
A Duty to Forget, a Right to be Assured? Exposing
Vulnerabilities in Machine Unlearning Services

Hongsheng Hu∗, Shuo Wang§∗, Jiamin Chang†∗, Haonan Zhong†∗, Ruoxi Sun∗,
Shuang Hao‡, Haojin Zhu§, and Minhui Xue∗

∗CSIRO’s Data61, Australia
†University of New South Wales, Australia

‡University of Texas at Dallas, USA
§Shanghai Jiao Tong University, China

Abstract—The right to be forgotten requires the removal or
“unlearning” of a user’s data from machine learning models.
However, in the context of Machine Learning as a Service
(MLaaS), retraining a model from scratch to fulfill the unlearning
request is impractical due to the lack of training data on the
service provider’s side (the server). Furthermore, approximate
unlearning further embraces a complex trade-off between utility
(model performance) and privacy (unlearning performance). In
this paper, we try to explore the potential threats posed by
unlearning services in MLaaS, specifically over-unlearning, where
more information is unlearned than expected. We propose two
strategies that leverage over-unlearning to measure the impact
on the trade-off balancing, under black-box access settings, in
which the existing machine unlearning attacks are not applicable.
The effectiveness of these strategies is evaluated through exten-
sive experiments on benchmark datasets, across various model
architectures and representative unlearning approaches. Results
indicate significant potential for both strategies to undermine
model efficacy in unlearning scenarios. This study uncovers
an underexplored gap between unlearning and contemporary
MLaaS, highlighting the need for careful considerations in
balancing data unlearning, model utility, and security.

I. INTRODUCTION

Deep Neural Networks (DNN) models are often trained on
large amounts of data, including personal data [17]. Neverthe-
less, the General Data Protection Regulation (GDPR) [43] and
the California Consumer Privacy Act (CCPA) [42], i.e., Right
to be Forgotten, enforce the service providers to necessitate
removal of users’ training data when requested by individuals
due to privacy regulation compliance. To practically grant
the right to be forgotten, machine unlearning techniques [6]
are developed, aiming to protect users’ privacy by removing
the contribution of a data sample or several data samples
from a trained ML model on request or after a particular
timescale. However, machine unlearning on deep models is
still in its infancy. Deleting data from a database [9] can
be relatively straightforward and intuitive, while it is much
more complicated in the case of deep models because of
the model complexity and the randomness in the training
algorithms [51]. A commonly adopted unlearning approach

is retraining, i.e., retraining the model from scratch where
the data to be unlearned are removed. However, retraining
is almost always associated with heavy computational cost,
especially when models are deep models with millions or even
billions of parameters.

The trend of Machine Learning as a Service (MLaaS) has
gained significant momentum in recent years [28]. Implement-
ing deep models on the cloud platform as API services enjoys
several advantages, such as privacy enhancement (splitting the
storage of training data from service provider), accessibility,
cost-effectiveness, and scalability [47]. One successful exam-
ple is the case of Lufthansa Technik using the MLaaS of
Google Cloud AutoML [1]. Neglecting to eliminate data from
the deployed models timely may lead to punitive measures,
reinforcing the importance of effective machine unlearning
strategies in cloud-based model management. For example,
UK’s data regulator, the Information Commissioner’s Office
(ICO), has issued guidance on the data protection implications
of using AI and generative models [34]. The U.S. Federal
Trade Commission (FTC) made the cloud storage application
Ever delete both user data and any deployed models trained on
users’ data in 2021 [19]. However, to achieve data removal on
deep models in MLaaS, the feasibility of prevailing efficient
retraining methods is often compromised due to the absence of
the server’s direct access to the original training dataset. Con-
ducting retraining procedures on a local scale and subsequent
redeployment also incurs supplementary costs and induces
delays. Ideally, the unlearning procedure could be hosted by
the cloud as well. A promising industrial paradigm of data
removal from the cloud database is exemplified by Google
Analytics 4, involving the utilization of the User Deletion
API [3]. Fortunately, some approximate unlearning approaches
directly modify the model parameters and do not require the
original training dataset to be integrated as an Unlearning
API, which can greatly facilitate the server to provide machine
unlearning services. Thus, similarly, with the Unlearning API,
a user who once contributed data to train the model can freely
ask the service provider for the deletion of her or his data on
the model if she or he wishes to opt out, as shown in Figure 1.

Research Gap. Current machine unlearning methodologies
have been developed and assessed within a local development
context, wherein the developer has comprehensive access to
both the model and its training data. However, the advent of
Machine Learning as a Service (MLaaS) imposes limitations
on the availability of training data and resources, rendering

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24252
www.ndss-symposium.org

most existing unlearning approaches [6], [20], [30], [50], [4]
to be futile. Furthermore, MLaaS transitions the model from a
local environment to a public deployment setting, introducing
the potential for untrustworthy or even malicious users. These
users may seek to carry out compromising activities through
unlearning requests, reducing the practicability to implement
the machine unlearning process in the MLaaS context. Given
some approximate unlearning methods can be applied in the
MLaaS, however, none of the existing works investigate what
types of risks malicious users can bring to the server.

Research Question. From the standpoint of the MLaaS server,
a balance must be struck between sustaining normal busi-
ness services (primary tasks) and accommodating machine
unlearning services (secondary tasks). Catering to unlearning
requests from users inevitably diminishes the model’s utility,
as the contributions made by the user’s data are excised.
As such, the deployment of the unlearning process within
the MLaaS platform hinges on the assurance of equilibrium
between model fidelity and unlearning effectiveness. In this
context, the research question is: Is it feasible for a user to
compromise the normal business of the server by requesting
machine unlearning services in MLaaS? And how easily can
the user achieve the compromise? Unfortunately, existing
research either tends to concentrate on fooling the model, or
neglects to evaluate the trade-off entirely, hence falling short in
addressing the research question due to their inability to satisfy
the constraints of MLaaS settings (detailed in Section II).

Motivation. To answer this question, we conduct the first
investigation to identify the potential threats that can be
associated with machine unlearning services under MLaaS
scenarios. We identify the major threat that a user can pose
to the server: over-unlearning. Specifically, as depicted in
Figure 1 and Figure 2, over-unlearning represents that the
information the server’s model unlearned exceeds what it ought
to unlearn by manipulating the unlearned samples to contain
more knowledge than expected.

To mimic the malicious users’ behaviors and measure the
feasibility of potential risks, we present two strategies that can
be leveraged for the manipulation to achieve over-unlearning,
while only granting the user black-box access to the model of
the server. Specifically, over-unlearning is instigated by delib-
erately blending additional samples from a disparate task into
the original unlearned samples through meticulous sample-
level manipulation. When the server unlearns the blended data,
the model will remove the additional information about that
particular task. Furthermore, we propose an advanced over-
unlearning approach by pushing the samples close to the
decision boundary via pixel-wise manipulation. We consider
that the user can intentionally augment the unlearning effect
of the unlearned data on the server’s model by moving the un-
learned data to the decision boundary of the model. Compared
to the original unlearned data, the modified unlearned data
become more informative to the model. Thus, by uploading
the modified data instead of the original data for the server to
unlearn, the model unlearns more information than the case
of unlearning the original data, which achieves the goal of
over-unlearning. By answering this question, we try to provide
an evaluation pipeline toward the deployability of machine
unlearning in real-world MLaaS implementing scenarios.

Contributions. Our contributions are summarized as follows:

Query

Answer

Request to unlearn
personal data,

Unlearns personal data

Unlearns data generated by
malicious usersRequest to unlearn

"crafted" data, Normal business
suddenly deteriorates

Model performance
unaffected

Provides ML services

Normal Business in MLaaS

Machine Unlearning

Over-unlearning

Normal Users

Malicious Users

Normal Users

Model Developer

Providing model

Service Provider

has no access to training data
cannot retrain the model

Service Provider

Service Provider

In MLaaS, the service provider

But the service provider
Providing data,

𝐷 𝑢

𝐷 𝑢

′

𝐷 𝑡𝑟𝑎𝑖𝑛

Fig. 1: An overview of the over-unlearning threat in machine
unlearning as a service.

• This paper is the first to investigate the real-world machine
unlearning service pipeline and to identify potential threats
related to machine unlearning services in the MLaaS envi-
ronment. It illuminates the risk of over-unlearning, which
could significantly compromise the model utility of the
server when the malicious unlearning request is submitted.

• We identify two novel strategies that allow a user to achieve
over-unlearning, with only black-box access to the server’s
model, making them easily applicable in real-world MLaaS
environments.

• Extensive experiments are conducted using benchmark
datasets, across various model architectures and represen-
tative unlearning approaches. The findings validate the ef-
fectiveness of the proposed strategies in inducing over-
unlearning.

• An extensive ablation study is performed to evaluate the
effectiveness of the proposed strategies in different settings.
The results demonstrate the effectiveness of the strategies
across various settings, emphasizing their potential impact
and the importance of mitigating such risks in MLaaS
environments.

II. RELATED WORK AND THREAT MODEL

In this section, we first introduce recent studies in machine
unlearning domain and then describe the threat model of
machine unlearning service particularly in MLaaS scenarios.

A. Related Work

Machine unlearning is motivated by a variety of reasons: i)
to comply with privacy regulations; ii) the trained model itself
needs to be updated or repaired. For example, a model trained
on a poisoned dataset exhibits unexpected or undesirable
behavior in response to benign inputs or deliberately crafted
inputs. Thus, the model needs to be repaired to ensure its
safety [9]. To achieve machine unlearning, a naive yet natural
approach is retraining, i.e., retraining the model on the training
dataset with the unlearned data removed. However, retraining
the model can result in expensive computation costs when the
model or the training dataset is large-scale. For example, it
shows that 34 days are needed to train OpenAI’s GPT-3 [8]
even on 1,024 NVIDIA A100 GPUs [38]. To overcome the

2

limitation of naively retraining while fulfilling the demand of
machine unlearning, many unlearning approaches have been
proposed recently, and they can be mainly divided into two
categories: exact unlearning and approximate unlearning.

