
Initialization: The Big-M Formulation

Consider the linear program:

Minimize 4x1 +x2

Subject to:
3x1 +x2 = 3 (1)
4x1 +3x2 ≥ 6 (2)
x1 +2x2 ≤ 3 (3)

x1, x2 ≥ 0 .

Notice that there are several new features in this problem, namely: (i) the objective is to
minimize; (ii) the first constraint is in equality form, but it does not have a candidate basic
variable; and (iii) the second constraint is of the “≥” type.

Two approaches are commonly adopted for the handling of minimization objective functions.
The first is to convert the given objective function into one that is to be maximized. This is
done by multiplying the original objective function by −1 and then maximizing the resulting
expression. For this example, this means that we can replace the given objective function
by:

Maximize − 4x1 − x2 .

The second approach is to revise the optimality criterion in the Simplex algorithm. For
maximization problems, recall that the optimality criterion is that if the coefficients of
all nonbasic variables in the zeroth row of a Simplex tableau are nonnegative, then its
associated basic feasible solution is optimal. If, instead, we are trying to minimize, then
it is not difficult to see that we could simply revise the just-stated criterion into one that
has the word “nonnegative” replaced by the word “nonpositive.” Moreover, if the current
solution is not optimal, then we should select the nonbasic variable that has the most-
positive coefficient in the zeroth row as the entering variable. Note, however, that the
remaining aspects of the Simplex algorithm, the ratio test in particular, do not require any
revision.

In our solution of this linear program, we will adopt the second approach. Hence, no action
is necessary at this point.

Suppose a given constraint is in equality form with a nonnegative right-hand-side constant,
as in equation (1) above. (If the right-hand-side constant of an equation is negative, the
entire equation can be multiplied by −1 to convert the constant to a positive number.)
What we need to do is to find out whether or not the constraint contains a candidate
basic variable. If such a variable can be found, we simply declare it as the basic variable
associated with that equation and move on to other constraints. In the event that such a
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variable does not exist, the idea is to artificially introduce a new nonnegative variable to
serve as the basic variable associated with that equation. Such a variable will be called an
artificial variable. Since constraint (1) above does not contain a candidate basic variable,
we will revise it by introducing an artificial variable, which we denote by A1; this results in

3x1 +x2 +A1 = 3 .

We will also add A1 ≥ 0 into the set of nonnegativity constraints.

It is important to realize that with the introduction of an artificial variable, the resulting
new equation is not equivalent to the original. This is because if the artificial variable
assumes a positive value, then any solution that satisfies the new equation won’t satisfy
the original equation. For example, if we let A1 = 2 in the above equation, then, since
3x1 + x2 + A1 = 3, we must have 3x1 + x2 = 1, which is in contradiction with the original
equation 3x1 + x2 = 3. Now, as A1 is one of the starting basic variables, it will (typically)
assume a positive value at the beginning of the Simplex iterations. Hence, the starting basic
feasible solution will not be a feasible solution to the original problem. Since our aim is
to derive an optimal solution that satisfies the original equality constraint, not the revised
constraint, we are, in the end, only interested in solutions that have A1 = 0. Therefore, an
important question is: How do we get rid of this artificial variable?

One answer (another answer will be given a bit later) to this question is that we can
introduce a new term MA1, where M is a “sufficiently large” constant, into the objective
function. The idea behind this approach, which is naturally called the big-M method, is that
although the value of A1 may be positive initially, but with this added term in the objective
function, any solution that has a positive A1 will have an associated objective-function
value that is exceedingly large. Hence, as the Simplex algorithm performs its search for
a solution that has the smallest objective function value, it will systematically discard or
avoid solutions that have a positive A1. In other words, the Simplex algorithm will, by
design, attempt to converge to solutions that have A1 = 0, and hence are feasible to the
original problem.

As a numerical example, consider the solutions (x1, x2, A1) = (1/3, 2, 0) and (x1, x2, A1) =
(1/3, 1, 1), which satisfy the original and the revised equation (1), respectively. The corre-
sponding objective-function values of these two solutions can be evaluated as: 4× (1/3) +
1× 2 + M × 0 = 10/3 and 4× (1/3) + 1× 1 + M × 1 = (7/3) + M . Notice that the outcome
of the first evaluation does not involve M . It follows that the second evaluation will have a
greater value, provided that M is sufficiently large (any M that is strictly greater than 1,
specifically). Since a comparison between any solution with A1 = 0 and any other solution
with A1 > 0 will always result in this order (when M is sufficiently large), the Simplex
algorithm will attempt to weed out any solution with a positive A1.
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We now turn our attention to constraint (2), which is of the “≥” type. To create an
equivalent equality, we will reverse what we do in the case of a “≤” constraint. That is,
we will subtract a nonnegative surplus variable, denoted by s1, from the left-hand side of
that constraint and let the resulting expression equal to the right-hand-side constant. This
yields

4x1 +3x2 −s1 = 6 .

Next, observe that none of the three variables on the left-hand side of this new equation can
serve as a candidate basic variable. Therefore, similar to what we did in equation (1), we
will further revise this equation by introducing another artificial variable, which we denote
by A2. This results in

4x1 +3x2 −s1 +A2 = 6 .

In addition, we will also introduce a new term MA2 into the objective function.

