Final Year Project

High-level Synthesis Design Space Exploration

> Supervisor: Dr. Benjamin Carrion Schafer Student: LU Shanqi 13116151D

Content

- Part1: Introduction
 - High-level Synthesis
- Part2: Methodology
 - Tool CyberWorkBench
 - Algorithm
- Part3: Graphical User Interface
 - Functions
 - Plotting widget
- Part4: Results
 - Comparison between brute force and simulated annealing

High-level Synthesis

- A process of converting behavior descriptions to hardware implementation
- From SystemC to hardware
- Tools: CyberWorkBench, Xilinx Vivado....

Higher Abstract Level

- Advantages
 - shorter marketing cycle
 - Increasing reusability of programming codes
- Disadvantages
 - Numerous synthesis options are available, hence hard to find optimal designs

Design Space Exploration

- An exploration process aiming to find optimal designs among uncountable candidates in high level synthesis
- Multi-objective optimization problem
- One design pareto dominate another.
- One design is not inferior to another design in all objectives, additionally, there is at least one better objective.

Objectives of this project

- To automate the process of design space exploration
- To develop a heuristic to accelerate design space exploration
- To develop a graphical user interface(GUI) to plot results dynamically

Tool: CyberWorkBench

- Parse description language(e.g. SystemC)
 Special pragmas can be recognized by parser
- Generate constraint files(e.g. Functional Units constraint file)
- Synthesize
 - Results are store in a *.CSV file

Tool: CyberWorkBench

- Pragma insertion
- Key word: Cyber

 Change high-level synthesis options(also called attributes) by inserting such kind of pragmas

Tool: CyberWorkBench

Problem clarification

• Treat high-level synthesis process as a black box function

$$(Area, latency) = f(x1, x2, x3....)$$

- Multiple input variables: x1,x2,x3.....
- Two objectives: area, latency
- Find more pareto optimal designs in shorter time

Problem clarification

Algorithms

- Brute Force(exhaustion method)
 - a generate-and-test algorithm to check all possible candidates that satisfy specification of a problem
- Simulated Annealing
 - probabilistic heuristic
 - other heuristics(e.g. genetic algorithm)

• Step1: Generate a initial design randomly as the base design and synthesize it. Synthesized result is used to calculate first GCF as base state of system. Set an initial temperature for the system.

design1

array=RAM

loop=unroll all

function=inline

• Global cost function is defined as:

$$GCF = \partial A + \beta L$$

• Step 2: Generate a new design from base design by randomly modifying one attribute's value.

• Step3: Compare new GCF and previous GCF. Then, determine whether to accept the new design. Probability to accept a worse design:

$$P = e^{-\frac{\Delta GCF}{k}}$$

 Step4: If 5 better designs are consecutively generated, reduce current temperature by 10%. Change parameters in GCF for every 8 designs.

• If no exit condition is met, iterate from step2 to step 4. Exit iteration if one exit condition is met.

- Exit conditions:
 - i. Current temperature is less than threshold.
 - ii. Consecutively, more than 5 new designs are worse than previous design.
 - iii. Cannot generate new designs by changing one of the attributes.
 - iv. Synthesized designs are more than 70% of all designs.

• Why SA?

(Area, latency) = f(x1, x2, x3....)

• Some input sequence might lead to a good result. e.g.

array=RAM loop=unroll all small area and small latency
 Change one attribute at a time while maintaining other attribute combinations

Graphical User Interface for Design Space Exploration

MainWindow C File Library New file BLIB library FLIB library

Qt Framework

- A cross-platform framework for developing applications
- Signals and Slots: Communication mechanism between different parts of the program
- QCustomPlot: An online open source widget for plotting
- Multithread programming: To prevent GUI freezing
- Model/View Programming: To modify data outside current program(used in file list)

- ComboBox
- Selecting files or options

- Selecting other
 benchmarks
- Selecting other libraries
- Filtering out files with wrong extensions

	C Fil	P	Library						
	CTH		Library						
< C	New	file B.I	B library	FLIB library					
	fir.cpp	~	ASIC	*	Auto attr	Delete	All	simul	lated ann
	Nar	me	Size	Туре	Date	1			
	۱ E	works		Folder	13/	4.8 -			
		attr_lib	270 by	tes File	10/	1			
		dafina h	1	KB h Eila	9/4				
New file BLIB	library	FLIB libr	ary						
			•			_	_	_	_
r.cpp 👻	ASIC	<u> </u>	Choose a file	e				_	
Name C	170	Look in	C /bar	no/clu/bonchm	orko/fir		- 0	00	a i
Name S	ize	LOOK IN:	inor	ne/siu/benchm	arks/III		• •		
attr lib	27	🖪 Comp	uter Na	me		▼ Size	Туре	Date Mod	lified
define.h	~ '	slu	e wo	orkspace		1 100	Folder	13/4/151	:08 AM
fir_coe	2	-	fir	_gen.cpp		1 KB	cpp File	12/4/15 8	3:26 PM
fir_gen			- m	ain.opp		2 KB	con File	9/4/15 7:	30 PM
fir_in	6		tb	fir.cpp		4 KB	cpp File	9/4/15 7:	30 PM
fir_out									
fir.cpp									
fir.cpp~									
fir.h									
main.cpp									
Makefile									
ome/slu/henchma	rks/fir/								
one, star benefitie									
	_								
ogress	F								
Run	Stop								-
home/slu/benchm	arke/fir	File name	fir.cpp						Open
ionie/stu/benchin	011/2/18)		E	14					Connel

