FYP Final Presentation "Hardware-Based Face Detection"

Supervisor:

Dr. Benjamin C. Schafer

Project ID: schaferb_20130322183957

Student	Qixuan ZHANG
Student ID	10802747D
Venue	Room DE304
Time	12:40 - 1:00 pm
Date	May 11 st , 2015

Outline

- Recall memory
- Project Schedule & Milestones
- Methodology
- Hardware Implementation
- Result & Conclusion
- Further Development

• Q&A

Recall your memory => Face Detection

- Wide applications
 - Auto Focusing for Digital Cameras
 - Face Recognition
 - Video surveillance, and etc...

- Skin-Color-Based Face Detection
 - Simple implementation
 - Using fewer FPGA resources

Recall your memory => FPGA

• Reconfigurable "Versatile Chips"

Field-Programmable Gate Array (FPGA)

http://www.electronicproducts.com/Digital_ICs/Standard_and_Programma ble_Logic/The_evolution_of_FPGA_coprocessing.aspx

Objectives

- To study on the image & video processing techniques, especially ones related to face detection;
- To be familiar with the FPGA system design and develop deeper understanding on its characteristics:
 - Compared to sequential micro-processors
 - ✓ Parallel Execution
 - => Hardware acceleration
 - => Faster processing for specific applications
 - Compared to custom ASIC design
 - ✓ Reconfigurable
 - => Faster prototype
 - \Rightarrow Low-cost verification
- To implement an FPGA-Based Face Detection System

Project Schedule

Month/Year	Task				
09/2014	Background Learning and Basic Understanding Establishment	✓			
10/2014	Trials on C Sobel Filter and get familiar with CWB & QuartusII Tools	√			
11/2014	DE2-115 Board Experiments and Basic Function Implementation like Camera Capture, VGA Display and Simple Image Operations	✓			
12/2014	Edge Detection Operation and HLS of the C Sobel Filter Interim Presentation & Report	✓			
01/2015	System Design and Operation Flow Trials in Software Approach	✓			
02/2015	Hardware Single Modules Design and Functionality Verification	\checkmark			
03/2015	System Module Integration and Board Verification	✓			
04/2015	Testing, Improvement, Final Report and Presentation	\checkmark			

Major Steps of Project Implementation

Skin-Color-Based Face Detection System

- One PLL (Phase-Locked Loop) manages the clock utilization;
- One **Reset_Delay** Module manages the RESET functions;

CCD Camera Configuration By I2C

- Multi-master, multi-slave, single-ended, serial bus
- Used for attaching lower-speed peripherals to processors on computer motherboards or embedded systems
- Two critical bus lines
 - a serial data line (SDA)
 - a serial clock line (**SC**L)

CCD Camera Configuration By I2C

• Look-Up Table (LUT) built according to Hardware Specifications

239 Ξ case(LUT INDEX) 0 : LUT DATA <= 24'h000000;</pre> 240 241 1 : LUT_DATA <= 24'h20c000; // Mirror Row and Columns 242 2 : LUT DATA <= {8'h09, senosr exposure};// Exposure</p> 243 244 245 246 7 : LUT DATA <= 24'h2C009A; // Blue Gain 247 8 : LUT_DATA <= 24'h2D019C; // Red Gain 248

 9
 : LUT_DATA <= 24'h2E0013;</td>
 // Green 2 Gain

 10
 : LUT_DATA <= 24'h100051;</td>
 // set up PLL power on

 249 250 251 `ifdef VGA 640x480p60 11 : LUT_DATA <= 24'h111f04; // PLL_m_Factor<<8+PLL_n_Divider 12 : LUT_DATA <= 24'h120001; // PLL_p1_Divider</pre> 252 253 254 `else 11 : LUT_DATA <= 24'h111805; // PLL_m_Factor<<8+PLL_n_Divider</pre> 255 12 : LUT DATA <= 24'h120001; // PLL p1 Divider 256 257 `endif 13 : LUT_DATA <= 24'h100053; // set USE PLL</pre> 258 14 : LUT_DATA <= 24'h980000; // disble calibration 259

