FINAL YEAR PROJECT FINAL PRESENTATION

HARDWRAE-BASED FACE DETECTION

Supervisor: Dr. Benjamin Carrion Schafer
Student: Zhang Yunlei

Contents

- 1. Introduction
- 2. Design Methodology \& Result
- 2.1 Design Objective
- 2.2 Real-time video display
- 2.3 Real-time face detection based on face color and hair color
- 2.4 Higher accuracy with the help of motion detection
- 3. Reflection \& Outlook
- 4. Conclusion

1. Introduction
2. Introduction

Face is Identity

1. Introduction

Face Detection (Location) is basis

Why Use Color Detection

- Three key points: speed, accuracy, stability
- Many methods: Principal Component Analysis (PCA), Neural Networks (NN), Support Vector Machines (SVM), Hough Transform (HT), Geometrical Template Matching (GTM), color analysis,etc

> Why Color Detection?

1. Introduction

Why Use Color Detection

- Real-time face detection requires large data flow
- Repetitive data accessing is impossible

PROCESS DATA ON DATA PATH

Improve Accuracy

- However, simple color detection may not be reliable

Improve Accuracy

- Only head has hair on the top
- Hair helps locate face

Use hair as assistance

Improve Accuracy

- How about black background?

Motion Detection!!

Why FPGA

- Parallel processing
- More powerful functions in further research

1. Introduction

- Hardware:
- Altera Cyclone IV (EP4CE15F17C8)
- TFT Screen (AT070TN83) (800*480, RGB565)
- CMOS Camera (OV7670) (640*480, RGB565)
- SDRAM(H57V2562GTR)
- Software:
- Quartus II
- Modelsim
- HDL:
- Verilog

2. Design Methodology \& Result

2.1 Design Objective

- Step 1: Real-time video display
- Step 2: Real-time face detection based on face color and hair color
- Step 3: Real-time face detection with the help of motion detection

2.2 Real-time Video Display

Block Diagram of Video Display Module

2.2 Real-time Video Display

Data Path of Video Display Module

2.2 Real-time Video Display

Data Path of Video Display Module

Ping-Pong Operation

- Single SDRAM based Ping-Pong Operation

Ping-Pong Operation

- Single SDRAM based Ping-Pong Operation

2.3 Real-time Face Detection Based on Face Color and Hair Color

2.3 Real-time Face Detection Based on Face Color and Hair Color

Block Diagram of Face Detection Module

Data Format and Color Space

- Simple face color detection
- RGB565

- Range for R,G,B: [0, 31]
- Selected face color space:
$5<R<17 \& 5<G<17 \& 5<B<17 \& R-B>1 \& R-G>1$
2.3 Real-time Face Detection Based on Face Color and Hair Color

Color Space Testing

Color Space of Hair

- Hair color space is selected as following

$$
\begin{aligned}
& R<9 \& G<9 \& B<9 ; \\
& |R-G|<=1 \&|R-B|<=1 \&|B-G|<=1 ;
\end{aligned}
$$

2.3 Real-time Face Detection Based on Face Color and Hair Color

Face Boundary Obtain

2.3 Real-time Face Detection Based on Face Color and Hair Color

Face Boundary Obtain

- Flow chart of hair boundaries obtain module

2.3 Real-time Face Detection Based on Face Color and Hair Color

Eliminate Noise

log: 2015/04/13 20:01:56 \#0			click to insert time bar								
Type	Alias	Name	$i^{-51 *}$	${ }_{1}^{-510}$	-509	-508	-507	-506	${ }^{-505}$	-504	-503,
浐		Đ- out left					26				

2.3 Real-time Face Detection Based on Face Color and Hair Color

Eliminate Noise


```
else if (dataen)//when frame and row effective
begin
    if(red < 9 && green < 9 && blue < 9 && (red - green < 2 || g
    begin
        cont <= cont + 10'd1; //if yes, cont++
        shift cout <= {shift cout[8:0], 2'b1};
        if (state == 2'd0)//when find it is the first time in a f
        begin
            if (cont >= contnum)
            begin
                boundary_up <= cont_row_num;
                    state <= 2'd1;
            end
        end
        else
            if (cont_col_num < left &s shift_cout_sum >= 5) //get
                left <= cont_col_num;
            else if (cont_col_num > right && shift_cout_sum >= 5)
                right <= cont_col_num;
    end
    else
    begin
        shift_cout <= {shift_cout[8:0], 1'b0};
    end
    shift_cout_sum <= {\mp@subsup{3}{}{\prime}d0, shift_cout[0]} + {\mp@subsup{3}{}{\prime}'d0, shift_cout [
end
```

