
K-CONVEXITY IN ℜn

Guillermo Gallego
Dept. of Industrial Engineering and Operations Research

The Columbia University
New York City, NY 10027

Suresh P. Sethi
School of Management

The University of Texas at Dallas
Richardson, TX 75248

September 16, 2004

Abstract

We generalize the concept of K-convexity to an n-dimensional Euclidean space.
The resulting concept of K-convexity is useful in addressing production and inventory
problems where there are individual product setup costs and/or joint setup costs. We
derive some basic properties of K-convex functions. We use the concept to derive the
optimal policy in a deterministic case of two products with a joint setup cost. We
conclude the paper with some suggestions for future research.
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1 Introduction

One of the most important results in inventory theory is the proof of the optimality of a
so-called (s, S) policy when there is a fixed cost of setup or ordering in a single-product
inventory problem. The policy is characterized by two numbers s and S, S ≥ s, such that
when the inventory level falls below the level s, an order is issued for a quantity that brings
the inventory up to level S, and nothing is ordered otherwise. It is customary to say that
an (s, S) policy is optimal even when the two parameters vary from period to period when
the problem is either finite horizon or non-stationary or both.

The idea to defer orders until the inventory level has dipped to a low enough level (s) so
that the setup cost will be incurred when a large enough amount (at least S− s) is ordered
had been appealing to researchers in the 1950s. However, its proof eluded them because the
value function in the dynamic programming formulation of the problem was neither convex
nor concave. Finally, Scarf [9] provided a proof by introducing a new class of functions
called K-convex functions defined on ℜ1.

While Scarf [9] had assumed holding/backlog cost to be convex, Veinott [11], under
somewhat different conditions, supplied a new proof of the optimality of the (s, S) policy.
Veinott [11] assumed the negative of the one-period expected holding/backlog cost to be
unimodal and (nearly) rising over time, and therefore his conditions do not imply and are
not implied by conditions assumed by Scarf [9].

Since these classical works of Scarf [9] and Veinott [11], there have been a few attempts
to study multiproduct extensions of the problem. For our purpose, we will only review
Johnson [3], Kalin [4], Ohno and Ishigaki [7], and Liu and Esobgue [6]. Other works that
we do not review are discussed by these authors.

Johnson [3] considers an n-product problem with a joint setup cost, which is incurred if
one or more of the products is ordered. He uses the policy improvement method in Markov
decision processes to show that the optimal policy in the stationary case is a (σ, S) policy,
where σ ⊂ ℜn and S ∈ ℜn, and one orders up to the level S if the inventory level x ∈ σ
and x ≤ S and one does not order x /∈ σ. Since nothing is specified when x ∈ σ, x � S, the
policy is proved to be optimal only when the initial inventory level is less than or equal to
S.

Kalin [4] shows that, in addition, when x ∈ σ and x � S, then there is S̄(x) ≥ x such
that the optimal policy is to order S̄(x)− x. Such a policy can be termed a (σ, S(·)) policy.
Kalin [4] also characterizes the nonordering set σc, the complement of σ in ℜn. His proof
assumes a number of conditions and uses the concept called (K, η)-quasiconvexity.

Finally, Ohno and Ishigaki [7] consider a continuous-time problem with Poisson de-
mands. They use a policy improvement method to show that the (σ, S(·)) policy is optimal
for their problem. They also compute the optimal policy in some cases and compare it with
three well-known heuristic policies.
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Among all the multiproduct models with a fixed joint setup cost, Liu and Esobgue [6] is
the only one that builds on Scarf’s proof. In order to accomplish this, they generalize the
concept of K-convexity to ℜn. They use this concept to prove the optimality of an (st, St)
policy in a finite horizon case, where t denotes the time period, under the condition that
the initial inventory level x0 ≤ S0 and that St increases with t. Since this second condition
cannot be verified a priori, their proof cannot be called a complete proof.

While we are not able to complete their proof, we propose a fairly general definition of
K-convexity in ℜn, which includes the cases of joint setups as well as individual setups. We
then develop some properties of K-convex functions that we hope will lead to the solution of
a general multiproduct inventory problem with different kinds of setup costs. We conclude
the paper by applying the concept of K-convexity in solving a two-period, two-product
deterministic inventory problem.

The plan of the paper is as follows. In the next section, we provide our definition of
K-convex functions defined on ℜn and derive some properties of such functions. In Section
3, we consider the individual setups case, and show that the sum of independent K-convex
functions is K-convex. In Section 4, we establish a result for supermodular K-convex
functions. In Section 5, we consider the joint setup case and discuss the results obtained by
Liu and Esobgue [6] on the optimality of a (σ, S) policy. We conclude Section 5 by using
the concept of K-convexity to show the optimality of a (σ, S) policy in a two-period, two-
product deterministic inventory problem. We conclude the paper in Section 6 by discussing
some important open problems for research.

