FINAL YEAR PROJECT FINAL PRESENTATION

HARDWRAE-BASED FACE DETECTION

Supervisor: Dr. Benjamin Carrion Schafer Student: Zhang Yunlei

Contents

- 1. Introduction
- 2. Design Methodology & Result
 - 2.1 Design Objective
 - 2.2 Real-time video display
 - 2.3 Real-time face detection based on face color and hair color
 - 2.4 Higher accuracy with the help of motion detection
- 3. Reflection & Outlook
- 4. Conclusion

Face is Identity

Face Detection (Location) is basis

Why Use Color Detection

- Three key points: speed, accuracy, stability
- Many methods: Principal Component Analysis (PCA), Neural Networks (NN), Support Vector Machines (SVM), Hough Transform (HT), Geometrical Template Matching (GTM), color analysis,etc

Why Color Detection?

Why Use Color Detection

- Real-time face detection requires large data flow
- Repetitive data accessing is impossible

PROCESS DATA ON DATA PATH

A alle cit

Improve Accuracy

• However, simple color detection may not be reliable

Improve Accuracy

- Only head has hair on the top
- Hair helps locate face

Use hair as assistance

Improve Accuracy

• How about black background?

Motion Detection!!

Why FPGA

- Parallel processing
- More powerful functions in further research

1. Introduction

- Hardware:
 - Altera Cyclone IV (EP4CE15F17C8)
 - TFT Screen (AT070TN83) (800*480, RGB565)
 - CMOS Camera (OV7670) (640*480, RGB565)
 - SDRAM(H57V2562GTR)
- Software:
 - Quartus II
 - Modelsim
- HDL:
 - Verilog

2. Design Methodology & Result

2.1 Design Objective

- Step 1: Real-time video display
- Step 2: Real-time face detection based on face color and hair color
- Step 3: Real-time face detection with the help of motion detection

2.2 Real-time Video Display

Block Diagram of Video Display Module

Data Path of Video Display Module

Data Path of Video Display Module

Clock Domain

Ping-Pong Operation

• Single SDRAM based Ping-Pong Operation

2.2 Real-time Video Display

Ping-Pong Operation

• Single SDRAM based Ping-Pong Operation

Block Diagram of Face Detection Module

Data Format and Color Space

• Simple face color detection

- Range for R,G,B: [0, 31]
- Selected face color space:

5 < R < 17 & 5 < G < 17 & 5 < B < 17 & R - B > 1 & R - G > 1

Color Space Testing

Color Space of Hair

• Hair color space is selected as following

R < 9 & G < 9 & B < 9;|R - G| <= 1 & |R - B| <= 1 & |B - G| <= 1;

Face Boundary Obtain

Face Boundary Obtain

 Flow chart of hair boundaries obtain module

Eliminate Noise

log: 2	2015/04	/13 20:01:56 #0				click t	o insert tim	ne bar			
Туре	Alias	Name	-511	-510	-509	-508	-507	-506	-505	-504	-503
1		⊞ out_left					26				

Eliminate Noise


```
else if (dataen) //when frame and row effective
begin
   if(red < 9 && green < 9 && blue < 9 && (red - green < 2 || g
   begin
      cont <= cont + 10'd1; //if yes, cont++
      shift cout <= {shift cout[8:0], 1'b1};</pre>
      if (state == 2'd0)//when find it is the first time in a f
      begin
         if (cont >= contnum)
         begin
            boundary up <= cont row num;
            state <= 2'd1;
         end
      end
      else
         if (cont col num < left && shift cout sum >= 5) //get
            left <= cont col num;
         else if (cont col num > right && shift cout sum >= 5)
            right <= cont col num;
   end
   else
   begin
      shift cout <= {shift cout[8:0], 1'b0};</pre>
   end
   shift cout sum <= {3'd0, shift cout[0]} + {3'd0, shift cout[
```