Finally, since the last constraint is of the “≤” type, we simply add a slack variable, denoted
by s2, to its left-hand side to convert it into an equality.

In summary, we have converted the given linear program into the following form:

Minimize 4x1 +x2 +MA1 +MA2

Subject to:
3x1 +x2 +A1 = 3 (1)
4x1 +3x2 −s1 +A2 = 6 (2)
x1 +2x2 +s2 = 3 (3)

x1, x2, A1, s1, A2, s2 ≥ 0 .

At this point, the objective function is still not in conformance with the standard form.
Following what we did in our first example, we now define a new variable z to serve as our
objective function, which is to be minimized; and we will introduce a zeroth constraint,
namely

z −4x1 −x2 −MA1 −MA2 = 0 ,

into the constraint set. Furthermore, notice that the artificial variables A1 and A2, which
are targeted to serve as basic variables in equations (1) and (2), also participate in this
new constraint. Since this is not allowed in the standard form, we will have to eliminate
them. This is done in two steps. First, we multiply equation (1) by M and add the outcome
into equation (0); this eliminates MA1. Next, we multiply equation (2) by M and add the
outcome into the equation obtained in the first step. These two steps result in the new
equation (0) below.

z +(7M − 4)x1 +(4M − 1)x2 −Ms1 = 9M .
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With these further revisions, we finally arrive at

Minimize z
Subject to:

z +(7M − 4)x1 +(4M − 1)x2 −Ms1 = 9M (0)
3x1 +x2 +A1 = 3 (1)
4x1 +3x2 −s1 +A2 = 6 (2)
x1 +2x2 +s2 = 3 (3)

x1, x2, A1, s1, A2, s2 ≥ 0 ,

which is now ready for the Simplex algorithm.

In tabular form, the above problem becomes:

Basic z x1 x2 A1 s1 A2 s2

Variable 1 7M − 4 4M − 1 0 −M 0 0 9M
A1 0 3 1 1 0 0 0 3
A2 0 4 3 0 −1 1 0 6
s2 0 1 2 0 0 0 1 3

Notice that the introduction of the artificial variables allows us to conveniently declare the
basis associated with this tableau as A1, A2, and s2 (listed on the left margin). Therefore,
the initial basic feasible solution is (x1, x2, A1, s1, A2, s2) = (0, 0, 3, 0, 6, 3), with a cor-
responding objective-function value of 9M . Since M is “big,” the coefficients of x1 and x2

in R0, namely 7M − 4 and 4M − 1, are both positive, implying that the current solution is
not optimal. Moreover, a big M also implies that 7M − 4 is strictly larger than 4M − 1.
Hence, x1 is the entering variable, and the x1-column is the pivot column.

A comparison of the three ratios 3/3, 6/4, and 3/1 shows that R1 is the pivot row, and hence
A1 is the leaving variable. This also identifies the entry “3,” located at the intersection of
the pivot column and the pivot row, as the pivot element.

We now execute a pivot. An examination of the x1-column shows that we need to go through
the following row operations: [−(7M − 4)/3]×R1 + R0, (1/3)×R1, (−4/3)×R1 + R2, and
(−1/3)×R1 +R3. These four sets of operations will produce new versions of equations (0),
(1), (2), and (3), respectively; and these equations constitute the new tableau below.

Basic z x1 x2 A1 s1 A2 s2

Variable 1 0 (5M + 1)/3 −(7M − 4)/3 −M 0 0 2M + 4
x1 0 1 1/3 1/3 0 0 0 1
A2 0 0 5/3 −4/3 −1 1 0 2
s2 0 0 5/3 −1/3 0 0 1 2
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Since the coefficient of x2 in R0 is positive, this tableau is not optimal, and hence more
iterations are necessary. We will not complete the remaining iterations, since they are now
straightforward.

Several comments are in order.

At the end of the above iteration, the artificial variable A1 is no longer in the basis; that is,
its value has been driven to zero by the algorithm. Since artificial variables are not part of
the original problem, they can be discarded from further consideration as soon as they leave
the basis. This serves to reduce the amount of computation. In fact, we can do even better
by discarding the leaving artificial variable (A1, in this example) at the start (as opposed
to the end) of the pivot. One should be careful not to discard any of the original variables,
however.

Any solution that contains a positive value for any of the artificial variable is not feasible
to the original problem. For example, the basic feasible solution associated with the above
tableau is (x1, x2, s1, A2, s2) = (1, 0, 0, 2, 2), where we have removed A1. Since A2 = 2 is
positive, the current solution is not feasible to the original problem. This will continue to
be the case until all artificial variables are driven out.

In general, it is possible for a given linear program not to have any feasible solution. In such
a case, the Simplex algorithm will not be able to succeed in driving out all of the artificial
variables. Thus, if the algorithm terminates with an optimal solution that has at least one
of the artificial variables being positive, then the original problem is infeasible.

Throughout our computation, we did not assign a specific value for M . We simply treated it
as a large number operationally. This means that whenever M is compared against another
number, we will let M be the larger of the two. This seems convenient, but can pose a
challenge in a computer implementation of the algorithm.

If our objective is to maximize 4x1 + x2, then, instead of introducing MA1 and MA2 into
the objective function, we should introduce −MA1 and −MA2.
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