 15 : LUT_DATA <= 24'hA00000;</td>
 // Test pattern control

 16 : LUT_DATA <= 24'hA10000;</td>
 // Test green pattern value

 17 : LUT_DATA <= 24'hA20FFF;</td>
 // Test red pattern value

 260 261 262 18 : LUT DATA <= sensor start row ; // set start row</p> 263 19 : LUT_DATA <= sensor start column ; // set start column 264 265 20 : LUT DATA <= sensor row size; // set row size</p> 21 : LUT_DATA <= sensor column size; // set column size</pre> 266 22 : LUT DATA <= sensor row mode; // set row mode in bin mode 267 23 : LUT DATA <= sensor column mode; // set column mode in bin mode 268 24 : LUT DATA <= 24'h4901A8; // row black target 269 270 default:LUT DATA <= 24'h000000;</pre>

The Bayer arrangement of color filters on the pixel array of an image sensor

Interpolation to get RGB components

Frame Buffer (Multi-Port SDRAM Controller)

- Multi-Ports
 - 2 writing ports + 2 reading ports
- **FIFO Control**
 - The video frames are captured real-time and buffered in FIFO
- Critical issues •
 - R/W Bandwidth (16-bit each port)
 - Read/Write Synchronization
 - Memory Utilization Efficiency

41	// FIFO Write Side 1
42	WR1_DATA,
43	WR1,
44	WR1_ADDR,
45	WR1 MAX ADDR,
46	WR1 LENGTH,
47	WR1_LOAD,
48	WR1 CLK,
49	// FIFO Write Side 2
50	WR2_DATA,
51	WR2,
52	WR2_ADDR,
53	WR2 MAX ADDR,
54	WR2_LENGTH,
55	WR2_LOAD,
56	WR2_CLK,
57	// FIFO Read Side 1
58	RD1_DATA,
59	RD1,
60	RD1_ADDR,
61	RD1_MAX_ADDR,
62	RD1_LENGTH,
63	RD1_LOAD,
64	RD1_CLK,
65	<pre>// FIFO Read Side 2</pre>
66	RD2_DATA,
67	RD2,
68	RD2_ADDR,
69	RD2_MAX_ADDR,
70	RD2_LENGTH,
71	RD2_LOAD,
72	RD2_CLK,

Color Space Conversion

✓ RGB ⇔ YCbCr

=> Luminance component is separated from chrominance component

=> used in skin segmentation

$$\begin{bmatrix} Y\\ C_b\\ C_r \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114\\ -0.169 & -0.331 & 0.500\\ 0.500 & -0.419 & -0.081 \end{bmatrix} \cdot \begin{bmatrix} R\\ G\\ B \end{bmatrix} + \begin{bmatrix} 0\\ 128\\ 128 \end{bmatrix} \quad \begin{array}{c} Y \in [0, 255]\\ C_b \in [0, 255]\\ C_r \in [0, 255]\\ (F.15) \end{array}$$

- Techniques to deal with FP
 - Binary representation
 - Shift 10 bits to left => shift back!

Pre-Processing

CCD

Sensor Data

Capture

Altera FPGA Cyclone

I2C CCD

Configuration

4-Port SDRAM

Controller

Color-Space

Converter

TRDB_D5M Camera Modul

CCD PCLK

Image MCLK Sensor

DAT/

FVAL

LVAL

SDA

DE2-115 Development Board

ADDR SDRAM

Skin-Color

Thresholdin

VGA DAC

VS VS

VGA

Controller

Post-Processing

 MAC MegaCores (Multiplication & Addition)

Skin Segmentation

- YCbCr Chrominance Component Ranges
 - Theoretical range proposed by previous scholars, D. Chai & K. N. Ngan,

"Face segmentation using skin color map in videophone applications"