Exact Unlearning. Exact machine unlearning requires the
model to be retrained from scratch, i.e., retrain the model on
the training dataset with the unlearned data removed with some
skills to achieve efficiency. The advantage of exact unlearning
is that it guarantees the impacts of the unlearned data are
completely removed because the unlearned model is never
trained on the unlearned data. To achieve efficiency, either the
training dataset or the model architecture is carefully crafted
before the training process. Specifically, the first line of work
splits the training dataset into different non-overlap shards,
where a constituent model is trained on each of the shards.
Thus, when unlearning a data sample, only the constituent
model trained on the shard containing the unlearned data is
required to be retrained. Based on the intuition of dataset
partition, Bourtoule et al. [6] propose the unlearning approach
of SISA that is generic to a variety of models with different
architectures and complexities. Another line of work focuses
on carefully designing the architecture of the model so that
a data sample only contributes to part of the model. When
unlearning a data sample, only the partial of the model that is
influenced by the unlearned data is required to be retrained.
Based on carefully designing the tree structure, Brophy and
Lowd [7] propose data removal-enabled forests that support
efficient unlearning of a data sample for random forests.
Although exact unlearning has a perfect unlearning guarantee,
the disadvantage is that it usually requires storing the training
dataset, which may limit its applicability in many cases like
MLaaS, where users’ data is not allowed to be stored or the
training dataset is deleted to comply with data regulations.

Approximate Unlearning. Approximate machine unlearning
directly modifies the parameters of the trained model to obtain
the unlearned model that approximates the model retrained
from scratch. Approximate unlearning is usually achieved by
updating the parameters of the trained model with a few
numbers of iterations using the information calculated from
the unlearned data. There are mainly two kinds of approx-
imate unlearning methods, which are based on the influence
function [16] and the gradient of the loss function, respectively.
Specifically, the first one [24], [29] leverages the influence
function to calculate the influence of the unlearned data on the
model parameters so that the trained model can apply a Newton
step to remove the influence for obtaining the unlearned model
The advantage of the first kind of approximate unlearning
method is that one-step Newton update is enough for removing
the contribution of the unlearned data. However, the drawbacks
are also obvious: i) it requires computing the inverse Hessian
matrix of the loss function, which can be difficult for large-
scale deep models; ii) the training dataset might not be
applicable in cases where it is not stored or deleted.

The second kind of unlearning methods [51], [56], [39]
calculates the gradients of the unlearned data contributed to
the trained model during the training process. Then, to unlearn
the data, the trained model is updated by adding back these
gradients to approximate the model that is retrained from
scratch. A state-of-the-art gradient-based unlearning method
is proposed by Warnecke et al. [55]. The high-level intuition

of this unlearning method is to overwrite the unlearned data
from the trained model. An advantage of this method is that
it only requires to access the unlearned data, which makes it
practical in many cases especially in MLaaS where only the
unlearned data is applicable.

In addition to the two kinds of unlearning methods, fine-
tuning has been widely used as an empirical unlearning
baseline in existing works [20], [21], [23], [57]. Fine-tuning
first randomly selects incorrect labels and uses them to relabel
the unlearned samples. Then, the trained model is fine-tuned
on these relabeled unlearned data for several iterations for
unlearning. The intuition is to confuse the model’s under-
standing of the unlearned sample so that it cannot output the
correct prediction of the unlearned data. However, information
of the unlearned data can still remain in the parameters of the
unlearned model produced by fine-tuning.

In this study, we mainly focus on evaluating the risks
that may exist in the gradient-based approximate unlearning
approaches as they are feasible in MLaaS but the retraining
method is not. Particularly, we involve fine-tuning as the
empirical unlearning baseline and the approaches used in
Warnecke et al. [55] as the state-to-the-art approximation-
based unlearning baseline in our evaluation.

B. Our Threat Model

In this subsection, we describe the potential threat to
machine unlearning that may exist particularly in MLaaS
scenarios. To formalize, we let Dtrain = Du ∪ Dr, where
Du is the dataset that contains the unlearned data and Dr is
the dataset that contains the remaining data. Let θ∗ be the
model trained on Dtrain. Machine unlearning aims to obtain an
unlearned model θ∗

u by removing the contribution of Du that
has contributed during the training process to θ∗.

MLaaS Scenario. We assume a developer who, upon training
a model with dataset Dtrain, retains proprietary ownership of
the resulting model. Subsequent to the training phase, the
developer deploys the model on a server to offer MLaaS
service for commercialization. The server has a test dataset
Dtest and works as an agent responsible for model deployment
and maintenance, including monitoring the performance of the
models and updating them. We call the user who has once
contributed training data Du ⊂ Dtrain to train the model as an
authorized unlearning user: they can revoke the contribution
of their data due to data protection regulations. Generally,
different unlearning procedures may involve retraining and
have different impacts on the quality of the model. Thus, to
maintain the model with the compliance of regulations, the
developer has agreed on a pre-selected unlearning method that
can ensure the balance between model fidelity and unlearning
efficacy with the server. When an authorized unlearning user
decides to revoke, the server will fulfill the unlearning requests
using the pre-selected unlearning method.

Under the MLaaS scenarios, there are three entities in-
volved in machine unlearning services: the model provider,
the MLaaS server, and the users who utilize the model. The
model provider transfers or delegates the high-utility model to
the MLaaS server for professional business services as well
as machine unlearning services, while the model users can
utilize the model provided by the MLaaS server via APIs.

3

TABLE I: Knowledge of dataset available for different entities
in MLaaS.

Dtrain Du Dtest

Model Provider Unknown
MLaaS Server
Authorized Unlearning User

: knowledge is available; : knowledge is not available.

For authorized unlearning users, they can also raise unlearning
requests by uploading Du to the server for deleting their data
when they decide to opt-out. The knowledge of the developer,
users, and server is summarized in Table I.

We detail the capabilities and knowledge of the model
provider, MLaaS server, and user as follows:

Model Provider. They are model developers or model owners,
who have full control of the model, including the training data
and white-box information of the model. After they delegate
the model to MLaaS for commercialization, the control is also
transferred to the server.

MLaaS Server. The server is the agency that provides MLaaS
to users for normal business and also provides machine un-
learning services for compliance with privacy regulations. To
simulate a practical scenario, we assume the server only has a
test dataset but does not have the original training dataset for
two reasons. First, users’ training data may contain sensitive
or personally identifiable information. Thus, to ensure their
privacy and confidentiality, users may not be willing to have
their data stored by the server. Second, many regions and
countries have strict data protection regulations that govern the
collection, storage, and usage of personal data. For example,
the tech giant Meta in May 2023 was fined a record 1.2 billion
euros (i.e., US$1.3 billion) and ordered to stop transferring
data collected from Facebook users in Europe to the United
States [2]. Thus, the server itself may choose not to store users’
training data to simplify compliance with these regulations.

Authorized Unlearning Users. Authorized unlearning users
are the users who are authorized to raise machine unlearning
requests to the server if they wish to opt-out by submitting the
unlearned data to the server. They can be the data provider
for the model training. These users can also access the model
provided by the server to utilize its predictive ability as normal
API users. The unlearning procedure will be conducted at the
server using the pre-selected unlearning strategies.

Machine Unlearning Threats. We anticipate a scenario where
some authorized users, with permission to initiate unlearning,
might have malicious intent or could be compromised. These
users, despite only contributing a small proportion of the
training data, aim to induce severe performance degradation
in the server’s model by exploiting unlearning requests with
a few samples. Such situations underscore the necessity for
robust security measures and stringent user regulations within
machine learning systems.

Property of Malicious Unlearning. The properties of the ma-
licious unlearning behaviors are:

• Performance degradation. The server’s normal business per-

TABLE II: An overview of threats to machine unlearning.

Threats to
Machine Unlearning

Adversary’s Knowledge Requirement Unlearning Methods

Training
Procedure

Training
Dataset

White-box
Model

Exact
unlearning

Approximate
unlearning

Slow-down Unlearning [36]
Camouflaged Poisoning [18]
Over-unlearning (Ours)

Resources Available
in MLaaS Scenario

: the knowledge is required or the resource is available; : the knowledge is not
required or the resource is not available; : the unlearning method is applicable; :
the unlearning method is not applicable.

formance incurs an unexpected degradation when fulfilling
the user’s unlearning requests: the utility of the model is
heavily compromised.

• Stealthiness of the unlearned sample. The manipulated
unlearned sample for over-unlearning is not easy to be
distinguished from normal samples.

• Stealthy prediction of the unlearned sample. Note that the
authorized user could also submit a label of the unlearned
sample. The submitted label of the manipulated unlearned
sample may be needed to be consistent with the prediction
derived from the deployed model.

The latter two properties of malicious unlearning are proposed
from the MLaaS server’s perspective: the server may be aware
of the malicious unlearning requests and implement protections
to protect its model. Specifically, the server can verify both
the quality of the sample’s features and the prediction label
of the unlearned sample. Thus, malicious unlearning requires
to satisfy these two properties for ensuring that it can bypass
basic protections implemented by the server.

Capabilities of Malicious Users. We assume such a malicious
user only has black-box access to the model of the server,
which means the user can submit a data sample x to query
the model and obtain a vector of probabilities Y but cannot
know the parameters and architectures of the model. Note that
black-box access assumption is very practical and also strict
for the malicious user: his adversarial knowledge is similar to
the knowledge of a normal user. Based on Du and black-box
access, the malicious user aims to construct a perturbed unlearn
dataset D′

u, which will be sent to the server for unlearning as
well as compromising its model. The practicality of this threat
is also manifested in that a malicious user could theoretically
superimpose an unlimited amount of information on the data
set to be unlearned, causing an unanticipated decline in model
performance. Besides, the degradation of the model’s perfor-
mance is multifaceted. For instance, taking the example of
unlearning 100 samples from class A, malicious unlearning
can easily be achieved by injecting additional information
into these 100 samples. This would not only result in the
over-forgetting of information from category A but may also
cause the model’s performance to decline across all categories.
Even more, it could potentially target a specific category B by
injecting information about B into these 100 samples of A,
thereby accomplishing a targeted malicious unlearning.

C. Difference from Existing Threats to Machine Unlearning

Currently, there are two works [36], [18] that investigate
the potential threats to machine unlearning. The first work [36]

4

proposes slow-down attacks that aim to increase the computa-
tional cost of the unlearning process by adding perturbations to
the original unlearned samples. The second work [18] proposes
targeted attacks that aim to cause the model to misclassify
particular target test samples. To achieve the targeted attacks in
machine unlearning, the adversary first creates poison samples
that contain features of the target test samples and adds them to
the training dataset. Then, by submitting an unlearning request
to unlearn the poison samples, the model will be triggered to
make wrong predictions on the target test samples. Table II
summarizes the two existing threats and our proposed over-
unlearning threat to machine unlearning.