2 Definitions and Some Properties

In this section, we introduce some definitions of K-convexity and derive some properties
of K-convex functions. We begin with the classical definition of K-convexity in the one-
dimensional space given by Scarf [9].

Scarf’s Definition in ℜ1: A function g : ℜ1 −→ ℜ1 is K-convex if

g(u) + z

[

g(u) − g(u− b)

b

]

≤ g(u+ z) +K (1)

for any u, z ≥ 0, and b > 0.

Next we propose a fairly general definition of real-valued K-convex functions defined on
ℜn. Define K= (K0,K1, . . . ,Kn) to be a vector of (n + 1) nonnegative constants. Let us
define a function K : ℜn+ −→ ℜ1 as follows:

K(x) = K0δ(e
′x) +

n
∑

i=1

Kiδ(xi), (2)

where e = (1, 1, . . . , 1)′F ∈ ℜn, δ(0) = 0 and δ(z) = 1 for all z > 0.
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Definition 1 A function g : ℜn → ℜ is K-convex if

g(λx+ λ̄y) ≤ λg(x) + λ̄[g(y) +K(y − x)] (3)

for all x ≤ y and all λ ∈ [0, 1], where as usual λ̄ ≡ 1 − λ.

This definition is motivated by the joint replenishment problem when a setup cost K0 is
incurred whenever an item is ordered and individual setup costs are incurred for each item
included in the order. There are a number of important special cases that we note in what
follows.

The simplest is the case of one product or n = 1, where K0 +K1 can be considered to
be the setup cost and (3) can be written as

g(λx+ λ̄y) ≤ λg(x) + λ̄[g(y) +K · δ(y − x)], (4)

where K = K0 + K1. In this case, (4) is equivalent to the concept of K-convexity in ℜ
defined by Scarf [9]; see also Denardo [1] and Porteus [8].

The next special case arises when Ki = 0, i = 1, 2, · · · , n, i.e., K = (K0, 0, 0, . . . , 0). In
this case, a setup cost K0 is incurred whenever any one or more of the products are ordered.
Here

K(x) = K0δ(e
′x), (5)

and the case is referred to as the joint setup cost case.

Finally, there is a case in which K0 = 0. Here there is no joint setup, but there are
individual setups. Thus,

K(x) =
n

∑

i=1

Kiδ(xi). (6)

The individual setups case will be discussed further in Section 3. The joint setup case will
be treated in Section 4.

Definition (1) admits a simple geometric interpretation related to the concept of visi-
bility, see for example Kolmogorov and Fomin [5]. Let a ≥ 0. A point (x, f(x)) is said to
be visible from (y, f(y) + a) if all intermediate points (λx+ λ̄y, f(λx+ λ̄y)), 0 ≤ λ ≤ 1 lie
below the line segment joining (x, f(x)) and (y, f(y)+a). We can now obtain the following
geometric characterization of K-convexity.

Theorem 2.1 A function g is K-convex if and only if (x, g(x)) is visible from (y, g(y) +
K(y − x)) for all y ≥ x.

Proof
By K-convexity, the function g over the segment λx + (1 − λ)y, λ ∈ [0, 1], lies below the
line segment joining (x, g(x)) and (y, g(y) + K(y − x)). Since y ≥ x, K(y − x) ≥ 0. This
completes the proof.

2
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Definition 2 A function g : ℜn −→ ℜ1 is K-convex if

g(u) +
1

µ
[g(u) − g(u− µh)] ≤ g(u+ h) +K(h) (7)

for every h ∈ ℜn, h > 0, µ ∈ ℜ, µ > 0, and x ∈ ℜn.

Here h > 0 means h ≥ 0 and hi > 0 for at least one i ∈ {1, 2, . . . , n}. Note that when
h = 0, (1) is trivially satisfied. Note that in ℜ, this definition reduces to Scarf’s definition
by using the transformation h = z and µ = z/b.

Theorem 2.2 Definitions 1 and 2 are equivalent.

Proof
It is sufficient to prove that (3) can be reduced to (1) and vice versa. This can be seen by
using the transformation

λ = 1/(1 + µ), x = u− µh, y = u+ h

and noting that
K(y − x) = K((1 + µ)h) = K(h).

2

The following usual properties of K-convex functions on ℜ can be extended easily to
ℜn.

Property 1 If g : ℜn −→ ℜ1 is K-convex, then it is L-convex for any L ≥ K. In particu-
lar, if g is convex, then it is also K-convex for any K ≥ 0.