77 < Cb < 127133 < Cr < 177

• Value range should be adjusted according to the real environment setting for the reason of lighting noise

Post-Processing

=>

Spatial Filtering + Temporal Filtering + Centroid Computation

Spatial Filtering

- Window Size & Threshold should be adjusted for better performance
 - 9 Rows * 9 Columns = 81 pixels
 - Threshold = 78

Temporal Filtering

Time-Weighted Average Module

(learnt from the averaging module by Prof. Bruce Lund, Cornell University)

• Weighting for the old average and later pixel data

$$out_avg = \frac{3}{4} in_avg + \frac{1}{4} pixel_data$$

$$out_{avg} = in_avg - \frac{1}{4} in_avg + \frac{1}{4} pixel_data$$

Mu

Bit Shifting

Frame Pixel	t	t+1	t+2	t+3	t+4	t+5	t+6	t+7	t+8	t+9	t+10	t+11	t+12
Before Filtering	0	1	1	1	0	1	1	1	1	0	0	1	1
Average	0.00	0.25	0.44	0.58	0.43	0.58	0.68	0.76	0.82	0.62	0.46	0.60	0.70
After Filtering	0	1	1	1	1	1	1	1	1	1	1	1	1

Centroid Computation

--- To mark the faces --- For further facial feature verification

- Calculate the centroids of the candidate regions
 - By averaging the sum of X,Y Coordinates
- At most two faces can be detected!
 - Assume the two faces can only be aligned horizontally

VGA Display + Pixel Coordinates Synchronization

>Used to record the **corresponding coordinates** for **each operating pixels**;

Post-processing causes certain cycles delay

=> Coordinate signals are **delayed** for specific cycles;

Hardware Implementation Result

Hardware Synthesis Report

Module	Total logic elements	Total combinational functions	Dedicated logic registers	Total registers	Total memory bits	Fmax (Slow 1200mV 85C)	Fmax (Slow 1200mV 0C)
Post_Processing	18,606 / 114,480	18,520 / 114,480	6,865 / 114,480	6865	0 / 3,981,312	9.74	10.8
	(16%)	(16 %)	(6%)		(0%)	MHz	MHz
skin_seg	41 / 114,480	11 / 114,480	31 / 114,480	31	0 / 3,981,312	N/A	N/A
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)		
RAW2RGB	102 / 114,480	93 / 114,480	72 / 114,480	72	30,672 / 3,981,312	249.63	272.7
	(< 1 %)	(< 1 %)	(< 1 %)		(< 1 %)	MHz	MHz
Reset_Delay	54 / 114,480	54 / 114,480	37 / 114,480	37	0 / 3,981,312	218.05	239.98
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)	MHz	MHz
CCD_Capture	89 / 114,480	88 / 114,480	80 / 114,480	80	0 / 3,981,312	272.03	295.86
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)	MHz	MHz
RGB2YCbCr	481 / 114,480	457 / 114,480	195 / 114,480	195	0 / 3,981,312	185.98	208.55
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)	MHz	MHz
Sdram_Control	1,645 / 114,480	1,394 / 114,480	745 / 114,480	745	32,768 / 3,981,312	144.7	160.05
	(1%)	(1%)	(< 1 %)		(< 1 %)	MHz	MHz
VGA_Ctrl	104 / 114,480	104 / 114,480	26 / 114,480	26	0 / 3,981,312	408.0	447.43
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)	MHz	MHz
I2C_CCD_Config	280 / 114,480	266 / 114,480	131 / 114,480	131	0 / 3,981,312	229.15	247.4
	(< 1 %)	(< 1 %)	(< 1 %)		(0%)	MHz	MHz
Complete Design	20,728 / 114,480 (18 %)	20,391 / 114,480 (18 %)	7,955 / 114,480 (7 %)	7955	59,404 / 3,981,312 (1%)	166.0 MH7	183.42 MH7
			(,,,,,,			101112	101112