Our over-unlearning threat is significantly different from
the two existing threats in adversary’s knowledge requirement,
threat scenarios and threat goals. First, we are the first to
investigate the threat under the MLaaS scenario, where the
existing two threats cannot be materialized because the re-
sources available in MLaaS are not enough for the adversary
to pose the threat. Specifically, as depicted in Table II, the
existing two threats require the adversarial to know the training
procedure, have access to the training dataset, and have white-
box access to the model, while our threat is more practical and
does not need such adversarial knowledge. Second, the goal
of over-unlearning is different from the two existing threats:
over-unlearning is to compromise the model’s utility, while the
existing two threats focus on increasing the computational cost
of unlearning or achieving targeted attacks on specific samples
(i.e., fool the model).

III. METHODOLOGY OF MALICIOUS UNLEARNING

In the context of machine learning, there is limited un-
derstanding of how individual data samples impact a machine
learning model. Although we have the influence function [16],
[32] to measure the effect of a single training sample on model
parameters, it only works perfectly on convex models while
cannot precisely measure the effect on complex non-convex
models such as DNNs [6]. The difficulty of measuring the
amount of knowledge or information contained in a single
data sample provides avenues for malicious users to exploit
in machine unlearning services: the user can intentionally
manipulate their data so that the server unlearns the revised
data having a higher effect on the model than unlearning the
original data.

In this section, we formulate the over-unlearning and
introduce two possible strategies that an authorized unlearning
user can leverage for malicious unlearning in MLaaS scenarios,
to answer the research question “Is it feasible for a user to
compromise the normal business of the server by requesting
machine unlearning services in MLaaS? And how easily can
the user achieve the compromise?” Based on the different
granularity of the input space, we introduce two types of
methods that the user can leverage to materialize the threats
of over-unlearning. The first type works on sample-wise mod-
ification of the data, while the second one works on pixel-wise
modification of the data.

A. Problem Statement

In this paper, we mainly focus on ML classification, as it
is one of the most common ML applications. Let (x, y) be a

data sample with multidimensional features. An ML classifier
is a function f(·) that takes as input x and outputs a vector of
probabilities Y . The length of Y equals the number of classes
in the classification task. Each entry yi in Y represents the
posterior probability of the model assigning x to a class (i.e.,
the label) ci ∈ C, where C is the set of all classes.

Let M(·, ·) be a fixed unlearning method, and θ∗ be the
trained model owned by the server. Let Du ⊂ Dtrain be an
unlearned dataset owned by a user. Let D′

u be a perturbed
version of Du generated by the user for the purpose of
posing the over-unlearning threat to the server. To facilitate
the understanding of over-unlearning, we first introduce the
scenarios of normal unlearning and malicious unlearning.

Normal Unlearning. Normal unlearning is defined as the case
that the user faithfully submits Du to the server for unlearning.
Based on M(·, ·) and Du, the server produces an unlearned
model θ∗

u.

Malicious Unlearning. Malicious unlearning is defined as the
case that the user maliciously submits D′

u to the server for
unlearning. Based on M(·, ·) and D′

u, the server produces an
unlearned model θ∗

t .

Note that the server may have limited capacity to check the
quality of the unlearned model, and the most feasible indicator
is to check the test accuracy of the model using a test dataset.
The investigation of accuracy can be conducted class by class
to check the quality of each class. Let Dtest be a test dataset.
For simplicity, we consider the data (x, y) ∈ Du hosted by the
malicious unlearning user being from one specific class A. Let
DA ⊂ Dtest be a sub-test dataset containing the test samples
of the class A in Dtest. We define α1 as the test accuracy of
θ∗
u on DA and α2 as the test accuracy of θ∗

t on DA. We can
define over-unlearning as follows:

Definition 1 (Over-unlearning). We call the case Over-
unlearning if the utility of θ∗

t is smaller than that of θ∗
u on

DA, e.g., the accuracy α2 < α1.

Over-unlearning represents that the information the server
unlearned exceeds what the server ought to unlearn. For
example, a classifier trained to determine “dog” and “cat” has
a test accuracy of 90% on the class “dog”. Unlearning 10% of
the training data of “dog” produces an unlearned model with a
test accuracy of 88% on “dog”, i.e., the accuracy degradation is
2%. We consider over-unlearning to happen if unlearning the
same training data with some modifications using the same
unlearning method produced an unlearned model with a test
accuracy of less than 88% on “dog”, e.g., 80%.

Over-unlearning may result in two types of degradation,
as shown in Figure 2. Over-unlearning-I highlights the degra-
dation observed in class A when manipulating samples of
class A, while Over-unlearning-II uncovers the degradation
experienced in classes other than A. The impacts of these
two types hinge on whether the supplementary information
introduced to instigate over-unlearning regarding classes other
than A or not.

B. Blending as Naive Over-unlearning

The most simple way to achieve over-unlearning is to
incorporate additional sample information into the unlearned

5

Class A Class B

Expected performance degrade
caused by normal unlearning

Performance degrade caused by
Over-unlearning I

Performance degrade caused by
Over-unlearning II

Class A Model performance

(a) Over-unlearning I (b) Over-unlearning II

Fig. 2: An illustration of two types of implications of over-unlearning. The white circle represents the information that the θ∗

should unlearn.

sample, e.g., blending the original unlearned sample from
class A with a sample from another class B without introducing
any computational overheads. Therefore, by unlearning D∗

u that
contains the features of the blended sample from class B, the
model will suffer an unexpected performance degradation on
class B as a result of additional information over-unlearned.
Therefore, we first use such a lightweight sample-wise strategy
to illustrate the feasibility of over-unlearning. Here, the addi-
tional information introduced to cause over-unlearning is other
than the original class A, then the measured impact belongs to
over-unlearning-II. To meet the stealthiness requirement of the
unlearned sample, we consider the malicious user can embed
the features of the samples of the target class into the data
samples in Du. Specifically, we consider the malicious user
can use the blend technique [14] to embed the features of the
samples of another class into the data samples in Du. The
user leverages an injection function Π(·, ·) to blend x with
xb, which is defined as follows:

Π(x,xb) = λ · x+ (1− λ) · xb, (1)

where λ ∈ [0, 1] is the hyper-parameter representing the
blending ratio. Here, both x and xb are in their vector
representations. The λ can be considered as the hyperparameter
to control the transparency level of the blending. We visualize
an example of blending a “airplane” sample with a “cat”
sample in Figure 3.

To further satisfy the stealthiness of the manipulated un-
learned sample, we modify the unlearned data x by blending
it with the sample xb in class B, while modifying y to the
predicted label of the server’s model on the modified data.
The submitted label is consistent with the prediction of the
deployed model. From the server’s perspective, it is difficult
to notice the malicious behavior of the user based on the
submitted label.

C. Pushing as Advanced Over-unlearning

Even though the blending-based strategy is cost-efficient
and model-irrelevant, the over-unlearning is conducted in a
blind way and the degradation performance is not effective on
all datasets (detailed in Section V-A). Therefore, we introduce
an advanced over-unlearning method.

Motivation. The behavior of ML models is reflected in their
decision boundary, which represents the region where the
model assigns different class labels or makes decisions based

(a) Original sample (b) Blend sample (c) Blended sample

Fig. 3: An example of blending “airplane” sample with “cat”
sample (with λ = 0.1).

on the input features. We have a key observation that ML
models can be more confused when predicting samples that
are near the decision boundary, given that even a slight change
in the input can lead to different predictions by the model.
Thus, we consider that samples near the decision boundary
of a model are more informative than those that are farther
away from it because samples near the decision boundary
carry more ambiguity in their class assignments. This intuition
is similar to the entropy [46] in information theory which
measures the average amount of information contained in a
random variable. In information theory, a random variable is
considered more informative (i.e., with higher entropy) when
its possible outcomes are more random or unpredictable.

Based on the above motivation, we consider the malicious
user can enlarge the unlearning effect of the samples in Du

by intentionally moving them to the decision boundary of
the model. When the data sample is moved near but still
within the decision boundary, the additional information to
cause over-unlearning is still about the original class A. There-
fore, the over-unlearning type is Over-unlearning-I, where the
performance degradation derived from over-unlearning mainly
affects class A. However, after the data sample is moved
to cross the decision boundary, the additional information
to cause over-unlearning involves classes other than class
A. Correspondingly, the over-unlearning type is both Over-
unlearning-I (primary) and II (secondary), where the perfor-
mance degradation derived from over-unlearning affects other
influenced classes. To investigate these two scenarios, we ex-
plore two pushing-based over-unlearning methods as depicted
in Figure 4. We describe these two methods as follows.

6

Training data
Unlearn samples
Decision boundary of the classifier
Decision boundary after unlearning
Pushing I
Pushing II

Fig. 4: An illustration of over-unlearning using adversarial per-
turbation. Moving the unlearned data to the decision boundary
for unlearning can significantly change the decision boundary
of the model.

Over-unlearning by Pushing-I. This method moves the data
sample toward the decision boundary but not across it. From
the perspective of the model, it can still correctly predicts
the label of the sample because the sample did not cross the
decision boundary. Pushing-I helps to evaluate how unlearning
samples near the decision boundary can affect the performance
of the model.

Over-unlearning by Pushing-II. This method moves the data
sample just across the decision boundary. After the manip-
ulation, such data samples are beyond the prediction ability
of the model because they are moved to a region other than
their correct labels. Pushing-II also helps to evaluate how
unlearning samples that are hard to make predictions can affect
the performance of the model.

Note that samples in Du themselves may be close to
the decision boundary of the model. However, this does not
undermine our methods: First, the majority of the training
samples are not located near the decision boundary, which is
often true when the model is trained on well-distributed and
balanced datasets [5]. Second, even if the samples in Du are
close to the decision boundary, we can move them further to
the decision boundary. Last, we focus on investigating whether
our method of moving samples to the decision boundary
can enlarge their unlearning effect. As long as one of the
malicious users can leverage the method to materialize the
over-unlearning threat, we can consider the threat that exists
in the machine unlearning services.

Let x ∈ Du be an unlearned sample. Based on our method,
the user aims to construct a perturbed version of x:

x′ = x+ δ, (2)

where x′ is the perturbed version of x, and δ is the perturba-
tion. x′ is required to satisfy:

Dis(x′,θ∗) ≤ ϵ, (3)

where Dis(·, ·) is the distance of x′ to the decision boundary of
the model θ∗, and ϵ is a small value of the distance threshold.

Algorithm 1 Perturbation design for over-unlearning

Require: x: original input; T : maximum number of iterations
for the optimization algorithm
Initialize x′ = x
for iteration in range(T) do

Calculate loss L(x,x′) ▷ Equation 4
Calculate the gradient of loss with respect to x′

Update x′ in the direction of the negative gradient
end for
return x′

However, calculating the exact distance of a data sample to
the decision boundary of ML models, especially deep models
can be challenging because of the complexity of the model
and the lack of analytical solutions [45]. Thus, we propose
to leverage adversarial perturbation [22], which is a practical
and commonly used technique to move samples closer to
the decision boundary of a model by adding small noises
to them [41], while without requiring to exactly calculate
Dis(x′,θ∗).