Proof
Since L≥ K, it follows from (3) that

g(λx+ λ̄y) ≤ λg(x) + λ̄[g(y) +K(y − x)]

≤ λg(x) + λ̄[g(y) + L(y − x)]

for all x ≤ y and all λ ∈ [0, 1], where the function L : ℜn+ → ℜ1 is given by L(x) =
L0δ(e

′x) +
∑n

i=1 Liδ(xi).
2

Property 2 If g1 : ℜn −→ ℜ1 is K-convex and g2 : ℜn −→ ℜ1 is L-convex, then for
α ≥ 0, β ≥ 0, g = αg1 + βg2 is (αK + βL)-convex.
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Proof
By definition, we have

g1λx+ λ̄y) ≤ λg1(x) + λ̄[g1(y) +K(y − x)],

g2(λx+ λ̄y) ≤ λg2(x) + λ̄[g2(y) + L(y − x)],

for all x ≤ y and all λ ∈ [0, 1]. Then

g(λx+ λ̄y) = αg1(λx+ λ̄y) + βg2(λx+ λ̄y)

≤ λ[αg1(x) + βg2(x)] + λ̄[αg1(y) + βg2(y) + αK(y − x) + βL(y − x)]

≤ λg(x) + λ̄[g(y) + (αK + βL)(y − x)],

where the function αK + βL : ℜn+ → ℜ is defined analogously to (2).
2

Property 3 If g : ℜn −→ ℜ1 is K-convex and ξ = (ξ1, ξ2, · · · , ξn) is a random vector such
that E|g(x− ξ)| <∞ for all x, then Eg(x− ξ) is also K-convex.

Proof
Since g is K-convex, we have for any z ∈ ℜn,

g(λ(x− z) + λ̄(y − z)) ≤ λg(x− z) + λ̄[g(y − z) +K(y − x)] (8)

for all x ≤ y and all λ ∈ [0, 1]. Since E|g(x − ξ)| < ∞, we can take expectations on both
sides of (8) to obtain

Eg(λx+ λ̄y − ξ) ≤ λEg(x− ξ) + λ̄[Eg(y − ξ) +K(y − x)].

Therefore, Eg(x− ξ) is K-convex.
2

In addition, the following property follows immediately from the definition of K-convexity.

Property 4 Let g : ℜn → ℜ1. Fix x, y ∈ ℜn with x ≤ y and let

f(θ) = g(x+ θ(y − x)).

Then f : ℜ → ℜ is K(y−x)-convex (in the sense of Scarf [9]) if and only if g is K-convex.

Proof
Assume that f is not K(y − x)-convex. Then there exists θ1 < θ2 such that

f(λθ1 + λ̄θ1) > λf(θ1) + λ̄[f(θ2) +K(y − x)].
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This implies that
g(λx̃+ λ̄ỹ) > λg(x̃) + λ̄[g(ỹ) +K(y − x)],

where x̃ = x+ θ1(y−x) and ỹ = x+ θ2(y−x) > x̃, which contradicts the K-convexity of g.

Assume now that g is not K-convex. Then there exist x, y with x ≤ y such that

g(λx+ λ̄y) > λg(x) + λ̄(g(y) +K(y − x)).

Let θ1 = 0 and θ2 = 1. Then the above inequality implies that

f(λθ1 + λ̄θ2) > λf(θ1) + λ̄[f(θ2) +K(y − x)]

which contradicts the K(y − x)-convexity of f .

2

Notice also that the function K defined in (2) satisfies the triangular inequality.

Property 5 For all x ≥ 0, y ≥ 0, we have

K(x+ y) ≤ K(x) +K(y).

Proof
Follows from (2) and the fact that δ(u+ v) ≤ δ(u) + δ(v) for u ≥ 0, v ≥ 0.

2

Property 6 For all x ≥ 0 and any constant b > 0, K(bx) = K(x).

Proof
Follows from the fact that δ(bu) = δu for u ≥ 0.

2

Theorem 2.3 Let g : ℜn → ℜ1 be K-convex. Let S ∈ ℜn be a finite global minimizer
of g. Let x ≤ S, and define f(θ) = g(x + θ(S − x)). Let θ1 be any θ < 1 such that
f(θ1) = f(1) +K(S − x). Then f(θ) is non-increasing over θ < θ1, and therefore f(θ) ≥
f(1) +K(S − x) for all θ ≤ θ1.
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Proof
From Property 4, f(θ) is K(S − x)-convex. Note from Property 5 that K(S − x) depends
only on the direction of the line joining S and x and not on x. Then from the standard
one-dimensional case, the result follows.

2

Corollary 2.1 Let θ1 be as defined in Theorem 2.3. Then for any w = x+θ(S−x), θ ≤ θ1,

g(w) ≥ g(S) +K(S − w).