Conclusion

--- Performance Analysis

• Functionality Achieved

• Good Functionality in Ideal Environment (lighting conditions, simple background)

• Hardware or FPGA Resources Optimized

- Use optimized MegaCores for Altera Devices
- Use fewer logic elements (18%)

• Drawbacks

- --- For the limitation of the algorithms adopted
- Luminance Conditions
- Facial Views
- Skin-Color Objects
 - \Rightarrow Finding good thresholds for different environments is hard.
 - \Rightarrow **Picking bad thresholds yields many false positives.**

Further Issues To Be Considered

• Aspect I – Algorithm View

Advanced Machine Learning Algorithms can be adopted for higher accuracy;

• Aspect II – Hardware View

Customized hardware may be used, such as camera module, memory and DSPs.

• Aspect III – Design Flow View

MATLAB to HDL Coder, Complete HLS Design Flow

• Aspect IV – Performance Comparison View

Use the same algorithm for both software and hardware implementations and make comparisons.

• Aspect V – Application View

Face Detection System with real applications, like security check and etc.

References

- Kwok-Wai Wong, Kin-Man Lam and Wan-Chi Siu, "An Efficient Algorithm for Human Face Detection and Facial Feature Extraction under Different Conditions", Pattern Recognition, Vol. 34, pp.1993-2004, U.S.A, 2001
- Erik Hjelmas and Boon Kee Low, *"Face Detection: A Survey"*, Computer Vision and Image Understanding, Vol. 83, No. 3, pp.236-274, Sept. 2001
- Rein-Lien Hsu, Mohamed A. Mottaleb and Anil K. Jain, *"Face Detection in Color Images"*, IEEE Transactions on Pattern Analysis and Machine Intelligence, VOL. 24, No. 5, May 2002, [Online], <u>http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1000242&tag=1</u>
- Paul Viola and Michael J. Jones, *"Robust Real-Time Face Detection"*, International Journal of Computer Vision 57(2), pp. 137-154, 2004
- Ramsri Goutham Golla, "Real-time Face Detection and Tracking", Arizona State University
- Xilinx training materials on FPGA design Field Programmable Gate Array, October 2014, [Online] http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-array.htm
- J.U. Cho, S. Mirzaei, J. Oberg and R. Kastner, *"FPGA-Based Face Detection System Using Haar Classifiers"*, International Symposium on Field Programmable Gate Arrays (FPGA), Feb. 2009
- Yu Wei, Xiong Bing and Charayaphan Chareonsak, *"FPGA Implementation of AdaBoost Algorithm for Detection of Face Biometrics"*, IEEE International Workshop on Biomedical Circuits & Systems, 2004
- W. Meeus, K. Van Beeck, T. Goedemé, J. Meel and D. Stroobandt, *"An Overview of Today's High-Level Synthesis Tools"*, Design Automation Embedded System, Springer Science + Business Media, LLC 2012
- K. Wakabayashi and Benjamin C. Schafer, "'All-in-C" Behavioral Synthesis and Verification with CyberWorkBench, From C to Tape-Out with No Pain and A Lot of Gain", High-Level Synthesis from Algorithm to Digital Circuit, Springer, Chapter 7, 2008
- Yu-ting Pai, Shanq-jang Ruan, Mon-chau Shie and Yi-chi Liu, "*A Simple and Accurate Color Face Detection Algorithm in Complex Background*", ICME, 2006, 2012 IEEE International Conference on Multimedia and Expo, 2012 IEEE International Conference on Multimedia and Expo 2006, pp. 1545-1548

