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Abstract

The popularity of cloud hosting services also brings in new security chal- lenges: it has been reported that these services
are increasingly utilized by miscreants for their malicious online activities. Mitigating this emerging threat, posed by such
"bad repositories” (simply Bar), is challenging due to the different hosting strategy to traditional hosting service, the lack of
direct observations of the repositories by those outside the cloud, the reluctance of the cloud provider to scan
its customers’ repositories without their consent, and the unique evasion strategies employed by the adversary.
In this paper, we took the first step toward understanding and detecting this emerging threat. Using a small
set of “seeds” (i.e., confirmed Bars), we identified a set of collective features from the websites they serve (e.g,,
attempts to hide Bars), which uniquely characterize the Bars. These features were utilized to build a scanner
that detected over 600 Bars on leading cloud platforms like Amazon, Google, and 150 K sites, including popular
ones like groupon . com, using them. Highlights of our study include the pivotal roles played by these repositories on
malicious infrastructures and other important discoveries include how the adversary exploited legitimate cloud
repositories and why the adversary uses Bars in the first place that has never been reported. These findings

eliminating this new threat.

bring such malicious services to the spotlight and contribute to a better understanding and ultimately
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Introduction

Cloud hosting service today is serving over a billion
users world-wide, providing them stable, low-cost, reli-
able, high-speed and globally available resource access.
For ex- ample, Amazon Simple Storage Service (S3) is
reported to store over 2 trillion objects for web and
image hosting, system backup, etc. In addition to storing
data, these ser- vices are moving toward a more active
role in supporting their customers’ computing missions,
through sharing the repositories (a.k.a. bucket for Google
Cloud (Buckets n.d.)) hosting various dynamic content
and programming tools. A prominent example is Goo-
gle’s Hosted Libraries (Google. Google hosted libraries
2015), a content distribution network (CDN) for dissem-
inating the most popular, open-source JavaScript re-
sources, which web developers can easily incorporate
into their websites through a simple code snippet. In

* Correspondence: xliao@indiana.edu

'Indiana University, King Saud University, University of Texas at Dallas,
Georgia Institute of Technology, Atlanta, USA

’Department of Computer Science, Indiana University Bloomington,
Bloomington, USA

@ Springer Open

addition to benign users, the popularity of these services
has also attracted cybercriminals. Compared with dedi-
cated underground hosting services, repositories on le-
gitimate commercial clouds are more reliable and harder
to blacklist. They are also much cheaper: for example, it
is reported that 15 GB on the dark net is sold at $15 per
month (Servnet n.d.), which is actually offered for free
by Google to every Google Driver user. Indeed, it has
been reported (solutionary 2015) that malware distribu-
tors are increasingly using the commercial clouds to
process and deploy malicious content.

Understanding bad cloud repositories: challenges

Although there have been indications of cloud hosting
misuse, understanding how such services are abused is
challenging. For the service providers, who are bound by
their privacy commitments and ethical concerns, they
tend to avoid inspecting the content of their customers’
repositories in the absence of proper consent. Even when
the providers are willing to do so, determining whether
a repository involves malicious content is by no means
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trivial: nuts and bolts for malicious activities could ap-
pear perfectly innocent before they are assembled into
an attack machine; examples include image files for
Spam and Phishing as shown in Fig. 1. Actually, even for
the repository confirmed to serve malicious content like
malware, today’s cloud providers tend to only remove
that specific content, instead of terminating the whole
account, to avoid collateral damage (e.g., compromised
legitimate repositories). Exploring the issue becomes
even more difficult for the third party, who does not
have the ability to directly observe the repositories and
can only access them through the websites or sources
that utilize the storage services. Further adding to the
complexity of finding such a repository is the diverse
roles it may play in attack infrastructures (e.g., serving
malware for one attack and serving Phishing content for
another), due to the mixed content a single repository
may host: e.g., malware together with Phishing images.
As a result, existing techniques (e.g., those for detecting
dedicated malicious services (Li et al. 2014; Nelms et al.
2015)) cannot be directly applied to capture the reposi-
tory, simply because their original targets often contain
more homogeneous content (e.g., just malware) and con-
tribute to different campaigns in the same way. So far,
little has been done to understand the scope and magni-
tude of malicious or compromised repositories on legit-
imate clouds (called Bad Repository or simply Bar in our
research) and the technical details about their services to
the adversary, not to mention any effort to mitigate the
threat they pose.