In the next section, we study the special case of individual setups.

3 The Individual Setups Case

The individual setups case is characterized by K(x) =
∑n

i δ(xi). In this case, we show that
the sum of independent K-convex functions is K-convex.

Theorem 3.1 Let gi : ℜ1 −→ ℜ1 be Ki-convex for i = 1, . . . , n. Then g(x1, . . . , xn) =
∑n

i=1 gi(xi) : ℜn −→ ℜ is (0,K1, . . . ,Kn)-convex (i.e., K-convex with K= (0,K1, . . . ,Kn)).

Proof
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) with y > x be any two points. Define ψ = λx+λ̄y.
See Figure 1 for the illustration of these points in ℜ2.

By definition, we have

gi(ψi) ≤ λgi(xi) + λ̄(gi(yi) +Ki · δ(yi − xi)), (9)

Adding over i results in

g(ψ) ≤ λg(x) + λ̄(g(y) +K(y − x)),

completing the proof.
2

4 K-convexity and Supermodularity

The separable property assumed in Theorem 3.1 may be quite restrictive. We extend the
result by relaxing the separability to a diagonal property.
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(x1, y2) (ψ1, y2) (y1, y2)

(x1, ψ2) (ψ1, ψ2) (y1, ψ2)

(x1, x2) (ψ1, x2) (y1, x2)

Figure 1: A grid in ℜ2.

A function g : ℜn → ℜ1 is supermodular if for any two points x and y,

g(x) + g(y) ≤ g(x ∧ y) + g(x ∨ y)

where the pointwise minimum of x and y is called the meet of x and y and is denoted by

x ∧ y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn)

and the pointwise maximum of x and y is called the join of x and y and is denoted by

x ∨ y = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn).

The reader is referred to Topkis [10] for a general definition of a supermodular function
defined on a lattice.

Let g : ℜn −→ ℜ1. For each z ∈ ℜn and for each subset I ⊂ N ≡ {1, . . . , n}, let
gI(·; z) : ℜ|I| → ℜ be the function that results by freezing the components of z that are not
in I. The domain of the function gI are vectors of the form

∑

i∈I xiei where ei is the ith
unit vector. Sometimes we will abuse notation and write gI(z) as a shorthand for gI(·; z)
and gi(z) instead of the more cumbersome g{i}(·; z). Then, g∅(z) is just the constant g(z),
while gi(z) = g(z1, . . . , zi−1, ·, zi+1, . . . , zn).

Let K : ℜn
+ → ℜ1

+ be a function with the property

KI∪k(xI∪k) ≥ KI(xI) +Kk(xk) (10)

for all k /∈ I, I 6= N .

8



A function g is said to be KI -convex if for all x, y ∈ ℜ|I|, x ≤ y, and for all z ∈ ℜn, we
have

gI(λx+ λ̄y; z) ≤ λgI(x; z) + λ̄(gI(y; z) +KI(y − x))

for all λ ∈ (0, 1).

Theorem 4.1 If g is supermodular and g is Ki-convex for all i ∈ {1, . . . , n}, then g is
KI-convex for all I ⊂ {1, . . . , n}.

Proof

The proof is by induction in the cardinality of I. By hypothesis, the result holds for
|I| = 1. Assume that g is KI -convex for all |I| ≤ m for some m < n. We will show that the
result holds for m+ 1.

For this purpose, consider a subset of {1, . . . , n} of m+ 1 distinct components. We can
write this set at J = I ∪ k for some k /∈ I and an a set I of cardinality m. Let x and y be
any two vectors in ℜm+1. To show that g is KJ -convex we need to show that

gJ(λx+ λ̄y; z) ≤ λgJ(x; z) + λ̄(gJ(y; z) +KJ(y − x)).

for all x, y ∈ ℜm+1 such that x ≤ y.

Let ψ = λx+ λ̄y and ∆̃ = y − x so we can write

ψ = x+ ∆

where ∆ = λ̄∆̃.

Let ∆I be the vector that results from ∆ by making zero the component corresponding
to item k and let ∆k be the vector that results from ∆ by making zero the components
corresponding to items in I. Similar definitions apply to the vectors ∆̃I and ∆̃k.

Consider the vectors: x+ ∆I and x+ ∆I + ∆̃k. Clearly

ψ = x+ ∆

= x+ ∆I∪k

= x+ ∆I + λ̄∆̃k

= λ(x+ ∆I) + λ̄(x+ ∆I + ∆̃k).