References

- D. Ghimire and J. Lee, "A Robust Face Detection Method Based on Skin Color and Edges", Journal of Information Process System, Vol. 9, No. 1, March 2013
- J. Cho, B. Benson, S. Cheamanukul and R. Kastner, *"Increased Performace of FPGA-Based Color Classification System"*, Field-Programmable Custom Computing Machines (FCCM), 2010 18th IEEE Annual International Symposium, May 2010
- S. Paschalakis and M. Bober, *"Real-Time Face Detection and Tracking for MobileVideoconferencing"*, Real-Time Imaging, Vol. 10, No. 2, pp. 81-94, April 2004
- NEC CyberWorkBench Product Brochure, NEC Official Company Website, Oct. 2014, [Online], http://www.nec.com/en/global/prod/cwb/pdf/212_0920_CyberWorkBench_Eng_03.pdf
- Ming-Hsuan Yang, David J. Kriegman and Narendra Ahuja, *"Detecting Faces in Images: A Survey"*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, Jan. 2002
- Thu Thao Nguyen, "Design Project Report Real Time Face Detection and Tracking", ECE MEng Design Project, Cornell University, December, 2012
- S. L. Phung, A. Bouzerdoum, and D. Chai, "A Novel Skin Color Model in YCbCr Color Space and Its Application to Human Face Detection", IEEE Image Processing, Proceedings, International Conference, Volume I, 2002
- Douglas Chai and King N. Ngan, *"Face Segmentation Using Skin-Color Map in Videophone Applications"*, IEEE Transactions on circuits and systems for video technology, Volume 9, No. 4, June 1999, [Online], http://www.ee.cuhk.edu.hk/~knngan/TCSVT_v9_n4_p551-564.pdf
- Prof. Bruce Land, "ECE5760 Advanced Micro-controllers Course Portal Final Projects", Cornell University, [Online], http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/
- Chen-Chiung Hsieh, Dung-Hua Liou and Wei-Ru Lai, "Enhanced Face-Based Adaptive Skin Color Model", Journal of Applied Science and Engineering, Vol. 15, No. 2, pp. 167-176, 2012, [Online], http://www2.tku.edu.tw/~tkjse/15-2/10-IE9920.pdf

END

Thank you for your listening!

If no questions.....

Have a nice day! ③

Recall memory => Face Detection

- Wide applications
 - Auto Focusing for Digital Cameras
 - Face Recognition
 - Video surveillance, and etc...
- Viola-Jones AdaBoost Face Detection, Neural Network Based Face Detection, PCA-Based Face Detection
 - Complicated
 - Resource-demanding

- Skin-Color-Based Face Detection
 - Simple implementation
 - Using fewer FPGA resources (Memory & LEs)

Hardware Summary

Processing and Control Terasic FPGA DE2-115 Control Unit, Process Processing and Control Development and Education Memory Unit a Board (Altera Cyclone IV Communication Communication Picture Capture Terasic TRDB_D5M - 5 Mega Picture Data Collection	Function	Core Modules	
Picture Capture Terasic TRDB_D5M - 5 Mega Picture Data Collecti	Processing and Control	Control Unit, Processing Unit Memory Unit and Communication Unit	
Pixel Digital Camera Package	Picture Capture	Picture Data Collection Unit	
Display PC Display with VGA Port VGA Display U	Display	VGA Display Unit	

Table 3 – Hardware list and corresponding tasks

EDA Tools Summary

- Altera Quartus II 13.1
 - => Verilog HDL Coding
- ModelSim-Altera Starter Edition
 - => Simulation
- NEC CyberWorkBench (CWB)
 => HLS + Preliminary Simulation
 => From C to Verilog HDL

Edge Detection Trial $\nabla_1 = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$

 \Rightarrow Sobel Filter

$$\frac{\partial I}{\partial x} \rightarrow \text{horizontal}$$
 $\frac{\partial I}{\partial y} \rightarrow \text{vertical}$

 $\nabla_2 = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$

– Spatial Derivative

(Horizontal + Vertical) $|\nabla| = \sqrt{\nabla_2^1 + \nabla_2^2}$ ---- gradient magnitude

MATLAB Result

Gray Binanlized By Skin Color

Gray Processed - Path B

Combined-two-path method

Pure Skin-Color-Based Face Deter

Gray Binarilized By Skin Color

Gray Processed - Path B

Gray Processed - Path A

Hardware Implementation

=> Detection Method was adjusted for hardware consideration.

