circuit due to the HW Trojan. The HLS tool used is
CyberWorkBench v.5.4 [14] from NEC targeting a Virtex 4
XCVSX35-10 FPGA, which is the same as the FPGA on the
ML402 reconfigurable computing board on which the system is
implemented. The target synthesis frequency is set to 50MHz.
Table I shows an overview of the three designs obtained by

TABLE I. ADPCM CONFIGURATIONS
ADPCM Version 4-input LUTs Latency Poweravg [mW]

D1 1,349 4 17.2
D2 689 9 12.4
D3 604 19 9.1

the HLS explorer. D1 has a latency of 4 cycles, requiring an
area of 1,349 4-input LUTs, while consuming on average 17.2
mW. D2 has a latency of 9 cycles, requiring an area of 689
4-input LUTs, while consuming on average 12.2 mW and D3

has a latency of 19 cycles, requiring an area of 609 4-input
LUTs, while consuming on average 9.1mW.
Table II shows the area in terms of 4-input LUTs for all the
components in the system the contribution of each component
to the total area in %. It can be observed that the components
which require most of the area are the three designs under
test and the compare and FIFO modules. The entire system
occupies 14% of the entire FPGA (4,1731/30,720 LUTs). The
proposed system, without the three designs only occupy 37%
of the entire system, which comprises only 5% of the entire
FPGA used in this work. This shows that our method could be
used with larger behavioral IPs as the overhead of the circuit
apart from the three designs under test is very small.

TABLE II. TOTAL SYSTEM AREA
Component LUTs Number Total Area % Area

PRNG 8 3 24 0.01
ADPCM (D1) 1,349 1 1,349 0.32
ADPCM (D2) 689 1 689 0.17
ADPCM (D2) 604 1 604 0.14
Ring oscillator 51 3 153 0.04

Copmare+FIFOs 1,218 1 1,218 0.29
Top module misc 136 1 136 0.03

Total Area 4,055 4,173 1.0

Fig. 3 shows the measured results. It can be observed, as
expected, that the temperature in D1 grows faster than the tem-
perature in D2 and D3, while the temperature build-up in D2

is faster than in D3, due to their different power consumptions.
This leads to D1 reaching the trigger temperature faster than
the other two designs. In particular our system detected that the
HW Trojan was triggered after 318, 352 and 390 seconds for
D1, D2 and D3 respectively. The temperature in each of the
designs continued growing as show in Fig. 3 asymptotically
towards 65◦C. This means that for this particular design our
method could only be used for trigger temperatures up to this
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Fig. 3. Three ADPCM designs thermal-behavior vs. time

temperature, unless the ambient temperature is increased (e.g.
by placing the FPGA in an oven).
The results obtained from this case study, show that our
proposed design flow works well for detecting temperature-
triggered HW Trojan. The method can easily be adapted to any
behavioral IP as the entire process has been fully automated.

V. SUMMARY AND CONCLUSIONS

In this work, we have presented a method to detect
temperature-triggered HW Trojans in behavioral IPs. Our
method makes use of one of the biggest advantages of behav-
ioral VLSI design vs. conventional RT-level design: The ability
of generating micro-architectures with unique characteristics
without having to modify the original description. Our method
hence explores the design space of the behavioral IP to be
verified using not only area vs. performance as a cost function,
but also power. Three designs with unique power profile
are in turn automatically mapped onto an FPGA and a ring
oscillator inserted inside in order to accurately measure their
temperature. Our flow has been fully prototyped and tested on
a Xilinx ML402 board and a case study of an APCM presented.
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