Finding “bars” online

In this paper, we present the first systematic study on
the abuses of cloud repositories on the legitimate cloud
platforms as a malicious service, which was found to be
highly pervasive, acting as a backbone for large-scale
malicious web campaigns (Section “Measurement and
Discoveries”). Our study was bootstrapped by a set of
“seeds” 100 confirmed malicious or compromised
buckets (Buckets n.d.), each of which is a cloud resource
repository with stored objects (often of different types)
organized under a unique identification key. These
buckets were collected from Spam messages or the mali-
cious URLs cached by a popular malware scanner. Com-
paring them with those known to be legitimate, we
found that despite various roles each bucket plays in dif-
ferent types of attacks (due to the diversity in the
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content it serves), still the websites connecting to those
buckets exhibit prominent common features (see Section
“Features of Bad Repositories”), particularly, the pres-
ence of “gatekeeper” sites that cover the Bars (a valuable
asset for the adversary) and remarkably homogeneous
redirection behavior (i.e., fetching repository resources
indirectly through other sites’ references) and sometimes
similar content organizations, due to the same attack
payload the compromised sites upload from their back-
end (i.e., the Bars), or the templates the bucket provides
to the adversary for quick deployment of her attack sites.
By comparison, a legitimate bucket (e.g., reputable jQu-
ery repository) tends to be directly accessed by the web-
sites with highly diverse content.

Based on this observation, we developed BarFinder, a
scanner that automatically detects Bars through inspect-
ing the topological relations between websites and the
cloud bucket they use, in an attempt to capture Bars
based on the external features of the websites they serve.
More specifically, for all the sites connecting to a reposi-
tory, our approach correlates the domains and URLs
(particular those related to cloud repositories) across
their redirection chains and content features across their
DOM structures to identify the presence of gatekeepers
and evading behavior, and also measure the diversity of
their content organization. A set of new collective fea-
tures generated in this way, including bucket usage simi-
larity, connection ratio, landing similarity and others
(Section “Features of Bad Repositories”), are further uti-
lized by a classifier to find out suspicious buckets. Run-
ning the scanner over all the data collected by the
Common Crawl (Crawl 2015), which indexed five billion
web pages, for those associated with all major cloud
storage providers (including Amazon S3, Cloudfront,
Google Drive, etc.), we found around 1 million sites util-
izing 6885 repositories hosted on these clouds. Among
them, BarFinder identified 694 malicious or compro-
mised repositories, involving millions of files, with a pre-
cision of 95% and a coverage of 90% against our ground-
truth set.

Our discoveries

Looking into the Bars identified by our scanner, we are
surprised by the scope and the magnitude of the threat.
These buckets are hosted by the most reputable cloud
service providers. For example, 13.7% of Amazon S3 re-
positories and 5.5% of Google repositories that we

This content requires Media Player 12.2 update. Would you like to install now? Yes No

Fig. 1 Example of deceptive images in Amazon S3 bucket cicloudf ront used for malvertising. The image was shown at the bottom of a webpage

as an update notification to lure visitors to download malware
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inspected turned out to be either compromised or com-
pletely malicious." Among those compromised are popu-
lar cloud repositories such as Groupon’s official bucket.
Altogether, 472 such legitimate repositories were consid-
ered to be contaminated, due to a misconfiguration flaw
never reported before, which allows arbitrary content to
be uploaded and existing data to be modified without
proper authorization. The impact of these Bars is signifi-
cant, infecting 1306 legitimate websites, including Alexa
top 300 sites like groupon.com, Alexa top 5000 sites
like space.com, etc. We reported our findings to Ama-
zon and leading organizations affected by the infections.
Groupon has already confirmed the compromise we dis-
covered and awarded us for our help.