Eliminate Noise

Туре	Alias	Name	-511	-510	-509	-508	-507	-506	-505	-504
1		out_left					212			

Туре	Alias	Name	-511	-510	-509	-508	-507	-506	-505	-504	-503
1							639				

Туре	Alias	Name	-511	-510	-509	-508	-507	-506	-505	-504	-503
1		. eut_up					0				

Туре	Alias	Name	-511	-510	-509	-508	-507	-506	-505	-504	-503
1		─out_down					257				

Find Center Point of Face

```
else
begin
   if (frame done fall) //what to do when one frame ends: row++ clear column
   begin
      num <= 26'd0;
      whole col <= 26'd0;
      whole row <= 26'd0;
   end
   else if (dataen) //when frame and row effective
   begin
      if (red <= 10'd17 && red > 10'd5 && green < 10'd17 && green > 10'd5 && blue < 10'd17 && blue > 10'd5 && red - b
      begin
          whole col <= whole col + cont col num;
         whole row <= whole row + cont row num;
         num \leq num + 1;
      end
   end
end
if ((column num - centre column < 10 || centre column - column num < 10) && (row num - centre row < 10 || centre row - row num < 10) )
//if ((column num < 320 && column num > 300) && (row num < 240 && row num > 200) )
begin
  CMOS oDATA[15:0] <= 16'b11111 000000 00000; //show the centre point of face and mark it with red color
end
```

Result

Result

2.4 Higher Accuracy with the Help of Motion Detection

2.4 Higher Accuracy with the Help of Motion Detection

Function

• Remove Unchanged Background

2.4 Higher Accuracy with the Help of Motion Detection

Block Diagram with Motion Detection Module

Construction of Motion Detection Module

• Similar to Range_Obt module

3. Reflection and Outlook

3. Reflection and Outlook

FPGA Report

Modify algorithm to reduce resource consumption

	Flow Status	Successful - Tue Apr 14 12:04:35 2015					
	Quartus II 64-Bit Version	12.0 Build 178 05/31/2012 SJ Full Version					
	Revision Name	sdram_ov7670_vga					
	Top-level Entity Name	sdram_ov7670_vga					
	Family	Cyclone IV E					
	Device	EP4CE15F17C8					
	Timing Models	Final					
۵	Total logic elements	2,992 / 15,408 (19 %)					
	Total combinational functions	2,848 / 15,408 (18 %)					
	Dedicated logic registers	721 / 15,408 (5 %)					
	Total registers	721					
	Total pins	84/166(51%)					
	Total virtual pins	0					
	Total memory bits	16,384 / 516,096 (3 %)					
	Embedded Multiplier 9-bit elements	0/112(0%)					
	Total PLLs	1/4(25%)					

Flow Status	Successful - Sat May 09 23:24:00 2015
Quartus II 64-Bit Version	12.0 Build 178 05/31/2012 SJ Full Version
Revision Name	sdram_ov7670_vga
Top-level Entity Name	sdram_ov7670_vga
Family	Cyclone IV E
Device	EP4CE15F17C8
Timing Models	Final
Total logic elements	3,519 / 15,408 (23 %)
Total combinational functions	3,215 / 15,408 (21 %)
Dedicated logic registers	1,181 / 15,408 (8 %)
Total registers	1181
Total pins	93 / 166 (56 %)
Total virtual pins	0
Total memory bits	53,248 / 516,096 (10 %)
Embedded Multiplier 9-bit elements	0/112(0%)
Total PLLs	1/4(25%)

Determine Color Space

- Use logic analyzer to transmit data to computer
- Find the typical color space of hair and face for this camera
- Find different sets of color space in different light conditions
- Find different sets of color space for people of different hair and skin color

Support More Faces

• More faces can be supported by calculating the density of hair/face pixels.

4. Conclusion

- 1. In this project, a face detection system is built on FPGA, utilizing its parallel processing nature.
- 2. Color detection approach is used in this project
- 3. Hair is used as boundaries of face, to filter the noise in the background.
- 4. Motion detection helps to filter the hair color noise in the background.
- 5. Several work are involved in future research: color space determination, supporting more faces and improve algorithms.

Thank you!