Given that the user only has black-box access to the
model of the server, we consider the user can leverage the
adversarial technique from the black-box Carlini and Wagner
(CW) adversarial attack [12], [13]. The Carlini and Wagner
(CW) attack is an optimization-based attack that aims to find
the minimum amount of perturbation that when added to the
input will lead to misclassification. The loss function for the
CW attack is defined as follows:

L(x,x′) = ||x− x′||22 + c · f(x′)

s.t. x′ ∈ [0, 1]d,
(4)

where x is the original input, x′ is the perturbed input, || · ||22
is the ℓ2-norm, and c is a constant. f(x′) is a function defined
as:

f(x′) = max
x′

{max
i̸=yt

([Z(x′)]i)− [Z(x′)]yt
,−k}, (5)

where Z(x′) are the logits, [Z(x′)]i represents the predicted
probability that x′ belongs to class i, yt is a target class label
toward misclassification, and k ≥ 0 is a margin parameter.

In this work, we consider the black-box setting, where the
user has no knowledge about the architecture or parameters of
the model. Here, the only information received from the model
is the predicted class probabilities for all classes via querying
input x for the deployed model. The CW attack can be
performed using techniques such as zeroth order optimization
(ZOO) [13]. The gradients of the model’s output with respect
to the input can be approximated using finite differences, i.e.,
by querying the black-box model with slightly perturbed inputs
and observing changes in the model’s output. The loss term
f(x′) in ZOO can be formalized as follows:

f(x′) = max
x′

{max
i ̸=yt

(log[Z(x′)]i)− log[Z(x′)]yt ,−k}.
(6)

Note that the log(·) here is a monotonic function, lessening
the dominance effect while preserving the order of confidence
scores due to monotonicity.

7

To perform the optimization, ZOO uses the zeroth order
stochastic coordinate descent method, which can be written in
the following form:

δ
(t+1)
j = δ

(t)
j − ηg

(t)
j , (7)

where j is a coordinate index of the pixel in the image x, η
is the step size, and g

(t)
j is an estimate of the gradient of the

loss function at iteration t, calculated using finite differences
as follows:

g
(t)
j =

f(x+ δ(t) + hej)− f(x+ δ(t))

h
. (8)

Here, h is a small constant used for the finite difference
approximation, and ej is the standard basis vector with the
j-th component as 1. Note that there are other black-box
adversarial techniques such as substitute models [35]. The
zeroth order optimization is selected due to avoid the need
to train a substitute model.

For a sample (x, ytrue) ∈ Du, we use the adversarial tech-
nique described above to move it towards the decision bound-
ary and obtain (x(1), y(1)), . . . , (x(t−1), y(t−1)), (x(t), y(t)).
Assume y(t−1) = ytrue and y(t) ̸= ytrue, then Pushing-I method
selects x(t−1) as the modified sample and Pushing-II method
selects x(t) as the modified sample.

IV. EXPERIMENTAL SETTINGS

In this section, we first introduce the datasets, models, and
evaluation metrics used for the experiments. Then, we intro-
duce the unlearning settings and the unlearning benchmarks
used for evaluating the over-unlearning threat.

A. Datasets and Models

Datasets. In our experiments, we use three datasets to evaluate
the proposed two methods for over-unlearning. The three
datasets are benchmark datasets for image classification tasks,
which cover a wide range of object categories with different
learning complexities.

• CIFAR-10 [33]. This dataset contains 60,000 color images
with 50,000 images in the training dataset and 10,000
images in the test dataset. It consists of 10 different classes,
with each image labeled with one of the following classes:
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
or truck. Each image in the dataset has dimensions of 32×32
pixels.

• CIFAR-100 [33]. Just like CIFAR-10, this dataset contains
60,000 color images with 50,000 images in the training
dataset and 10,000 images in the test dataset. CIFAR-100
includes 100 fine-grained classes, such as different types
of animals, plants, household objects, and vehicles. The
image size in the CIFAR-100 is the same as CIFAR-10 with
dimensions of 32× 32 pixels.

• STL-10 [15]. This dataset consists of 13,000 color images
with 5,000 training images and 8,000 test images. STL-10
has 10 classes of airplanes, birds, cars, cats, deer, dogs,
horses, monkeys, ships, and trucks with each image having
a higher resolution of 96 × 96 pixels. Compared to the
above two datasets, STL-10 can be considered as a more
challenging dataset with higher learning complexity.

Models. We use the VGG model [49] and the ResNet
model [25] to evaluate our proposed methods for over-
unlearning. These two model architectures are benchmark clas-
sification models for image classification tasks. The detailed
description of the models used in this paper is in Appendix B.

Metric. As the MLaaS service provider, the utility of the model
is a priority of the server because it aims to offer models
that are accurate for providing predictions to their users. The
server may have limited capacity to check the quality of the
unlearned model, and the most feasible indicator is to check
the test accuracy of the model using a test dataset. We report
the accuracy of the model on the test dataset to assess the
utility of the model in the experiments.

B. Unlearning Settings and Benchmarks

Number of Unlearned Samples. To mimic a practical sce-
nario where the malicious user only contributes a small pro-
portion of training data, we assume the user has no more
than 50% training data of a class that can be modified for
over-unlearning. Specifically, we assume the user has no more
than 200, 200, and 2,000 samples in CIFAR-100, STL-10, and
CIFAR-10, respectively.

Perturbation Magnitude for Pushing. To ensure the stealthy
of the modified samples in pushing methods, the perturbation
added to the original sample should be imperceptible. In our
experiments, we bound the perturbations by ℓ2-norm perturba-
tions of 20 to ensure the stealthiness of the modified samples.
We provide visualization of modified samples with the max-
imum perturbation and analysis of the perceptual similarity
between the modified samples and the original samples in
Appendix D and Table XIII. The modified samples have high
perceptual similarity with the corresponding original samples
(SSIM [54] mean value around 0.97, the closer to 1, the more
similar, LPIPS [59] mean value around 0.03, the smaller, the
more similar).

Unlearning Benchmarks. We evaluate the effectiveness of
our proposed methods for over-unlearning on two benchmark
unlearning methods: one is a state-of-the-art gradient-based
unlearning method [55], and the other is an empirical unlearn-
ing method of fine-tuning [57] that has been widely used as
the unlearning baseline. Both of the two unlearning methods
are feasible for machine unlearning services where the server
requires to perform unlearning with the usage of only the
unlearned data sent from the users.

• Fine-tuning based Unlearning Method. Fine-tuning has
been widely used as an empirical unlearning baseline in
existing works [20], [21], [23], [57]. This method aims to
let the model output wrong predictions on the unlearned
samples by fine-tuning the model on the unlearned samples
with wrong labels. As an empirical unlearning method, the
intuition of fine-tuning is the privacy information of the un-
learned sample cannot be inferred because the model outputs
wrong predictions. However, information of the unlearned
samples might still be inferred from the parameters of the
model. In our experiments, we follow the same strategy that
the server randomly relabels the images sent from the user
and fine-tunes the model on relabeled images for unlearning.

• Gradient-based Unlearning Method. We evaluate on a
state-of-the-art gradient-based unlearning method developed

8

by Warnecke et al. [55], which is detailed introduced by
Equation 12 and Equation 13 in Appendix A. The intuition
is to leverage an irrelevant sample to overwrite the unlearned
sample. In our experiments, we adopt the hyper-parameter
settings in [55] and use the images consisting of random
noise as irrelevant samples to overwrite the unlearned im-
ages.

Compared to the fine-tuning based unlearning method, the
state-of-the-art gradient-based unlearning method guarantees
that the unlearned model approximates the model that is re-
trained on the training dataset with the unlearned data removed,
i.e., the removal in the unlearned model produced by the
state-of-the-art gradient-based unlearning method is certified.
Thus, in the experiments, we mainly report the results on
the gradient-based unlearning method, while we provide the
experimental results showing the effectiveness of our methods
on fine-tuning in Appendix C.

Note that our proposed methods may also allow a mali-
cious user to achieve over-unlearning in MLaaS via machine
unlearning requests when the server uses other unlearning
methods. In our experiments, we aim to show that over-
unlearning can be materialized by our proposed methods when
the server uses the state-of-the-art gradient-based unlearning
method or the widely used empirical unlearning method. The
investigation of achieving over-unlearning by new techniques
or the effectiveness of our methods on new unlearning methods
is orthogonal to our work.

V. EVALUATION

In this section, we first demonstrate the performance of the
naive over-unlearning method of blending to demonstrate the
feasibility of over-unlearning. Then, we present the effective-
ness of the advanced over-unlearning methods of Pushing-I
and Pushing-II for achieving over-unlearning1.

A. Effectiveness of Blending Method

To demonstrate the effectiveness of the blending method
for over-unlearning, we conduct experiments on CIFAR-10,
CIFAR-100, and STL-10 using the VGG model. we consider
the malicious user has no more than 50% of the training
samples of “airplane”, “apple”, and “airplane” in CIFAR-10,
CIFAR-100, and STL-10, respectively. We select the class of
“cat” for CIFAR-10, “orange” for CIFAR-100, and “cat” for
STL-10 to embed the information of another class into the
unlearned samples of the user. Here, both the class of the
unlearned data and the additional class are randomly selected.
Because the additional information is from the additional
class, we mainly report the test accuracy of the model on the
additional class, while reporting the overall test accuracy on
all classes in Table XI in the Appendix.

As depicted in Table III, we can see that the blending
method is effective on CIFAR-10, which demonstrates the
feasibility of over-unlearning. When unlearning 400 samples
of “airplane” containing information of “cat” on CIFAR-10,
the blending method can degrade around 1.4% accuracy of
the unlearned model on “cat” compared to normal unlearning.

1The source code of the experiments is available at https://github.com/
TASI-LAB/Over-unlearning

TABLE III: Effectiveness of the blending method for over-
unlearning-II when unlearning 10% and 50% training data of
a class on CIFAR-10, CIFAR-100, and STL-10.

Dataset # of
Samples

Blending
Ratio

Performance
Degradation

CIFAR-10
400 0.3 0.7% ↓

0.5 1.4% ↓

2,000 0.3 2.8% ↓
0.5 8.1% ↓

CIFAR-100
40 0.3

0.5

200 0.3
0.5

STL-10
40 0.3

0.5

200 0.3
0.5

: We did not observe performance degradation compared to normal unlearning.