When it comes to malicious buckets, our study brings
to light new insights into this new wave of repository
based cyber-attacks, including the importance of Bars to
malicious web activities and the challenges in defending
against this new threat. More specifically, we found that
on average, one Bar serves 152 malicious or com- promised
sites. In one of the large campaigns discovered in our re-
search, the Bar cloudfront file.enjin.com hosts a
malicious script that was injected into at least 1020 websites
(Section “Prevalence and sharing”). These Bars sit right at
the center of the attack infrastructure, supporting and co-
ordinating other malicious actors’ operations at dif- ferent
stages of a campaign. Interestingly, we found that they
could be strategically placed on different cloud platforms,
making them hard to block (due to the popularity of their
hosting clouds like Google) and detect (scattered across dif-
ferent providers), and easy to share across multiple cam-
paigns. As an example, the Potentially Unwanted Programs
(PUP) campaign we found first loads a redirection script
from a Bar on Akamaihd (the world’s largest CDN plat-
form) to lead the victim to the attack web- site, then fetches
Phishing pictures from an Amazon S3 Bar, and finally de-
livers the malware stored on Cloudfront to the target sys-
tems (Section “Case Studies”). In the presence of such
meticulously planned attacks, the cloud service providers
apparently are inade- quately prepared, possibly due to the
privacy constraints in touching their customers’ repositor-
ies. We found that many Bars survive a much longer life-
time than that of the malicious content hosted on websites.
Further complicating the mission of Bar identification are
other evasion techniques the adversary employs, including
code obfuscation and use of a redirection chain and cloak-
ing techniques to avoid exposing malicious payloads to a
malware scanner.

Contributions
The contributions of the paper are as follows:

New understanding. We performed the first systematic
study on cloud repositories as a malicious service, an
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emerging security threat. For the first time, our study
reveals the scope and magnitude of the threat and its
significant impact, particularly on the infrastructures
of illicit web activities. These findings bring to the
spotlight this important yet understudied problem
and lead to a better understanding of the techniques
the adversary employs and their weaknesses. This will
contribute to better defense against and ultimate
elimination of the threat.

New technique. Based on our understanding of bad
cloud repositories, we take a first step toward
automatically detecting them. The technique we
developed relies on the topological relationship
between a cloud repository and the websites it serves,
which are difficult to change and effective at capturing
malicious or compromised buckets. Our evaluation
over a large number of popular websites demonstrates
the potential of the technique, which could be utilized
by both cloud providers and third parties to identify
the threats posed by Bars.

Background

Cloud hosting

Cloud hosting is a type of infrastructure as a service (laaS),
which is rented by the cloud user to host her web assets
(e.g, HTML, JavaScript, CSS, and image files). These web
assets are organized into cloud repositories referred to as
buckets which are identified by unique,” user-assigned keys,
that are mapped as sub-domains. For example, the
subdomain aws-publicdatasets.s3.amazonaws.com identifies
Amazon S3 as the cloud platform and aws-publicdatasets
as the user’s cloud bucket and repository. Such name as-
signment is labeled as s3.amazonaws.com_ aws-pub-
licdatasets throughout this paper. Also, each bucket is
protected by an access control list configured by the user to
authorize requests for her resources.

In recent years, we have seen an increase in popularity
of these services. A key feature of cloud hosting is
built-in site publishing (Google. Publish website content
2015), where the web assets in the bucket can be served
directly to users via file names in a relative path in the
bucket (i.e., cloud URL). For instance, JavaScript files
hosted in the cloud bucket can be directly run in the
browser. Also, the pay-as-you-go hosting is well received
as an economic and flexible computing solution. As an
example, Google Drive today offers a free web hosting
service with 15GB of storage, and an additional 100GB
for $1.99/month, and GoDaddy’s web hosting starts at
$1/month for 100GB.

Besides such front-end websites, mainstream cloud
providers today (Amazon S3, Microsoft Azure, Google
Drive, etc.) all allow their customers to store different
kinds of web content and other resources in their cloud
buckets, serving as back-end repositories that can be
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easily accessed by front-end applications (like the web-
site) and shared across different parties. Figure 2 illus-
trates an example, in which the resource owner creates a
bucket on the cloud hosting platform and uploads a
script there (CD); this resource (i.e., the script) is made
public through a cloud URL, which can be embedded
into any website (@); whenever the site is visited (°), re-
quests will be generated for fetching the script (©) and
delivering it to the visitor’s browser (°). The bucket in
the example is typical of a service repository, whose re-
sources can be fetched and updated through a cloud
URL: for example, the visitor statistics of a website can
be collected through a link (s3.amazonaws.com/
trk.cetrk.com/t.js), which downloads a tracking
script from s3.amazonaws.com_trk.cetrk.com, a
bucket owned by the tracking website Crazy Egg. This is
different from a “self- serving” bucket, whose resources
can only be accessed by the bucket owner’s sites. Note
that our study focuses on abuses of this type of cloud re-
positories, regardless of the additional functionalities
they may have (e.g.,, CDNs, DDoS protection, etc.), since
these functionalities do not affect the way the repositor-
ies are used by either legitimate or malicious parties.