2.3 Real-time Face Detection Based on Face Color and Hair Color

Eliminate Noise

2.3 Real-time Face Detection Based on Face Color and Hair Color

Find Center Point of Face

```
else
begin
    if (frame_done_fall)//what to do when one frame ends: row++ clear column
    begin
        num <= 26'd0;
        whole_col <= 26'd0;
        whole_row <= 26'do;
    end
    else if (dataen)//when frame and row effective
    begin
```



```
        begin
            whole_col <= whole_col + cont_col_num;
            whole_row <= whole_row + cont_row_num;
            num <= num + 1;
        end
    end
end
```

```
if ((column_num - centre_column < 10 || centre_column - column_num < 10) && (row_num - centre_row < 10 || centre_row - row_num < 10) )
//if ((column_num < 320&& column_num > 300) && (row_num < 240&& row_num > 200))
begin
    CMOS_ODATA[15:0] <= 16'b11111_000000_00000; //show the centre point of face and mark it with red color
end
```

2.3 Real-time Face Detection Based on Face Color and Hair Color

Result

2.3 Real-time Face Detection Based on Face Color and Hair Color

Result

2.4 Higher Accuracy with the Help of Motion Detection

Function

- Remove Unchanged Background

Block Diagram with Motion Detection Module

Construction of Motion Detection Module

- Similar to Range_Obt module

3. Reflection and Outlook

3. Reflection and Outlook

FPGA Report

Modify algorithm to reduce resource consumption

Flow Status

Quartus II 64-Bit Version
Revision Name
Top-level Entity Name
Family
Device
Timing Models
Δ Total logic elements
Total combinational functions
Dedicated logic registers
Total registers
Total pins
Total virtual pins
Total memory bits
Embedded Multiplier 9-bit elements
Total PLLs

```
Successful - Tue Apr 14 12:04:35 2015 12.0 Build 178 05/31/2012 SJ Full Version sdram_ov7670_vga
sdram_ov7670_vga
Cyclone IV E
EP4CE15F17C8
Final
2,992 / 15,408 ( \(19 \%\) )
2,848 / 15,408 ( \(18 \%\) )
\(721 / 15,408\) ( \(5 \%\) )
721
84 / 166 ( \(51 \%\) )
0
\(16,384 / 516,096(3 \%)\)
\(0 / 112(0 \%)\)
\(1 / 4(25 \%)\)
```

Flow Status	Successful - Sat May 09 23:24:00 2015
Quartus II 64-Bit Version	12.0 Build 178 05/31/2012 SJ Full Version
Revision Name	sdram_ov7670_vga
Top-level Entity Name	sdram_ov7670_vga
Family	Cyclone IV E
Device	EP4CE15F17C8
Timing Models	Final
Total logic elements	$3,519 / 15,408(23 \%)$
\quad Total combinational functions	$3,215 / 15,408(21 \%)$
\quad Dedicated logic registers	$1,181 / 15,408(8 \%)$
Total registers	1181
Total pins	$93 / 166(56 \%)$
Total virtual pins	0
Total memory bits	$53,248 / 516,096(10 \%)$
Embedded Multiplier 9 -bit elements	$0 / 112(0 \%)$
Total PLLs	$1 / 4(25 \%)$

Determine Color Space

- Use logic analyzer to transmit data to computer
- Find the typical color space of hair and face for this camera
- Find different sets of color space in different light conditions
- Find different sets of color space for people of different hair and skin color

Support More Faces

- More faces can be supported by calculating the density of hair/face pixels.

4. Conclusion

- 1. In this project, a face detection system is built on FPGA, utilizing its parallel processing nature.
- 2. Color detection approach is used in this project
- 3. Hair is used as boundaries of face, to filter the noise in the background.
- 4. Motion detection helps to filter the hair color noise in the background.
- 5. Several work are involved in future research: color space determination, supporting more faces and improve algorithms.

Q\&A

Thank you!