- Automatic attribute insertion Auto attr
- To examine input SystemC file and insert pragma automatically based on syntax.

sc_uint<8> in_data_read[9]/*attr1*/; sc_uint<16> coeff_read[9]/*attr2*/;

- To show selection information such as which technology library has been selected.
- To Show design information dynamically while running, like that total number of designs, current number of designs and synthesis results.

Run	Stop	Optimize	Show all	Run	Stop	Optimize	Show all	
/home/slu/benchmarks/fir/fir.cpp /eda/bin/cwb/cyber/lib/asic_45.FLIB /eda/bin/cwb/cyber/lib/asic_45.BLIB Method not chosen			run high-level synthesis Start design space exploration Total number of designs: 128					
Method: simulated annealing file information				new design 1/128 Area is : 7119 Latency is 23 Throughput is 736				
				new design 2/128 Area is : 4726 Latency is 29 Throughput is 696			696	
Design information Clean			Design information Clean					

design information

- Embedded editor
- To edit synthesis command
- Standard shortcuts for editor like copy, cut and paste can work

Show command before running Update command Through						
bdltran -c1000 -s -lfl /eda/bin/cwb/ asic_45.BLIB fir.IFF -Zflib_fcnt_out -	cyber/lib/asic_45.FLIB -lb /eda/b Zmlib_mcnt_out	in/cwb/cyber/lib/				

Plotting widget

HE HONG KONG

香港理工大學

POLYTECHNIC UNIVERSITY

Plotting widget

• Zoom out and zoom in using mouse wheel

Plotting widget functions

- Interactivity
- Mouse clicking

Plotting widget functions

• File list

Timer

• Elapsed time

Elapsed time:

- 25: 00: 00
- Remaining time

Remainning Time: Estimating...

Remainning Time: 00:00:00

Progress Bar

- To show progress
- Relatively accurate for brute force
- Not useful if simulated annealing method is used

Conflict handling

- Conflicts between widgets in program sometimes appear and render program's crashing
- Mechanisms to check conflicts and pop up warning messages

Change Coordinate

• Change to area versus throughput

 $Throughput = Output _port_number \times \frac{1}{CP_delay \times Latency}$

Show optimal designs

Click button Optimize Show all

Synthesis Results

• Three benchmarks

Bench	Туре	#lines	Explorable operations	Brute	SA
fir	С	86	array(2), loop(2), function(1)	340s	55s
qsort	С	119	array(1), loop(2),function(3)	843s	64s
adpcm_encoder	С	179	array(1),for(1),function(2)	130s	54s

Brute Force Results

adpcm_encoder

Simulated Annealing Results

Comparison

- Time Comparison
- Averagely, running time of simulated annealing algorithm for these three benchmarks is 21.8 percent of brute force algorithm, which means SA algorithm's speed is 4.59 times of BF algorithm's speed.

Bench	Brute force	Simulated annealing	SA versus BF
fir	340s	55s	16.2%
qsort	843s	64s	7.6%
adpcm_enconder	130s	54s	41.5%

$$average = \frac{16.2 + 7.6 + 41.5}{3} = 21.8\%$$

Comparison

- Qualitative comparison
- In these experiments, brute force method has gone through all designs. Therefore, pareto dominance for brute force is 100%
- It has been found that simulated annealing could find 66% pareto dominated points.

Bench	Brute force	Simulated annealing	SA versus BF
fir	5	2	40%
qsort	6	5	83%
adpcm_enconder	4	3	75%

average =
$$\frac{40 + 83 + 75}{3} = 66\%$$
Part4: Results

Conclusion

Achievements

- This project has completed the main goals. It has developed one heuristic (simulated annealing) for design space exploration that achieved around four times faster speed than brute force method.
- A graphical user interface that could display synthesis results dynamically was developed.

Limitations and future works

- Other heuristics can be developed and compared to simulated annealing
- Number of tested benchmarks is not enough
- Automatic attribute insertion could only support special language formats