Adversary model

In our research, we consider the adversary who tries to use
cloud buckets on legitimate cloud platforms as service re-
positories for illicit activities. For this purpose, the attacker
could build her own malicious bucket or compromise
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legiti- mate ones, and store various attack vectors there,
including Spam, Phishing, malware, click-hijacking and
others. These buckets are connected to front-end websites,
which could be malicious, compromised or legitimate ones
contaminated only by the Bar.

Finding bars online

In this section, we elaborate on our analysis of a set of
known Bars (the seed set) and the features identified for
differentiating benign repositories and Bars. These fea-
tures are utilized in our research to build a simple web
scanner, BarFinder, for detecting other malicious or
compromised high-profile, previously-unknown reposi-
tories and the malicious campaigns in which they serve.

Features of bad repositories

Our study is based on a small set of confirmed good and
bad repositories and their related domains, which we an-
alyzed to find out how Bars (bad repositories) differ
from legitimate repositories. In the absence of direct ac-
cess to these buckets, good or bad, all we can do is to
infer their legitimacy from who use them and how they
are used (by different domains), that is, the features of
the domains and their interactivities on the redirection
paths leading to the cloud repository. Of particular inter-
est here are a set of collective properties identified from
the resource fetching chains (a.k.a., redirection chains)
for serving the content of Bars, which is hard to change
by the adversary, compared with the content features of

Resource owner
Crazy Eqq

Website
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&’

Fig. 2 Overview of the cloud hosting process
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individual Bars. Below, we elaborate on the way such
data was collected and the salient features discovered in
our research, which describe how the adversary attempts
to hide Bars or use them to cover other attack assets, a
redirection pattern never observed on legitimate
repositories.

Data collection

To build the seed set, we collected a set of confirmed
malicious or compromised buckets (called Badset) and
legitimate buckets (called Goodset) as well as their re-
lated domains, as illustrated in Table 1.

Badset We utilized two feeds as the ground truth for
gathering bad cloud buck- ets: the Spamtrap feed and
the CleanMX feed (Clean-MX 2015). The former comes
from a Spam honeypot we constructed (A. authors n.d.)
that receives around 10 K Spam emails per day, from
which cloud URLs promoted by the emails were ex-
tracted which may include spam resources such as
HTML, images, and scripts. The latter includes the his-
torical data of CleanMX, a popular domain scanning en-
gine, from which cloud-related URLs were collected. For
both feeds, we further validate them by VirusTotal (Vir-
usTotal 2015) and manual inspections (e.g., looking for
Phishing content) to ensure that they were indeed bad
(to avoid contaminating the dataset with legitimate
buckets used in malicious activities). Using the collected
set of malicious cloud URLs from both feeds, we ex-
tracted their repositories, which led to 100 confirmed
Bars.

Goodset The good buckets were gathered from the
Alexa top 3 K websites, which are considered to be
mostly clean. To this end, we visited each website using
a crawler (as a Firefox add-on) to record the HTTP traf-
fic triggered by the visit, including network requests, re-
sponses, browser events, etc. From the collected traffic,
we extracted the HTTP cloud request URLSs correspond-
ing to 300 cloud buckets hosted on 20 leading cloud
hosting services like Amazon S3, Google Drive, etc. (see
Table 6 in Appendix for the complete list). Note that
even though some of them provide CDN service or
DDOS protection, they are all provided hosting service
to act as cloud repository.

Bucket-served sites and their HTTP traffic We col-
lected HTTP traffic using the crawler mentioned above

Table 1 Summary results of the seed dataset
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to visit a list of websites using buckets for feature extrac-
tion. Rather than blindly crawling the web to find those
sites, we adopted a more targeted strategy by crawling
the sites found to contain links to the cloud in the past.
We built the site list with the help of Common Crawl
(Crawl 2015), a public big data project that crawls about
5 billion webpages each month through a large-scale
Hadoop-based crawler and maintains lists of the crawled
websites and their embedded links. Searching the Com-
mon Crawl (Crawl 2015) dataset, collected in February
2015, for the websites loading content from the 400
clean and malicious buckets identified above, we found
141,149 websites, were used by our crawler.