Consequently,

gJ(ψ; z) ≤ λgJ(x+ ∆I ; z) + λ̄[gJ(x+ ∆I + ∆̃k; z) +Kk(∆̃k)]. (11)
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Now consider the vectors x+ ∆k and x+ ∆k + ∆̃I . Once again,

ψ = x+ ∆

= x+ ∆I∪k

= x+ ∆I + λ̄∆̃k

= λ(x+ ∆k) + λ̄(x+ ∆k + ∆̃I).

Consequently,

gJ(ψ; z) ≤ λgJ(x+ ∆k; z) + λ̄[gJ(x+ ∆k + ∆̃I ; z) +KI(∆̃I)]. (12)

Adding the right hand size of inequalities (11) and (12) and using the supermodularity
property we obtain the inequalities

gJ(x+ ∆I ; z) + gJ(x+ ∆k; z) ≤ gJ(x; z) + gJ(x+ ∆; z) = gJ(x; z) + gJ(ψ; z)

and
gJ(x+ ∆I + ∆̃k; z) + gJ(x+ ∆k + ∆̃I ; z) ≤ gJ(ψ; z) + gJ(y; z))

we obtain

2gJ(ψ; z) ≤ λ[gJ(x; z) + gJ(ψ; z)] + λ̄[gJ(ψ; z) + gJ(y; z) +Kk(∆̃k) +KI(∆̃I)],

or equivalently,

gJ(ψ; z) ≤ λgJ(x; z) + λ̄(gJ(y; z) +Kk(∆̃k) +KI(∆̃I)].

Finally, using the fact that Kk(∆̃k) +KI(∆̃I) = Kk(∆̃) +KI(∆̃) ≤ KJ(∆̃) establishes that
g is J-convex.

Since I and k were arbitrary this implies that g is KI -convex for all subsets of cardinality
|J | = m+ 1, and therefore for all subsets of {1, . . . , n}.

2

In the next section, we provide two examples of K that satisfy the property (10).

4.1 Examples of K Satisfying (10)

One trivial example is the case where K(x) =
∑n

j=1Kjδ(xj) with δ denoting an indicator
function such that δ(xj) = 1 if xj > 0 and zero otherwise. Thus, the result here implies the
result we obtained before under the weaker assumption of pairwise supermodularity. The
result is actually somewhat stronger because it holds for all subsets I not only for the full
set I = {1, . . . , n}.

While the definition of K does not allow for the traditional joint replenishment function
K(x) =

∑n
j=1Kjδ(xj) + K0δ(

∑

j xj), it does allow other forms of joint setup costs. For
example, let K(x) =

∑n
j=1Kjδ(xj) if at most one of the components are positive and equal

to K(x) =
∑n

j=1Kjδ(xj) +K0 if two or more of the components are ordered.
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Figure 2: Minimum Point S,Σ, ∂σ, and σ.

5 The Joint Setup Case

In the joint setup case, we have K(x) as defined in (5). Thus, we can rewrite (3) as

g(λx+ λ̄y) ≤ λg(x) + [g(y) +K0δ(e
′(y − x))] (13)

in our definition of K-convexity in the joint setup case.

For ease of exposition, we shall refer to this special case as K0-convexity. We also note
that Definition 2 reduces to the definition of K0-convexity proposed by Liu and Esogbue
[6].

Consider a continuous K-convex function g, which is coercive, i.e., lim‖x‖→∞ g(x) = ∞.
Then it has a global minimum point S. Define the set ∂σ as follows:

∂σ = {x ≤ S | g(x) = g(s) +K0}. (14)

Clearly, ∂σ is non-empty and bounded because of the coercivity of g(x). Now define the
following two regions:

Σ = {x ≤ S | ∃s ∈ ∂σ such that x ∈ sS}, (15)

where sS is the line segment joining s and S. Clearly, ∂σ ⊂ Σ. The second region is

σ = {x ≤ S | x /∈ Σ}. (16)

Note that σ
⋂

Σ = σ
⋂

∂σ = ∅. See Figure 2.

Lemma 5.1 If g is K0-convex, continuous and coercive, then

i)x ∈ Σ ⇒ g(x) ≤ K0 + g(S),

ii)x ∈ σ ⇒ g(x) > K0 + g(S).
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Proof

(i) Suppose there is an x ∈ Σ such that g(x) > K0 +g(S). By the definition of Σ, there is
an S such that x ∈ sS and g(s) = K0 + g(S). Thus, g(x) > g(s), and s is not visible
from K0 + g(s), contradicting the K-convexity of g.

(ii) Follows from that fact that σ
⋂

Σ = ∅.

2

Lemma 5.2 If g is continuous K0-convex, then

f(x) = inf
y≥x

{g(y) +K0δ(e
′(y − x))}

=

{

K0 + g(S), x ∈ σ
g(x), x ∈ Σ

, (17)

where S is the global minimum of g. Furthermore, f is continuous and K0-convex on {x ≤
S}.