More performance degradation of 8.1% can be achieved when
the number of unlearned samples increased to 2,000. However,
we did not observe the effectiveness of the blending method
on CIFAR-100 and STL-10. This indicates that the naive over-
unlearning method of simply blending features of the samples
in another class cannot achieve over-unlearning on complex
datasets, which highlights the necessity of advanced methods
for over-unlearning.

Takeaway 1 The naive method of blending for over-
unlearning is only effective in the simple classification
task, while it cannot be applied to complex tasks with
many class categories or complex patterns.

B. Effectiveness of Pushing-I and Pushing-II

To demonstrate the effectiveness of Pushing-I and Pushing-
II for over-unlearning, we conduct experiments on CIFAR-10,
CIFAR-100, and STL-10 using the VGG model. We consider
the malicious user has no more than 50% of the training
samples of “airplane”, “apple”, and “airplane” in CIFAR-10,
CIFAR-100, and STL-10, respectively. Note that the class of
the unlearned data is randomly selected and we will demon-
strate the choice of the class does not affect the effectiveness
of our methods in the ablation study. For Pushing-I, we move
the data sample near the decision boundary. For Pushing-II,
we move the data sample across the decision boundary, i.e.,
move the unlearned data to a decision region other than its
original label.

As we can see in Table IV, both Pushing-I and Pushing-
II can degrade the overall accuracy of the model compared
to normal unlearning, which indicates the effectiveness of the
two methods for Over-unlearning-I and Over-unlearning-II. To
better demonstrate how severe over-unlearning can be achieved
by Pushing-I and Pushing-II, we report the test accuracy of
the model on the class that the unlearned data comes from,
i.e., reporting the performance for Over-unlearning-I in the
following parts.

9

https://github.com/TASI-LAB/Over-unlearning
https://github.com/TASI-LAB/Over-unlearning

TABLE IV: The overall accuracy of the model before unlearning, with normal unlearning, with Pushing-I, and with Pushing-II
on CIFAR-10, CIFAR-100, and STL-10.

Test accuracy when unlearning 10% data of a class Test accuracy when unlearning 50% data of a class

Dataset Training accuracy Test accuracy Normal unlearning Pushing-I Pushing-II Normal unlearning Pushing-I Pushing-II

CIFAR-10 81.5% 79.8% 79.3% 73.5% (5.8%↓) 73.7% (5.6%↓) 78.7% 66.4% (12.3%↓) 66.9% (11.8%↓)
CIFAR-100 76.3% 51.1% 51.1% 50.7% (0.4%↓) 50.7% (0.4%↓) 49.7% 49.1% (0.6%↓) 49.2% (0.5%↓)
STL-10 96.3% 56.6% 56.6% 56.2% (0.4%↓) 49.7% (6.9%↓) 50.2% 49.5% (0.7%↓) 32.8% (17.4%↓)

CIFAR-10 CIFAR-100 STL-10
20

40

60

80

100

M
od

el
 a

cc
ur

ac
y

(%
) Normal unlearning

Pushing-I
Pushing-II

(a) Unlearn 10% data of a class

CIFAR-10 CIFAR-100 STL-10
0

20

40

60

80
M

od
el

 a
cc

ur
ac

y
(%

) Normal unlearning
Pushing-I
Pushing-II

(b) Unlearn 50% data of a class

Fig. 5: Effectiveness of Pushing-I and Pushing-II for over-
unlearning-I when unlearning 10% and 50% training data of
a class on CIFAR-10, CIFAR-100, and STL-10.

As depicted in Figure 5, we can see that both Pushing-
I and Pushing-II can achieve the goal of Over-unlearning-I
on all datasets: the utility of the model is smaller than the
model under normal unlearning. For example, as depicted in
Figure 5(a), when unlearning 10% training data of a class in
CIFAR-10, Pushing-I and Pushing-II can reduce the utility of
the model from 87.8% to around 29.5%, while normal unlearn-
ing has the accuracy of the model of 81.7%. Over-unlearning
becomes more severe when unlearning 50% training data of
the class. As depicted in Figure 5(b), Pushing-I and Pushing-II
can reduce the utility of the model on that class to around 2%,
indicating that the model becomes useless on predicting the
class of the unlearned data. The results in Figure 5 demonstrate
the effectiveness of Pushing-I and Pushing-II in achieving the
property of performance degradation in malicious unlearning.
To demonstrate the property of the stealthiness of the unlearned
samples in Pushing-I and Pushing-II, we visualize two “air-
plane” samples in STL-10 in Figure 9. As we can see, human
inspection cannot easily notice the existence of perturbations
in the unlearned data.

To study how the unlearned model produced by malicious
unlearning is different from the unlearned model produced
by normal unlearning, we visualize the prediction distribution
of the unlearned model on CIFAR-10 in Figure 6. As we
can see, the prediction distribution of the baseline model
produced by normal unlearning is very different from that
of the unlearned model produced by Pushing-I or Pushing-II.
After normal unlearning 400 training samples of “airplane”,
there are 817 test samples of “airplane” that can be corrected
and predicted as “airplane” by the unlearned model. However,
when malicious unlearning of Pushing-I or Pushing-II happens,
the over-unlearned model can only predict correctly on around
290 test samples, while largely assigning the rest of the testing
samples to the label of “2” (“bird”) and “8” (“ship”). This

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

of

 p
re

di
ct

ed
 la

be
l Normal unlearning

Pushing-I

(a) Baseline and Push-I

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

of

 p
re

di
ct

ed
 la

be
l Normal unlearning

Pushing-II

(b) Baseline and Push-II

Fig. 6: Prediction distribution comparison between the model
produced by normal unlearning and the models produced by
Pushing-I and Pushing-II when unlearning 10% samples of
“airplane” on CIFAR-10. The x-axis represents the category
that exists in the datasets and “0” represents the class “air-
plane” of the unlearned data. The y-axis represents the number
of predicted labels under that category.

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

of

 p
re

di
ct

ed
 la

be
l Normal unlearning

Pushing-I

(a) Baseline and Push-I

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

of

 p
re

di
ct

ed
 la

be
l Normal unlearning

Pushing-II

(b) Baseline and Push-II

Fig. 7: Prediction distribution comparison between the model
produced by normal unlearning and the models produced by
Pushing-I and Pushing-II when unlearning 50% samples of
“airplane” on CIFAR-10.

phenomenon exacerbates when unlearning 2,000 training data
of that class as depicted in Figure 7.

Motivated by Figure 6 and Figure 7 that most of the
wrongly predicted labels are assigned to “bird” or “ship”,
we further ask that is it possible to control the wrongly
predicted label of the unlearned model on test samples of
“airplane” in Over-unlearning-I. If so, Over-unlearning-I can
be more dangerous than just reducing the utility of the model.
To investigate this possibility, we select a particular decision
region to move the unlearned data, i.e., we move all the
unlearned data to the particular decision region.

We conduct an experiment on CIFAR-10 to investigate

10

whether it is possible to control the wrongly predicted label
of the unlearned model. We leverage Pushing-I and Pushing-II
methods to move the unlearned samples of “airplane” near or
across the decision region of “cat”. Table V shows the predic-
tion results of the predicted labels of the model on CIFRA-10.
As we can see, before unlearning, there are 878 test samples
of “airplane” that are correctly predicted by the trained model.
When unlearning 400 samples under normal unlearning, the
model can predict most of the testing samples as “airplane” and
predict only two test samples of “airplane” as “cat”. However,
under malicious unlearning, the model increases the wrong
predictions on “cat” to 20 (Pushing-I) and 25 (Pushing-II). The
wrong predictions on “cat” increase greatly when the user can
modify 2,000 samples: there are more than 245 (Pushing-II)
and 375 (Pushing-I) wrong predictions of the unlearned model
on “cat”. This demonstrates that the wrongly predicted label of
the unlearned model can indeed be controlled by the malicious
user by moving the unlearned data to a fixed decision region
of a class. The results in Table V demonstrate the pushing
method can be more dangerous than just reducing the utility
of the model. We find the same conclusion on CIFAR-100,
and the results are demonstrated in Table VI.

Takeaway 2

• The proposed Pushing-I and Pushing-II methods are
effective and reliable in achieving over-unlearning.

• The wrongly predicted label of the unlearned model
can be controlled in over-unlearning, which is a more
severe threat than just reducing the utility of the
model.

VI. ABLATION STUDY

A. Ablation Study for the Blending Method

Although the blending method cannot achieve over-
unlearning in complex classification tasks, it works at a certain
level on simple tasks with the advantage of no computational
overheads. Thus, for simple classification tasks, malicious
users may still consider the blending method as an option
for over-unlearning. We study how the number of unlearned
samples and the blending ratio may affect the performance
of the blending method. We also study whether the blending
method is generic when the embedded information is from
different classes than the class we have evaluated.

Number of Unlearned Samples. We first study how the
number of unlearned samples can affect the performance of the
blending method. Intuitively, the more data the malicious user
has, the more information of the additional class the user can
embed, which should cause a larger effect on the unlearned
model on that class. We set the blending ratio to 0.3. We
use the model of VGG and vary the number of unlearned
samples from 400, 800, 1,200, 1,600, to 2,000. We embed
“cat” into the unlearned data of “airplane” in CIFAR-10. We
report the difference (i.e., performance degradation) between
the accuracy on the “cat” class of the model under normal
unlearning and the model produced by the blending method.

As we can see in Figure 8(a), a larger number of unlearned
samples can enable the blending method to be more effective,
which aligns with our intuition. When the malicious user has
400 samples, the blending method can achieve an accuracy

400 800 1200 1600 2000
Number of unlearned samples

0

0.5

1

1.5

2

2.5

3

Ac
cu

ra
cy

 d
eg

ra
da

tio
n

(%
)

(a) Vary # of unlearned samples

0.1 0.2 0.3 0.4 0.5
Blending ratio

0

2

4

6

8

10

Ac
cu

ra
cy

 d
eg

ra
da

tio
n

(%
)

(b) Vary the blending ratio

Fig. 8: Accuracy degradation of the model w.r.t. the number
of unlearned samples and the blending ratio in the blending
method. In general, more unlearned samples and a higher
blending ratio can result in higher accuracy degradation of
the model.

degradation of around 0.7% on the model compared to normal
unlearning. When having 2,000 unlearned samples, the blend-
ing method can achieve around 2.8% accuracy degradation.
Although the performance degradation caused by the blending
method is not large, this naive approach demonstrates the
feasibility of over-unlearning.