Topological features
We first inspected the topology of the redirection
infrastructure associated with a specific bucket. Such an
infrastructure is a collection of redirection paths, with
each node being a Fully Qualified Domain Name
(FQDN). On each path, the bucket is either a node when
it directly participates in a redirection (e.g., its cloud
URL delivers a redirection script to the visitor’s browser)
or simply a passive repository providing resources like
pictures to other domains. Figure 3 illustrates examples
of redirection paths leading to two real-world repositor-
ies, one for a legitimate bucket cloudfront.-
net _d24nl5hnbwhuhn and the other for a Bar
s3.amazonaws. com_cicloudfront.

A key observation from our study is that the redirection
infrastructure leading to a Bar tends to include the features
for protecting the Bar from being detected by web scanners,
presumably due to the fact that the repository is often con-
sidered to be a valuable asset for the adversary. Specifically,
we found that typically, there are a few gatekeeper nodes sit-
ting in front of a Bar, serving as an intermediary to proxy
the attempts to get resources from the Bar. Examples of the
gatekeepers include £p125. mediaoptout.com and its
downstream nodes in Fig. 3b. On the topology of such an
infrastructure, these gatekeepers are the hubs receiving a
lot of resource- access connections from entry sites (the
first node on a redirection path, see Fig. 3). Also interest-
ingly, our research shows that some gatekeepers can access
the Bar through multiple paths. For example, in Fig. 3b,
krd.semantichelper.com can either go straight to
s3.amazonaws.com cicloudfront or take a de-
tour through p306.atemada.com. This structure could
be caused by the cloaking of the gatekeeper for hiding the
Bar, or constructed to maintain access to the repository

# of buckets # of linked websites

# of average linked website # of redirection paths

Badset 100
Goodset 300

12,468
128,681

133 468,480
864 2,659,304
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even when nodes (like 1.semantichelper.com) are
down (detected, cleaned, etc.). Note that such a protection
structure does not exist on the paths to a benign repository
(Fig. 3a): normally, the resources hosted in a repository
(e.g., jQuery) is directly fetched by the website using it,
without going through any redirection; even in the presence
of redirections, there will not be any gatekeeper, not to
mention attempts to cloak or build a backup path.

To identify this unique “protection” structure, we utilize
two collective features: bucket usage similarity (BUS) that
captures the topology involving hubs (gatekeepers) and
connection ratio (CR) that measures the interactivities
across different redirection paths (which point to the ex-
istence of cloaking behavior or the attempts to maintain
back-up paths to the Bar). Specifically, consider a redirec-
tion graph G = (V; E) (as illustrated in Fig. 3), where V is
the set of nodes (the FQDNs involved in a redirection)
and E is a set of edges from one node to the next one on
individual paths: E = {e;;|node i precedes node j on a path;.
The BUS is measured by

1 %, where i is the number of immediate predecessor
nodes to a repository (the domains connecting to the re-
pository) and s is the total number of entries of the
repository’s redirection graph. To find out the CR, we
first remove the bucket b and all the edges to which it is
attached (if they exist) to get another graph G* = G G,
where G, _ (b, E;) and E, _ e;,; Note that each graph G
is associated with one bucket. Then, from G', we find
out the number of connected components 7 and calcu-
late CR =1 " (see Fig. 3 for an example).

Both collective features were found to be discrimina-
tive in our research. Figure 4a and b compare the cumu-
lative distributions (CDF) of the ratios between Bad and
Good sets. As we can see from the figures, Bars tend to
have higher ratios than benign ones: the average BUS is
0.87 for the Bars and 0.79 for the legitimate repositories

and the CR is 0.85 for the bad repositories and 0.67 for
the good one. As mentioned earlier, this is caused by the
fact that a small set of gatekeepers nodes are often
placed there for protecting the Bars while the redirection
chains towards the good repositories are much more dir-
ect and independent: different organizations typically do
not go through an intermediary to indirectly access the
public repository like jQuery, and even within the same
organization, use of such a resource is often direct. Al-
though there can be exceptions, our measurement study
shows that in general, the structural differences between
malicious and legitimate repositories are stark.

Also, we found that occasionally, a Bar itself may serve as
a gatekeeper, running scripts to hide more valuable attack
assets, such as the attack server or other malicious landing
sites. When this happens, almost always the Bar leads to a
small set of successors on redirection paths (e.g., attack
servers, land sites). This is very different from the redirec-
tion performed by the script from a benign repository, for
example, cloudfront.net_d24nl5hnbwhuhn. In
such cases, the targets of redirections are often very diverse.
Based on this observation, we further measure the landing
similarity, LS = 1", where [ is the number of the unique last
nodes on the redirection paths associated with a repository.
Again, as illustrated in Fig. 4c, our study shows that redirec-
tion paths involving Bars share fewer end nodes than legit-
imate ones, and therefore, the related redirection graphs
(for Bars) have a higher landing similarity (0.94 vs 0.88).