Proof
For x ∈ σ, we have g(x) > K+g(S). Since y = S is feasible and sinceK+g(S) ≤ K+g(y) for
all y < S, we can conclude that the minimum is y∗(x) = S and, therefore, f(x) = K0+g(S).

For x ∈ Σ, g(x) ≤ K0 + g(S). Then for any y > x, g(x) ≤ K0 + g(S) ≤ K0 + g(y). Thus,
y∗(x) = x is the minimum and f(x) = g(x).

To prove that f is continuous, it is sufficient to prove its continuity on any closed set
Γ ⊂ ℜn. By the assumption on g, we know that the set Λ = {y∗(x) | x ∈ Γ} of optimal
values y∗(x), x ∈ Γ, is compact. Then, g(x) is uniformly continuous on Λ. That is, for any
ǫ > 0, there is a δ > 0 such that | g(y1) − g(y2) |< ǫ if y1, y2 ∈ Λ and ‖y1 − y2‖ < δ. Now
let any two points x1, x2 ∈ Γ such that ‖x1 − x2‖ < δ. Let y∗(x1) and y∗(x2) denote the
solutions, respectively.

Consider the two cases y∗(x1) > x1 and y∗(x1) = x1. In the first case, y∗(x1) = S and
there exists y2 ≥ x2 such that ‖S − y2‖ < δ. By this and (17), we have

f(x1) = K0 + g(S) ≥ K0 + g(y2) − ǫ ≥ f(x2) − ǫ. (18)

Likewise, in the second case

f(x1) = g(x1) ≥ g(x2) − ǫ ≥ f(x2) − ǫ. (19)
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Thus, we have f(x1) ≥ f(x2) − ǫ in both cases. Similarly, we can prove f(x2) ≥ f(x1) − ǫ.
This completes the proof of the continuity of f.

Next we prove that f is K0-convex on {x ≤ S} by using Theorem 2.1. We need to
examine three cases of (x, y), y ≥ x.

(i) x ∈ σ, y ∈ σ

(ii) x ∈ Σ, y ∈ Σ

(iii) x ∈ σ, y ∈ Σ.

In (i), f(x) = f(y) = K + g(S) and so f is K0-convex. In (ii), f = g and g is convex,
so f is convex. In (iii), K0 + g(y) ≥ K0 + g(S) = f(x), and from Lemma 5.1,

f(z) = g(z) ≤ K0 + g(S) (20)

for every z ∈ [x, y]. So every (x, f(z)) is visible from (y + f(y)). This completes the proof
of K0-convexity of function f.

2

Lemma 5.2 provides the essential induction step in a proof of an (s, S) type policy. The
following result, which has been proved by Kalin [4] without using K-convexity, is expected
to be derived with the use of Lemma 5.2.

Theorem 5.1 Assume g(x) representing the cost of inventory/backlog is convex, continu-
ous and coercive. Let K0 represent the joint setup cost of ordering. Then there is a value
S and partition of the region {x ≤ S} into disjoint sets σ and Σ such that given an initial
inventory x0 ≤ S, the optimal ordering policy for the infinite horizon inventory problem is

y∗(x) =

{

S, if x ∈ σ,
x, if x ∈ Σ.

A finite horizon version of Theorem 5.1 was proved by Liu and Esobgue [6] under
a condition that the order-up-to-levels in different periods increase over time. But this
condition is not convenient, as it cannot be verified a priori.

5.1 A Deterministic Example

Iyer [2] has analyzed the deterministic (s, S) inventory problem for a single product. We con-
sider a deterministic two-period, two-product inventory problem with the inventory/backlog
cost λ(x1, x2) =| x1 | + | x2 |, the first period demand (1,1), the second period demand
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(4,4), and the joint setup cost K0 = 2. Because we allow backlogs, all demands have to met.
Therefore, we can ignore the variable purchase cost of the units ordered. We will set the
unit purchase cost to zero without loss of generality. Our purpose is to find the optimal
ordering policy in each period to minimize the total holding and backlog costs over the two
period horizon.

Let gt(x) be the optimal cost to go with t periods remaining, t = 0, 1, 2. Clearly, since
all demand must be satisfied, we could define

g0(x) =

{

0, x ≥ (4, 4),
∞, otherwise,

and we will have

g1(x1, x2) = inf
y≥x

[2δ(e′(y − x)) + g0(y)] =























2, x ∈ σ1,
2+ | x2 − 4 |, x ∈ σ1

1,
2+ | x1 − 4 |, x ∈ σ2

1,
| x1 − 4 | + | x2 − 4 |, x ∈ σ0

1,
0, x = σ∗1.