Issues to consider	Software (MATLAB)	Hardware (Verilog)
Memory Resources & Access	The whole frame image are stored and any pixel can be accessed whenever we want;	Specific pixel data in a frame cannot always be stored so they cannot be accessed whenever we want;
Code Implementation &	Sequential execution;	Parallel execution;
ι ππης	DelayWait for the preceding executions;	Lower CLK frequency but tasks can be divided into several cycles and many tasks can be handled at the same time (Pipelines);

Basic System Considerations

- Tradeoff
 - Store 10-bit R, G, B data
 - Color Space Conversion after Frame Buffer
 - More bits and more memory
 - Higher video acquisition rate
 - Better synchronization of the pixel coordinates

VGA Display + Pixel Coordinates Synchronization

Image Enhancement

- Can be added for better detection performance
- Luminance Enhancement
 - linear lighting correction
 - nonlinear lighting processing
 - Proposed enhancement uses nonlinear transfer function based on a local approach in HSV color space
- Contrast Enhancement
 - Histogram Equalization
 - Gaussian convolution in HSV color space

Noise Removal

 Low-pass filters and median filters are used most often for noise suppression or smoothing, while high-pass filters are typically used for image enhancement.

Low-Pass Filter => Remove High-Frequency Noise

Median Filter

=> A nonlinear process

- to reduce impulsive, or salt-and-pepper noise
- to preserve edges in an image

Backup Pages for Q&A

CWB HLS Flow of Design

(1) Describe ANSI-C and modify for HW.

[Steps]

A. Add input and output variables.

B. Modify descriptions which cannot be synthesized in HW.

- e.g. 'recursive call', 'dynamic memory allocation', 'system call', etc.
- C. Add bit width declaration (although not necessary)
 - The bit width declaration of inputs and outputs is recommended to achieve smaller area designs. Other internal variables are optimized automatically.

Behavioral Synthesis

- (1) Specify clock frequency
- (2) Specify scheduling mode
- (3) Specify CWB libraries, FLIB and BLIB (Refer to the Section. 1-2-1)
- (4) Synthesize the design

Verification

Verification in CWB

- (1) Simulation based verification (behavioral level, cycle accurate level)
- (2) Formal verification (Property checker, C-RTL equivalence prover)

12	module s	obel (input	row_a00 input_row_a	01 input_row_a0	2 output_row CLOCBackStop Pages for Q&A
13	input	[0:7]	input row a00;	//line#=.//	/sobel.c:57
14	input	[0:7]	input row a01;	//Ine#=_//	/sobel.c:57
15	input	10:71	input row a02:	//line#=_/_/	sobel c:57
16	output	10:71	output row ;	//line#= /	/sobel c 58
17	input		CLOCK !	43	#ifdef C
18	input		RESET	44	
				45 46	#include "stdio.n" #include "stdib.h"
				47	
				48	unsigned char input_row[SIZE_BUFFER];
				45 50	unsigned char output_tow,
				51	/* Global variables */
				52 53	unsigned char line_buffer[SIZE_BUFFER][SIZE_BUFFER];
				54	#else
				55	/* Entity declaration : Inputs and outputs with their bitwidths */
				57	in ter(0:8) input_row[SIZE_BUFFER]; //8-bit for each pixel-> 0-255
				58	out ter(0:8) output_row; //8-bit for each pixel-> 0-255
				59 60	/* Global variables */
				61	var(0:8) line_buffer[SIZE_BUFFER][SIZE_BUFFER];
				62 63	#endif
				64	
				65	#fdef C
				67	#else
				68	process sobel(){ //defined for CWB HW-C
				69 70	#endit Mocal variables declaration
				71	unsigned int X, Y;
				72	int sumX, sumY; int SUM rewOffect;
				73	Int SOM, rowonset, colonset,
				75	char Gx[3][3] = { $\{-1, -2, -1\},$
				76 77	{ 0, 0, 0}, { 1 2 1}}·
				78	(1, 2, 1)).
				79	
				80 81	char $Gy[3][3] = \{\{-1, 0, 1\}, \{-2, 0, 2\}, \{-2, 0, 2\}, \}$
				82	{-1, 0, 1}};