Blending Ratio. We study how the blending ratio affects the
effectiveness of the blending method. Intuitively, the larger the
blending ratio is, the more information of the additional class
can be embedded into the unlearned data. We use the VGG
model and set the number of unlearned samples to 400. We
vary the blending ratio from 0.1, 0.2, 0.3, 0.4, to 0.5 and embed
“cat” into the unlearned data of “airplane” in CIFAR-10.

Figure 8(b) shows the accuracy of the unlearned model
produced by the blending method under different blending
ratios. As we can see, the blending method is more effective
when setting a higher blending ratio. However, with a higher
blending ratio, the pattern of the sample in the other class is
more obvious, which can make the injected information of the
other class to be less stealthy.

Class Options. We study whether the blending method works
on other classes than the class we have evaluated. We use
the VGG model and set the number of unlearned samples to
2,000 and the blending ratio to 0.3. We embed the information
of the classes of “bird”, “horse”, and “ship” respectively, into
the samples of “airplane” in CIFAR-10.

Table VII shows the accuracy of the unlearned model
under normal unlearning and the blending method on “bird”,
“horse”, and “ship”. As we can see, the blending method
only reduces the accuracy of the model slightly compared
to normal unlearning. This suggests that the naive blending
for over-unlearning method may not be generic and reliable,
which highlights the importance of using the advanced pushing
method to achieve over-unlearning.

Takeaway 3 With a greater number of unlearned samples
and higher blending ratios, the naive blending method can
achieve over-unlearning more effectively.

11

TABLE V: The predicted labels of the model on CIFAR-10 before unlearning, with normal unlearning, and with malicious
unlearning. “airplane” is the label of the unlearned data and “cat” is the target label.

Number of Number of the different predicted labels of the model

unlearned samples Model status Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

0 Before unlearning 878 0 0 0 0 0 0 0 0 0

400
Normal unlearning 817 4 11 2 5 1 1 0 19 18
Pushing-I 509 18 128 25 16 1 11 5 127 38
Pushing-II 538 16 117 20 13 1 11 5 117 40

2,000
Normal unlearning 708 9 53 5 7 1 1 4 58 32
Pushing-I 26 34 100 378 20 1 2 15 214 88
Pushing-II 31 35 164 247 19 1 3 14 281 83

TABLE VI: The predicted labels (Top-5) of the model on
CIFAR-100 before unlearning, with normal unlearning, and
with malicious unlearning. “apple” is the label of the unlearned
data. “sweet pepper” is the target label.

Number of Number of the predicted labels of the model

samples Model status apple pear sweet pepper orange trout

0 Before unlearning 71 0 0 0 0

40
Normal unlearning 70 0 1 0 0
Pushing-I 57 2 10 2 0
Pushing-II 59 3 8 1 0

200
Normal unlearning 54 4 13 0 0
Pushing-I 2 7 41 19 2
Pushing-II 5 7 45 14 0

(a) Original sample (b) Pushing-I (c) Pushing-II

(d) Original sample (e) Pushing-I (f) Pushing-II

Fig. 9: Stealthiness of the modified examples in the Pushing
method: STL-10 samples of “airplane” used for Pushing-I
and Pushing-II. Human inspection cannot easily notice the
existence of perturbations in the unlearned data.

B. Ablation Study for Pushing-I and Pushing-II

Number of Unlearned Samples. We first study how the num-
ber of unlearned data can affect the performance of Pushing-
I and Pushing-II. Intuitively, the more data the malicious
user has, the more effect on the model the user can cause.
We use the VGG model and vary the number of unlearned
data samples from 400, 800, 1,200, 1,600 to 2,000 in the

TABLE VII: Unlearned model accuracy w.r.t. different classes
under the blending method.

Bird Horse Ship

Normal unlearning 74.6% 80.5% 94.0%
Blending 74.4% (0.2%↓) 80.4% (0.1%↓) 93.8% (0.2%↓)

400 800 1200 1600 2000
Number of unlearned samples

3

6

9

12

15

Ac
cu

ra
cy

 d
eg

ra
da

tio
n

(%
)

Pushing-I
Pushing-II

Fig. 10: Accuracy degradation of the model w.r.t. number of
unlearned samples. In general, more unlearned samples can
result in higher accuracy degradation of the model.

class “airplane” in CIFAR-10. We report the difference (i.e.,
performance degradation) between the accuracy of the model
produced by normal unlearning and the model produced by
Pushing-I and Pushing-II.

As we can see in Figure 10, a larger number of unlearned
samples can enable both Pushing-I and Pushing-II to be more
effective. When the malicious user has 400 samples, Pushing-I
and Pushing-II can degrade around 6% accuracy of the model
compared to normal unlearning. When having 2,000 unlearned
samples, Pushing-I and Pushing-II can achieve around 12%
accuracy degradation, which is twice compared to the case
of having 400 samples. Comparing Pushing-I and Pushing-II,
it seems each has respective advantages when the malicious
user has a different number of samples. However, note that
Pushing-I has the advantage of sample stealthiness of both the
feature and the label. Thus, Pushing-I may be more preferred
by the malicious user for achieving over-unlearning.

Model Architecture. We study how different model architec-
tures may affect the effectiveness of Pushing-I and Pushing-II.
We use CIFAR-10 and set the number of unlearned samples in

12

TABLE VIII: Unlearned model accuracy w.r.t. different model
architectures.

Normal unlearning Pushing-I Pushing-II

VGG 79.3% 73.6% (5.7%↓) 73.7% (5.6%↓)
ResNet 69.4% 66.9% (2.5%↓) 68.3% (1.1%↓)

TABLE IX: Unlearned model accuracy w.r.t. different model
depths.

VGG model 3 blocks 4 blocks 5 blocks

Normal unlearning 79.3% 76.5% 73.3%
Pushing-I 73.6% (5.7%↓) 72.7% (3.8%↓) 65.6% (7.7%↓)
Pushing-II 73.7% (5.6%↓) 69.5% (7.1%↓) 65.7% (7.6%↓)

the class “airplane ” to 400 in CIFAR-10. We use two different
model architectures of VGG and ResNet.

Table VIII demonstrates the effectiveness of Pushing-I and
Pushing-II across VGG and ResNet. As we can see, Pushing-I
can degrade the model accuracy to around 5.7% and 2.5%
on VGG and ResNet compared to normal unlearning, and
Pushing-II can degrade the model accuracy to around 5.6%
and 1.1%. The effectiveness of Pushing-I and Pushing-II on
both model architectures implies that our proposed strategy
of moving data to the decision boundary of the model for
achieving over-unlearning is model-agnostic. Comparing the
accuracy degradation across VGG and ResNet, we find that
VGG suffers more accuracy degradation than ResNet, while
VGG has higher accuracy than ResNet when the data is nor-
mally unlearned. This suggests that models with higher utility
might be more vulnerable to the threat of over-unlearning,
which further implies the importance of the investigation of
malicious unlearning.

Model Depth. We study how the depth of the model may
affect the effectiveness of Pushing-I and Pushing-II. We set the
number of unlearned samples to 400 in the class of “airplane”
in CIFAR-10. We use the VGG model with the different
number of blocks to simulate the models with different depths.

Table IX shows the accuracy of the unlearned model
with different depths under normal unlearning, Pushing-I,
and Pushing-II, respectively. As we can see, both Pushing-
I and Pushing-II are effective in achieving the goal of over-
unlearning on models with different numbers of VGG blocks.
When comparing the models with different depths under the
same unlearning setting, we find that the utility of the model
with more blocks is usually smaller than that of the model with
fewer blocks. For example, the unlearned model with 3 blocks
has an accuracy of 73.6% under Pushing-I, while with 5 blocks
the model has an accuracy of 65.6%. Under normal unlearning,
the unlearned model with 3 blocks has an accuracy of 79.3%,
while with 5 blocks the unlearned model has an accuracy of
73.3%. This reminds us that models with deeper depths might
be more easily affected by unlearning, either under normal
unlearning or malicious unlearning.

Class Option. We study whether Pushing-I and Pushing-II can
work when the user has training samples of other classes than
the class we have evaluated. We use the VGG model and set

TABLE X: Unlearned model accuracy w.r.t. different classes.

Base class Bird Horse Ship

Normal unlearning 76.2% 78.4% 77.5%
Pushing-I 74.1% (2.1%↓) 75.6% (2.8%↓) 73.5% (4.0%↓)
Pushing-II 73.7% (2.5%↓) 75.8% (2.6%↓) 72.9% (4.6%↓)

the number of unlearned samples to 400. We vary the class of
“bird”, “horse”, and “ship” in CIFAR-10, respectively.

Table X shows the accuracy of the unlearned model under
Pushing-I and Pushing-II when the user has the unlearned
samples in the class of “bird”, “horse”, and “ship”. As we can
see, for all the classes, Pushing-I and Pushing-II can degrade
the accuracy of the model by around 2% to 5% compared to
normal unlearning. The effectiveness of both Pushing-I and
Pushing-II in achieving the goal of over-unlearning-I across
different classes demonstrates the generalization ability of the
advanced pushing methods for over-unlearning.

Takeaway 4

• Pushing-I and Pushing-II are effective across dif-
ferent model architectures and depths, and they are
generic to achieve over-unlearning across different
classes.

• More unlearned samples can result in more effective
Pushing-I and Pushing-II for over-unlearning.

VII. DISCUSSION

Naive v.s. Advanced Over-unlearning. Even though the
blending-based strategy is cost-efficient and model-irrelevant,
we demonstrate that the over-unlearning is conducted in a blind
way. It is only effective in simple classification tasks and hard
to generalize to complex tasks with many class categories or
complex patterns. Nevertheless, it is a good motivation for
advanced over-unlearning strategies by producing perturbation
to push the sample to be close to the decision boundary.

Difference from Poisoning and Adversarial Attacks. The
blending-based over-unlearning has resemblance to data poi-
soning, particularly when the subtlety of the label is dis-
regarded. However, a key distinction lies in the fact that
our blending scenario does not necessitate the inclusion of a
training or re-training procedure, which is typically essential
for executing a standard poisoning attack. The pushing pipeline
is akin to an adversarial example, but there is a fundamental
difference in our objectives. Unlike adversarial attacks which
aim to deceive a classifier, our goal is to push the sample closer
to the decision boundary. On the other hand, existing advanced
techniques for data poisoning attacks and adversarial attacks
can be also incorporated into our design.

Possible Defence. In our study, we show that over-unlearning
can break the trade-off between model performance and un-
learning services. To protect against over-unlearning, there are
several possible protection strategies the server might leverage.