(21)

where

σ1 = {x | x ≤ 4, x2 < 4, x 6= (4, 4)},

σ1
1 = {x | x1 ≤ 4, x2 > 4},

σ2
1 = {x | x1 > 4, x2 ≤ 4},

σ0
1 = {x | x1 > 4, x2 > 4},

σ∗1 = (4, 4). (22)

In Figure 3 , we show the regions σ1, σ
1
1, σ

2
1, σ

0
1 and σ∗1.

Theorem 5.2 g1(x1, x2) is (2,0,0)-convex. It attains its global minimum at S1 = (4, 4).
Finally, g(·, x2) is nondecreasing in x1 for x1 ≥ 4 and g(x1·) is nondecreasing in x2 for
x2 ≥ 4.

Proof
Note that g1(x1, x2) ≥ 0 and g1(4, 4) = 0. Thus, S1 = (4, 4) is a global minimum of
g1(x1, x2). To prove that g1(x1, x2) is (2,0,0)-convex, let x and y ≥ x be two arbitrary
points in the (x1, x2) space. Let us choose x and y as shown in Figure 3 . Let us define

fxy(θ) = g(x+ θ(y − x)). (23)

It is clear from Figure 4 that for θ1 and θ2 ≥ θ1, (θ1, f(θ1)) is visible from (θ2, f(θ2) + 2).
Thus, fxy(θ) is 2-convex. We can repeat this argument for any other pair x and y, y ≥ x.
By Theorem 2.1, therefore, g1(x1, x2) is (2,0,0)-convex.
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Figure 3: Ordering and no-ordering regions for t = 1.

Figure 4: The value function fxy(θ) along the direction −→xy.
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Finally, the increasing property of g1(·, x2) for x1 ≥ 4 and of g1(x1, ·) for x2 ≥ 4 is
obvious from (21). This completes the proof.

2

In Figure 3, we have also shown another direction passing through (4,4) as a dotted line.
Note that the function fxσ1

(θ) along this direction takes the global minimum for g1(x1, x2)
at (4,4).

We now proceed to examine g2(x1, x2). From dynamic programming, we have

g2(x1, x2) = inf
y≥x

y≥(4,4)

[2δ(e′(y − x))+ | y1 − 1 | + | y2 − 1 | +g1(y1 − 1, y2 − 1)]. (24)

First, we observe that g2(5, 5) =| 5 − 1 | + | 5 − 1 |= 8. Also for x1 > 5 and x2 ≤ 5,
we have g2(x1, x2) = g2(5, x2) + 2 | x1 − 5 | . This is because x1 is sufficient to satisfy
the demands for both periods, and therefore there is no need to order product 1. The
cost of the excess inventory x1 − 5 in two periods is 2 | x1 − 5 | . Likewise, for x2 > 5
and x1 ≤ 5, g2(x1, x2) = g2(x1, 5) + 2 | x2 − 5 |, and for x1 > 5 and x2 > 5, we have
g2(x1, x2) = g2(5, 5) + 2 | x1 − 5 | +2 | x2 − 5 |= 8 + 2 | x1 − 5 | +2 | x2 − 5 | . Thus, it is
sufficient to consider the initial x = (x1, x2) to satisfy x1 ≤ 5 and x2 ≤ 5.

To obtain g2(x1, x2) for x1 ≤ 5, x2 ≤ 5, let us consider the following four regions
depicted in Figure 5. These are

σ1
2 = {x1 ≤ −1, 1 < x2 ≤ 5}, σ2

2 = {x2 ≤ −1, 1 < x1 ≤ 5},

σ2 = {x1 ≤ 1, x2 ≤ 1, x1 + x2 ≤ 0}, σ∗2 = {(5, 5)},

σ0
2 = {x1 ≤ 5, x2 ≤ 5} \ (σ1

2 ∪ σ2
2 ∪ σ2 ∪ σ

∗
2) = {x1 > −1, x2 > −1, x1 + x2 > 0, x 6= (5, 5)}.

For x ∈ σ∗2 = (5, 5), clearly, g2(5, 5) =| 5 − 1 | + | 5 − 1 |= 8.

Consider x ∈ σ2. Then for y ≥ x, (y1 − 1, y2 − 1) can be in σ1, σ
1
1, σ

2
1 or σ0

1. From (21)
it is clear that for any (y1 − 1, y2 − 1) in σ1

1, σ
2
1 or σ0

1, one can do better by a (y1 − 1, y2 − 1)
in σ1 as depicted in Figure 3. For any (y1 − 1, y2 − 1) ∈ σ1, we have

g2(x1, x2) = min
y≥x

{2+ | y2 − 1 | + | y2 − 1 | +2}.