Backup Pages for Q&A

Svnthesis Report Bv Ouartus II

Flow Summary

Flow Status	Successful - Fri Jan 09 00:	12:45 2015
Quartus II 32-bit Version	13.0.0 Build 156 04/24/20	13 SJ Web Edition
Revision Name	DE2_115_CAMERA	
Top-level Entity Name	DE2 115 CAMERA	rget
Family	Cyclone IV E	
Device	EP4CE115F29C7	vice
Timina Models	Final	IEs
Total logic elements	2,255 / 114,480 (2 %)	
Total combinational functions	1,912 / 114,480 (2 %)	Usage
Dedicated logic registers	1,376 / 114,480 (1%)	
Total registers	1376	
Total pins	428 / 529 (81 %)	0-
Total virtual pins	0	
Total memory bits	74,656 / 3,981,312 (2 %)	Mom
Embedded Multiplier 9-bit elements	30 / 532 (6 %)	
Total PLLs	1/4(25%)	

Backup Pages for Q&A Altera IP or Megafunctions Used in The Project

	Entity	IP Component Name	Version	IP File	Vendo
1	Line_Buffer1	Shift register (RAM-based)	9.1	v/Line_Buffer 1.qip	Altera
1	sdram_pll	ALTPLL	9.1	v/sdram_pll.qip	Altera
>	LineBuffer_3	Shift register (RAM-based)	13.0	LineBuffer_3.qip	Altera
>	PA_3	PARALLEL_ADD	N/A	H:/Final Year Project/Kevin Codes/FPGA/DE2_115_CAMERA_Sobel/PA_3.v	Altera
>	SQRT	ALTSQRT	N/A	H:/Final Year Project/Kevin Codes/FPGA/DE2_115_CAMERA_Sobel/SQRT.v	Altera
>	MAC_3	ALTMULT_ACCUM (MAC)	13.0	MAC_3.qip	Altera
>	Sdram_RD_FIFO	FIFO	N/A	H:/Final Year Project/Kevin Codes/FPGA/DE2_115_CAMERA_Sobel/Sdram_Control/Sdram_RD_FIFO.v	Altera
>	Sdram_WR_FIFO	FIFO	N/A	H:/Final Year Project/Kevin Codes/FPGA/DE2_115_CAMERA_Sobel/Sdram_Control/Sdram_WR_FIFO.v	Altera
>	Line_Buffer3	Shift register (RAM-based)	13.0	Line_Buffer3.qip	N/A
>	LineBuffer3	Shift register (RAM-based)	13.0	LineBuffer3.qip	N/A

Backup Pages for Q&A

High-Level Synthesis By NEC CyberWorkBench (CWB)

- From C to Verilog HDL
- Preliminary simulation & verification

Three steps to achieve breakthrough performance (From Xilinx)

- 1. Utilize the dedicated resources
 - Dedicated resources are faster than a LUT/Flip-Flop implementation and consume less power
 - Typically built with the CORE Generator tool and instantiated
 - DSP48E, FIFO, Block RAM, ISERDES, OSERDES, EMAC, and MGT, for example
- 2. Write the code for performance
 - Use synchronous design methodology
 - Ensure the code is written optimally for critical paths
 - Pipeline when necessary
- 3. Drive your synthesis tool
 - Try different optimization techniques
 - Add critical timing constraints in synthesis
 - Preserve hierarchy
 - Apply full and correct constraints
 - Use high effort

Post_Processing	18,606 / 114,480 (16 %)	18,520 / 114,480 (16 %)	6,865 / 114,480 (6 %)	6865	0 / 3,98 0 <u>%</u>