Hashing as a Possible Defense. The server can consider
hashing techniques [52] to verify the authenticity of unlearning
requests raised from the users. Specifically, the model owner

13

can hash training samples and send the hash values to the
server for storage. The server rejects the malicious unlearning
requests if he finds that the hash values of the unlearned
sample did not match the stored hash value. However, applying
hashing techniques in the MLaaS context is plausible in both
theory and practice because of several concerns. The first con-
cern is privacy breach. One of the most significant advantages
of isolating the dataset between the model developer and the
service provider is to protect the privacy of data contributors.
Put differently, the service provider should have no knowledge
of the model training sets. Providing hashing results or dataset
identification access to service providers may expose the
nature of the dataset used locally, leading to potential privacy
breaches, such as membership of an individual [48], [26] or
privacy linkage attack [37] (e.g., re-identify individuals in
anonymized datasets). The second concern is false rejections
of legitimate unlearning requests. Hashing algorithms designed
for ensuring unlearning authenticity may only function effec-
tively when the data samples uploaded by the user and received
by the server are identical to the original data samples provided
by the user for training the model. If the data sample changes
due to compression (eg, PNG to JPEG), network transmission
issues, and transcoding, hashing can lead to false rejection of
users’ legitimate unlearning requests, which may lead to severe
consequences for the service provider, including potential legal
fines due to GDPR [43].

Membership Inference. The server can also consider mem-
bership inference techniques [48], [11], [44] for authentic-
ity verification because membership inference techniques can
identify whether a data sample is a training sample or not.
However, membership inference techniques suffer from heavy
computational resources for training an inference model and
low inference accuracy. Also, they are not very effective on
well-generalized models [27].

Other Defences. The server can use anomaly detection method-
ologies [40] to scrutinize the submitted unlearning sample
further. However, since the proposed over-unlearning is contin-
gent on the user’s request, generic anomaly detection is inef-
fective due to lack of training data similar to users’ submission.
One heuristic mitigation is we recommend the service provider
to carefully monitor the run-time model performance during
deployment.

As we discussed above, the existing defence techniques
have limitations in defending against over-unlearning threats.
More advanced adversarial attacks and more robust counter-
measures could be incorporated into the over-unlearning design
recursively, which provides an avenue for future research.

VIII. CONCLUSION

This paper has provided a pioneering exploration into the
threats associated with machine unlearning services in the
real Machine Learning as a Service (MLaaS) environment.
Through a comprehensive investigation, we identified over-
unlearning as a significant risk that can compromise the
model’s utility when malicious unlearning data is submitted
by users. We proposed effective strategies for exploiting these
risks, requiring only black-box access to the models, thus shed-
ding light on the vulnerabilities of current unlearning methods
in MLaaS contexts. Our extensive experiments and compre-
hensive ablation studies have shown that these strategies can

effectively induce over-unlearning across different settings and
with various model architectures. These findings underline the
critical need to address the highlighted risks, specifically for
servers providing MLaaS to maintain their service integrity
and ensure compliance with privacy regulations.

As machine unlearning services continue to become in-
creasingly relevant in light of privacy concerns, our research
serves as a stepping stone in understanding and mitigating
the potential threats posed by these services. Future work
should continue this line of inquiry, developing more secure
unlearning methods and policies to assure the delicate balance
between data privacy, model utility, and service security in
MLaaS environments.

ACKNOWLEDGMENTS

This work is supported in part by Cybersecurity and Quan-
tum Systems group at CSIRO’s Data61, Australian Research
Council (ARC) DP240103068, as well as CSIRO – National
Science Foundation (US) AI Research Collaboration Program.
Minhui Xue and Shuo Wang are the corresponding authors of
this paper. Haojin Zhu is supported by the National Natural
Science Foundation of China under Grant No. 62325207.

REFERENCES

[1] Lufthansa Technik: Keeping airlines flying optimally with AI-
powered TechOps platform AVIATAR. [Online]. Available: https:
//cloud.google.com/customers/lufthansa

[2] Meta fined $1.3 billion for violating E.U. data privacy rules.
[Online]. Available: https://www.nytimes.com/2023/05/22/business/
meta-facebook-eu-privacy-fine.html

[3] User deletion API - overview. [Online]. Available: https://developers.
google.com/analytics/devguides/config/userdeletion/v3

[4] T. Baumhauer, P. Schöttle, and M. Zeppelzauer, “Machine unlearning:
Linear filtration for logit-based classifiers,” Machine Learning, vol. 111,
no. 9, pp. 3203–3226, 2022.

[5] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[6] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia,
A. Travers, B. Zhang, D. Lie, and N. Papernot, “Machine unlearning,”
in IEEE Symposium on Security and Privacy (IEEE S&P), 2021, pp.
141–159.

[7] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
International Conference on Machine Learning, 2021, pp. 1092–1104.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[9] Y. Cao and J. Yang, “Towards making systems forget with machine
unlearning,” in IEEE Symposium on Security and Privacy (IEEE S&P),
2015, pp. 463–480.

[10] Y. Cao, X. Xiao, R. Sun, D. Wang, M. Xue, and S. Wen, “Stylefool:
Fooling video classification systems via style transfer,” in 44th IEEE
Symposium on Security and Privacy (IEEE S&P), 2023, pp. 818–835.

[11] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in 2022 IEEE
Symposium on Security and Privacy (IEEE S&P), 2022, pp. 1897–1914.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE symposium on security and privacy (IEEE
S&P), 2017, pp. 39–57.

[13] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, 2017, pp. 15–26.

14

https://cloud.google.com/customers/lufthansa
https://cloud.google.com/customers/lufthansa
https://www.nytimes.com/2023/05/22/business/meta-facebook-eu-privacy-fine.html
https://www.nytimes.com/2023/05/22/business/meta-facebook-eu-privacy-fine.html
https://developers.google.com/analytics/devguides/config/userdeletion/v3
https://developers.google.com/analytics/devguides/config/userdeletion/v3

[14] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[15] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in
unsupervised feature learning,” in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, 2011, pp. 215–223.

[16] R. D. Cook and S. Weisberg, “Characterizations of an empirical
influence function for detecting influential cases in regression,” Tech-
nometrics, vol. 22, no. 4, pp. 495–508, 1980.

[17] E. De Cristofaro, “A critical overview of privacy in machine learning,”
IEEE Security & Privacy, vol. 19, no. 4, pp. 19–27, 2021.

[18] J. Z. Di, J. Douglas, J. Acharya, G. Kamath, and A. Sekhari, “Hidden
poison: Machine unlearning enables camouflaged poisoning attacks,” in
NeurIPS ML Safety Workshop, 2022.

[19] Federal Trade Commission, “FTC report to congress on privacy and
security (2021),” 2021.

[20] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[21] ——, “Forgetting outside the box: Scrubbing deep networks of infor-
mation accessible from input-output observations,” in 16th European
Conference on Computer Vision, 2020, pp. 383–398.

[22] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in International Conference on Learning Repre-
sentations, 2015.

[23] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, no. 13, 2021, pp. 11 516–11 524.

[24] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified
data removal from machine learning models,” in Proceedings of the 37th
International Conference on Machine Learning, 2020, pp. 3832–3842.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770–778.

[26] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe,
J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig,
“Resolving individuals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping microarrays,”
PLOS Genetics, vol. 4, no. 8, pp. 1–9, 2008.

[27] H. Hu, Z. Salcic, L. Sun, G. Dobbie, P. S. Yu, and X. Zhang,
“Membership inference attacks on machine learning: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[28] IMARC Group, “Machine learning as a service (MLaaS) market,” 2023.
[29] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Zou, “Approximate data

deletion from machine learning models,” in International Conference
on Artificial Intelligence and Statistics, 2021, pp. 2008–2016.

[30] J. Kim and S. S. Woo, “Efficient two-stage model retraining for machine
unlearning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022, pp. 4361–4369.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference for Learning Representations, 2015.

[32] P. W. Koh and P. Liang, “Understanding black-box predictions via
influence functions,” in International Conference on Machine Learning,
2017, pp. 1885–1894.

[33] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” 2009.

[34] B. Levin and L. Downes. Who is going to regulate AI? [Online].
Available: https://hbr.org/2023/05/who-is-going-to-regulate-ai.

[35] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable ad-
versarial examples and black-box attacks,” in International Conference
on Learning Representations, 2017.

[36] N. G. Marchant, B. I. Rubinstein, and S. Alfeld, “Hard to forget:
Poisoning attacks on certified machine unlearning,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 36, no. 7, 2022, pp.
7691–7700.

[37] A. Narayanan and V. Shmatikov, “Robust de-anonymization of large
sparse datasets,” in IEEE Symposium on Security and Privacy (IEEE
S&P), 2008, pp. 111–125.

[38] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro
et al., “Efficient large-scale language model training on gpu clusters
using megatron-lm,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1–15.

[39] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete:
Gradient-based methods for machine unlearning,” in Algorithmic Learn-
ing Theory, 2021, pp. 931–962.

[40] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, “Deep learning
for anomaly detection: A review,” ACM Computing Surveys (CSUR),
vol. 54, no. 2, pp. 1–38, 2021.

[41] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in IEEE European Symposium on Security and Privacy (EuroS&P),
2016, pp. 372–387.

[42] S. L. Pardau, “The California consumer privacy act: Towards a
European-style privacy regime in the United States,” Journal of Tech-
nology Law & Policy, vol. 23, p. 68, 2018.

[43] J. Rosen, “The right to be forgotten,” Stanford Law Review, vol. 64,
p. 88, 2011.

[44] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“ML-leaks: Model and data independent membership inference attacks
and defenses on machine learning models,” in Network and Distributed
Systems Security (NDSS) Symposium, 2019.

[45] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial in-
telligence: Understanding, visualizing and interpreting deep learning
models,” arXiv preprint arXiv:1708.08296, 2017.

[46] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[47] G. Shmueli, P. C. Bruce, K. R. Deokar, and N. R. Patel, Machine Learn-
ing for Business Analytics: Concepts, Techniques, and Applications with
Analytic Solver Data Mining. John Wiley & Sons, 2023.

[48] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in IEEE symposium
on security and privacy (IEEE S&P), 2017, pp. 3–18.

[49] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference for
Learning Representations, 2015.

[50] A. K. Tarun, V. S. Chundawat, M. Mandal, and M. Kankanhalli,
“Fast yet effective machine unlearning,” IEEE Transactions on Neural
Networks and Learning Systems, 2023.

[51] A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot, “Unrolling
sgd: Understanding factors influencing machine unlearning,” in IEEE
7th European Symposium on Security and Privacy (EuroS&P), 2022,
pp. 303–319.

[52] R. Venkatesan, S.-M. Koon, M. H. Jakubowski, and P. Moulin, “Robust
image hashing,” in Proceedings 2000 International Conference on
Image Processing (Cat. No. 00CH37101), vol. 3, 2000, pp. 664–666.