Content and network features

In addition to their distinctive topological features, we
found that the nodes on the redirection paths attached
to a Bar often exhibit remarkable homogeneity in their
content and network properties. Particularly, for the
websites directly connecting to the repository, we found
that they typically use a small set of templates (like
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WordPress) to build up their web pages, include simi-
lar DOM positions for script injection, carrying simi-
lar IP addresses or even having the same content
management system (CMS) vulnerabilities, etc. These
properties turn out to be very diverse among those
utilizing a legitimate cloud repository. For example,
all websites linking to a Google Drive Bar have their
malicious cloud URL (for injecting a script) placed at
the bottom of the DOM of each website. In another
example, we found that the front-end sites using a
Cloudfront Bar actually all include a vulnerable JCE
Joomla extension.

To better understand the diversity of such websites, we
try to compare them according to a set of content and net-
work properties. In our research, we utilized the properties
extracted by WhatWeb (WhatWeb 2015), a popular web-
page scanner. WhatWeb is designed to identify the web
technologies deployed, including those related to web con-
tent and communication: e.g, CMS, blogging platforms,
statistic/analytics packages, JavaScript libraries, social media
plugins, etc. For example, from the content

<link rel="search" type="application/
opensearchdescription+xml"”
href="https://wordpress.com/open-
search.xml" title="WordPress.com" />

we obtain the property p as a key-value pair p = (k, v)
= (wordpress, opensearch), which indicates the website
using wordpress plugin opensearch.

From our seed dataset, the scanner automatically ex-
tracted 372 keys of 1,596,379 properties, and then we
clustered the keys into 15 classes such as Analytics and
tracking, CMS and plugin, Meta-data information, etc.,
following the categories used by BuiltWith, a web tech-
nology search engine (BuiltWith 2015). Some examples
of these properties are presented in Table 2. In addition
to these properties extracted by WhatWeb, we added the
following properties to characterize cloud URLSs, includ-
ing the position of the URL, the order in which different
buckets appear in the web content and the number of
cloud platforms used in a page.

Based on these properties, again we utilized a topo-
logical metric to measure the overall similarity across
sites. Specifically, the relations among all the sites (con-
necting to the same bucket) in the same category (Ana-
lytics and tracking, CMS and plugin, etc.) are modeled
as a graph G' =(V %, EY, P), where V' is the set of the
websites, which are characterized by a collection of
properties P, and E' is the set of edges:

E' = {e,j|website i and j share p € P}, that is, both sites
having a common property. Over this graph, the site

similarity is calculated as SiS = 1--%. Here n is the

vi-
number of connected components in the graph.

In our research, we computed SiS across all the cat-
egories summarized from the seed dataset, and com-
pared those with Bars against those with the legitimate
buckets. Again, the sites using Bars are found to share
many more properties and therefore achieve a much
higher similarity value than those linking to a good
bucket. This is likely caused by mass-production of mali-
cious sites using the same resources (templates, pictures,
etc.) provided by a Bar or utilization of the same exploit
tool stored in a Bar for compromising the sites with the
same vulnerabilities. Therefore, such similarity is inher-
ent to the attack strategies and can be hard to change.

BarFinder

Design

The design of BarFinder includes a web crawler, a fea-
ture analyzer, and a detector. The crawler automatically
scans the web for cloud buckets (embedded in web con-
tent) and then clusters websites according to the buckets
they use. From each cluster, the analyzer constructs a re-
direction graph and a content graph as described earlier
(Section “Features of Bad Repositories”), on which it fur-
ther calculates the values for a set of collective features
including disconnection ratio (D), bucket usage similar-
ity (B), landing similarity (L) and a series of content
property/network property similarities (S1 S,) for n
web-technology categories (e.g., analytics and tracking,
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Table 2 Examples of content and network features
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Server framework version

Apache, 2.4.12)

Category Feature Example
Content CMS platform information and their plugin (wordpress, all in one SEO pack)
Meta-data information (metagenerator, drupal?)
CloudURL information (position, bottom)
Advertising (adsense, asynchronous)
Javascript library (JQuery, 1.9.1)
Analytics and tracking (Google-Analytics, UA-2410076-31)
Widget (addthis, welcome bar)
DoclInfo technologies (open graph protocol, null)
Network Identity (IP, 216.58.216.78)
Cookie (Cookie, harbor.session)
(
(

Custom HTTP header

X-hacker, If youre.)