The minimum of the right-hand side occurs at S2 = (1, 1), and therefore, g2(x1, x2) = 4
for x ∈ σ2. Note that for x on the line segment AB, y = x also provides the minimum.
These are the inventory/backlog levels for which we are indifferent between not ordering
and ordering to (1,1). We have chosen in our formulation to order when x is on the line
segment AB.

Now consider x ∈ σ1
2. For y ≥ x, we have (y1 − 1, y2 − 1) ∈ σ1 ∪ σ∗1. Note that we

only consider y ≤ (5, 5) as discussed earlier. If (y1 − 1, y2 − 1) ∈ σ∗1, then the cost is
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Figure 5: Ordering and no-ordering regions for t = 2.
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Figure 6: The value function f2(θ).

2+ | 5 − 1 | + | 5 − 1 | +0 = 10. Thus,

g2(x1, x2) = min

{

10
min y≥x

(y1−1,y2−1)∈σ1

{2δ(e′(y − x))+ | y1 − 1 | + | y2 − 1 | +2}

= min

{

10
2 + (x2 − 1) + 2 [order to (1, x2)]

= 4+ | x2 − 1 | . [since x2 ≤ 5]

Similarly for x ∈ σ2
2, we have g2(x1, x2) = 4+ | x1 − 1 | .

Finally, when x ∈ σ0
2, then (y1 − 1, y2 − 1) ∈ σ1. Thus,

g2(x1, x2) = min

{

| x1 − 1 | + | x2 − 1 | +2 [do not order]
2 + 4 + 4 [order to (5,5)]

= 2+ | x1 − 1 | + | x2 − 1 | .

Let us recapitulate below the value function g2(x) :

g2(x1, x2) =























8, x ∈ σ∗2,
4, x ∈ σ2,
4+ | x2 − 1 |, x ∈ σ1

2,
4+ | x1 − 1 |, x ∈ σ2

2,
2+ | x1 − 1 | + | x2 − 1 | x ∈ σ0

2.

(25)

Theorem 5.3 g2(x1, x2) is (2,0,0)-convex. Its global minimum is attained at S2 = (1, 1).
Finally, g2(·, x2) is increasing in x1 for x1 ≥ 1 and g(x1, ·) is increasing in x2 for x2 ≥ 1.
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Proof
Note that g2(x1, x2) ≥ 2 and g2(1, 1) = 2. Thus, S2 = (1, 1) is a global minimum of
g2(x1, x2). To prove that g2(x1, x2) is (2,0,0)-convex, first consider x and 5 ≥ y ≥ x be two
arbitrary points in the (x1, x2)-space. Let us choose x and y as shown in Figure 5. Let us
define

f2(θ) = g(x+ θ(y − x)). (26)

This function is shown in Figure 6. By the visibility argument, this function is clearly 2-
convex. We can repeat this argument for any other pair x and y, 5 ≥ y ≥ x. Furthermore,
since we have defined g2(x) also in regions {x1 > 5, x2 ≤ 5}, {x1 ≤ 5, x2 > 5}, and
{x1 > 5, x2 > 5}, we can also verify similarly that the functions defined in (26) are
2-convex for any x and y, y ≥ x. Thus, g2(x) is (2,0,0)-convex.

Finally, the increasing property for g2(·, x2) for x1 ≥ 1 and of g2(x1, ·) for x2 ≥ 1 is
obvious from (25). This complete the proof.

2

Corollary 5.1 With two periods remaining, the optimal ordering policy is as follows:

• order up to (1,1) when x ∈ σ2

• order up to (1,x2) when x ∈ σ1
2

• order up to (x1,1) when x ∈ σ2
2

• order nothing when x ∈ σ0
2 ∪ σ∗2.

6 Future Research and Concluding Remarks

In applications, it will be important to find conditions under which the K-convexity persists
after a dynamic programming iteration. The key question is the following. If g is K-convex
and

f(x) = inf
z≥x

{g(z) +K(z − x)},

then is f K-convex? This is certainly true in ℜ1. For ℜn, n > 1, things get complicated
unless we impose additional conditions such as monotone order-up to levels. One direction
for future research is to find out conditions that would guarantee the K-convexity of f . An-
other direction would be to further qualify K-convexity in some appropriate way, and then
prove that this qualified K-convexity is preserved after a dynamic programming iteration.

In this note we have defined the notion of K-convexity in ℜn and have developed prop-
erties of K-convex functions. We have shown that g is K-convexity in ℜn if g =

∑

i gi and
each gi is Ki-convex in ℜ1 and if g is supermodular and KI convex for each I ⊂ {1, . . . , n}.
We have also reviewed the literature on multi-product inventory problems with fixed costs
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and presented a deterministic example where K-convexity is preserved.
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