[53] S. Wang, S. Abuadbba, S. Agarwal, K. Moore, R. Sun, M. Xue,
S. Nepal, S. Camtepe, and S. Kanhere, “Publiccheck: Public watermark-
ing verification for deep neural networks,” in 44th IEEE Symposium on
Security and Privacy (IEEE S&P), 2023.

[54] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[55] A. Warnecke, L. Pirch, C. Wressnegger, and K. Rieck, “Machine
unlearning of features and labels,” in Network and Distributed System
Security Symposium (NDSS), 2023.

[56] Y. Wu, E. Dobriban, and S. Davidson, “Deltagrad: Rapid retraining
of machine learning models,” in International Conference on Machine
Learning, 2020, pp. 10 355–10 366.

[57] H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu, “Machine unlearning:
A survey,” ACM Computing Surveys, 2023.

[58] K. Yue, R. Jin, C.-W. Wong, D. Baron, and H. Dai, “Gradient obfusca-
tion gives a false sense of security in federated learning,” in USENIX
Security Symposium, 2023.

15

https://hbr.org/2023/05/who-is-going-to-regulate-ai.

[59] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 586–595.

APPENDIX

A. APPROXIMATE UNLEARNING

There are mainly two kinds of approximate unlearning
methods, which are detailed introduced as follows. Let θ∗ be
the trained model. Let Dtrain = Du ∪ Dr, where Du is the
dataset that contains the unlearned data and Dr is the dataset
that contains the remaining data. Specifically, the first kind
of approximate unlearning method [24], [29] leverages the
influence function to calculate the influence of the unlearned
data on the model parameters so that the trained model can
apply a Newton step to remove the influence for obtaining the
unlearned model:

θ∗
u = θ∗ +H−1

θ ∆θ(Z), (9)

where Z is the unlearned data. Hθ and ∆θ(Z) is defined as:

Hθ = ∇2L(θ∗,Dr), (10)

∆θ(Z) =
∑
z∈Z

∇L(z,θ∗). (11)

Here, Hθ is the Hessian matrix of the loss function L(.,Dr)
at θ∗. H−1

θ is the inverse of Hθ. The term H−1
θ ∆θ(Z) can be

interpreted as the influence of Du on the model parameter
θ∗ [32]. The advantage of the first kind of approximate
unlearning method is that one-step Newton update is enough
for removing the contribution of Du. However, the drawbacks
are also obvious: i) the construction of the inverse Hessian
matrix can be difficult for large-scale deep models; ii) the Dr

might not be applicable in cases where Dtrain is not stored or
deleted.

The second kind of unlearning method [51], [56], [39]
calculates the gradients of the unlearned data contributed to
the trained model during the training process. Then, to unlearn
the data Du, the trained model θ∗ is updated by adding back
these gradients to approximate the model θ that is retrained on
Dr. A state-of-the-art gradient-based unlearning method [55]
is as follows:

θ∗
u ≈ θ∗ +∆(Z, Ẑ), (12)

where

∆(Z, Ẑ) = −τ
(∑
ẑ∈Ẑ

∇θL(ẑ,θ∗)−
∑
z∈Z

∇θL(z,θ∗)
)
. (13)

Here, Ẑ is the perturbed version of the unlearned data Z, and
τ is a small constant of the unlearning rate. The high-level
intuition of this unlearning method [55] is to overwrite Z ∈
Du from θ∗ by using the perturbed data Ẑ. Thus, ∆(Z, Ẑ)
can be interpreted as the direction that moves the model θ to
remove the information contained in Du. An advantage of this
method [55] is that it only requires to access Du, which makes
it practical in many cases where only Du is applicable.

B. EXPERIMENTAL SETTINGS

Dataset Division. For all the datasets, we use 80% of the
training data to train the model and use 20% of the training
data as the validate data to prevent the model from overfitting.
We aim to demonstrate the effectiveness of our methods on
well-generalized models. For STL-10, to align the percentage
of training data, validation data, and test data with CIFAR-10
and CIFAR-100, we select 1,000 test images from the 8,000
test samples and report the test accuracy of the model on these
1,000 test samples.

Models. We use two VGG models and one ResNet model
in our experiments. The three deep models are with different
depths and architectures to mimic the server’s different normal
business tasks. The first deep learning model is composed of
three VGG blocks [49] (consisting of six convolutional layers)
and two dense layers. This model utilizes 128 convolutional
filters, a kernel size of 3 × 3, a pooling size of 2 × 2, and
the ReLU activation function. Our experiments are mainly
conducted on the first model. The second model follows
the same configuration but is deeper, featuring five VGG
blocks encompassing ten convolutional layers. In contrast, the
final model replaces the VGG blocks from the first model
with Resnet blocks [25]. It incorporates one convolutional
layer, three Resnet blocks, and two dense layers. The first
convolutional layer has a filter size of 64 and a kernel size of
3 × 3. The first two Resnet blocks comprise two convolutional
layers with 64 filters and a 3 × 3 kernel size, utilizing the
ReLU activation function. The last Resnet block has a similar
structure to the preceding blocks, except it employs 128 filters
and includes an additional down sampling block. The down
sampling block consists of one convolutional layer with a 1
× 1 kernel size and 2 strides size to concatenate the output
results of the second and last Resnet blocks.

All three networks are trained using the Adam opti-
mizer [31] with a learning rate at 0.001. To mitigate the issue
of model overfitting, the validation set is used for terminating
the training process at the lowest validation loss value.

C. EFFECTIVENESS OF OVER-UNLEARNING ON THE
FINE-TUNING BASED UNLEARNING METHOD

Using fine-tuning as an unlearning method is to confuse the
model’s understanding of the unlearned samples by replacing
their original labels with random labels. Thus, by fine-tuning
the model on such relabeled samples, the model cannot output
the correct prediction of the unlearned data. Because the
blending method is not reliable for over-unlearning, we mainly
conduct experiments using the advanced over-unlearning meth-
ods of Pushing-I and Pushing-II.

Table XII shows the overall accuracy of the model on all
classes. As we can see, Pushing-I and Pushing-II can degrade
the unlearned model’s accuracy compared to normal unlearn-
ing, although the degradation is small. This indicates the
effectiveness of Pushing-I and Pushing-II for fine-tuning based
unlearning method. The degradation is not obvious as the case
on the gradient-based unlearning method is because the well-
designed additional information embedded into the unlearned
samples is harmed by the randomly reassigned labels. It is
essentially very difficult to achieve over-unlearning on fine-
tuning. However, fine-tuning cannot guarantee the information
of the unlearned data is removed from the parameters of the
model, which can make it less attractive for the server.

16

TABLE XI: The overall accuracy of the model before unlearning, with normal unlearning, with the blending method on CIFAR-
10, CIFAR-100, and STL-10.

Test accuracy when unlearning 10% data of a class Test accuracy when unlearning 50% data of a class

Dataset Training accuracy Test accuracy Normal unlearn Blending Normal unlearn Blending

CIFAR-10 81.5% 79.8% 79.3% 73.2% 78.7% 65.0%
CIFAR-100 76.3% 51.1% 51.1% 50.9% 49.7% 49.2%
STL-10 96.3% 56.6% 56.6% 56.5% 50.2% 49.0%

TABLE XII: The overall accuracy of the model before unlearning, with normal unlearning, with Pushing-I, and with Pushing-II
on CIFAR-10, CIFAR-100, and STL-10 when the server uses fine-tuning as the unlearning method.

Test accuracy when unlearning 10% data of a class Test accuracy when unlearning 50% data of a class

Dataset Training accuracy Test accuracy Normal unlearning Pushing-I Pushing-II Normal unlearning Pushing-I Pushing-II

CIFAR-10 81.5% 79.8% 80.6% 79.8% (0.8%↓) 79.6%(1.0%↓) 78.9% 75.9% (3.0%↓) 75.8% (0.1%↓)
CIFAR-100 76.3% 51.1% 51.3% 50.8% (0.5%↓) 51.0% (0.3%↓) 51.3% 50.8% (0.5%↓) 50.7% (0.6%↓)
STL-10 96.3% 56.6% 58.3% 56.6% (1.7%↓) 56.9% (1.4%↓) 56.8% 56.1% (0.7%↓) 56.0% (0.8%↓)

TABLE XIII: Quantitative stealthiness analysis on CIFAR-10

SSIM (mean ± std) LPIPS (mean ± std)

Pushing-I 0.9748 ± 0.0013 0.0339 ± 0.0015
Pushing-II 0.9691 ± 0.0026 0.0374 ± 0.0025

D. STEALTHINESS OF MODIFIED UNLEARNED SAMPLES

Following the methodology of recent works to perceive
stealthiness [10], [53], [58], we quantitatively evaluate the
stealthiness of modified unlearned samples with widely used
perceptual metrics, such as Structural Similarity Index Measure
(SSIM [54]), and Learned Perceptual Image Patch Similarity
(LPIPS [59]). The SSIM index is a decimal value between

−1 and 1, where 1 indicates perfect similarity, 0 indicates no
similarity, and −1 indicates perfect anti-correlation. The closer
the SSIM value to 1, the more similar the image pair is. LPIPS
judges the perceptual similarity between two images through
computing the similarity between the activations of two images
for some pre-defined network. Lower LPIPS values indicate
higher similarity. The smaller, the more similar.

Particularly, we randomly selected 50 pairs of original
samples and corresponding modified unlearned samples from
the dataset CIFAR-10. The modified unlearned samples are
generated by strategies Pushing-I and Pushing-II, respectively.
We calculate the mean and standard deviation of SSIM and
LPIPS. According to Table XIII, the experimental results
show high similarities between modified unlearning samples
and original samples, indicating commendable stealthiness
performance.

17

	Introduction
	Related Work and Threat Model
	Related Work
	Our Threat Model
	Difference from Existing Threats to Machine Unlearning

	Methodology of Malicious Unlearning
	Problem Statement
	Blending as Naive Over-unlearning
	Pushing as Advanced Over-unlearning

	Experimental Settings
	Datasets and Models
	Unlearning Settings and Benchmarks

	Evaluation
	Effectiveness of Blending Method
	Effectiveness of Pushing-I and Pushing-II

	Ablation Study
	Ablation Study for the Blending Method
	Ablation Study for Pushing-I and Pushing-II

	Discussion
	Conclusion
	References
	Approximate Unlearning
	Experimental Settings
	Effectiveness of Over-unlearning on the Fine-tuning based Unlearning Method
	Stealthiness of Modified Unlearned Samples