CMS and plugin, meta-data information, etc.). The out-
put of this feature analysis is then passed to the detector,
which maintains a model (trained on the seed dataset)
to determine whether a bucket is malicious, based on its
collective features.

Specifically, the crawler visits each website, inspecting
its content, triggering events, recording the redirection
paths it observes and parsing URLs encountered using
the patterns of known cloud platforms to recognize
cloud buckets. For ex- ample, the repository on Amazon
S3 is accessed through the URL formatted as w + .s3
w + [?).amazonaws.com, and Amazon CloudFront pro-
duces resource URLs in the form of w + .cloudf ront.net.
In our research, 20 cloud platforms were examined to
identify the buckets they host. At the feature-analysis
stage, for each bucket, BarFinder inspects all its redirec-
tion paths, converts every node into an FQDN to com-
pute their topological features, and then connects
different nodes according to their content and network
properties to find out their site similarities, as described
in Section “Features of Bad Repositories”.

Next, each cloud bucket i is uniquely characterized by
a vector: D;, B; L; S;1 S;,,, with each element a collective
feature. Individual features have different power in dif-
ferentiating good and bad buckets, which we measured
using the F-Score (Bishop 2006) (see Table 3). Note that
the feature with a large score can better classify these
vectors than the one with a small value. Therefore, a
binary classifier with a model for weighing the features
and other parameters can be used to classify the vector
set and determine whether individual buckets are legit-
imate or not. Such a model is learned from the seed
dataset. In our research, we utilized a Support Vector
Machine (SVM) as the classifier, which showed the best
performance among other classification algorithms (see
Table 4). Its classification model is built upon the
F-Scores for the collective features (D, B, etc.) and a

threshold set according to the false positive and negative
discovery expected to achieve. For each bucket classified,
the SVM can also report the confidence of the
classification.

Implementation

This simple design was implemented in our study into a
prototype system. The web crawler was built as a Firefox
add-on. In total, 20 such crawlers were deployed. We
further developed a tool in Python to recover cloud
URLs from the web content gathered by Common
Crawl. The feature analyzer includes around 500 lines of
Python code for processing the data collected by the
crawler and computing the collective features (Section
“Features of Bad Repositories”). Each feature in the vec-
tor is normalized using the L1 norm before passed to
the SVM classifier. In our system, we incorporated the
SVM provided by the scikit-learn open-source machine
learning library (Sklearn 2015).

Evaluation

Here we report our evaluation of BarFinder on both the
ground truth and the Unknown sets. All the experiments
were conducted within an Amazon EC2 C4.8xlarge

Table 3 F-score of features

Feature | Label | Metric | F-score
Connection ratio D 1-— ﬁ 0.084
Bucket usage similarity B 1-2 0.076
Landing similarity L — Z 0.072
CMS information S1 1— |\7,| 0.037
Meta-data information So 1-— I‘;L’I 0.033
Analytics and tracking S3 1-— I‘;L’I 0.032
Widget Sa | 1= 7 0.031
CloudURL information S5 1— % 0.024
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Table 4 Performance comparison under five-fold across

validation

Classifier Precision Recall
SVM 0.94 0.89
Decision Tree 09 0.83
Logistic Regression 091 0.87
Naive Bayes 09 0.79
Random Forest 0.85 0.82

instance equipped with Intel Xeon E5-2666 36 vCPU
and 60GiB of memory.

Evaluation on the seed set

We tested the effectiveness of BarFinder over our ground-
truth dataset (i.e, the seed set) through the standard
five-fold cross validation: that is, 4/5 of the data was used
for training the SVM and the remaining 1/5 for evaluating
the accuracy of Bar detection. Specifically, we randomly
chose 80 Bars (out of 100) from the Badset and 240 (out
of 300) legitimate buckets from the Goodset, together
with the related websites (out of 141,149). These data were
first processed by our prototype to adjust the weights and
other parameters for its model. Then we tested the model
on the remaining dataset (20 Bars, 60 legitimate buckets).
The process is then repeated 5 times. BarFinder achieved
both a low false discovery rate (FDR: 1- precision) and a
high recall in detection: only 5.6% of reported Bars turned
out to be legitimate (i.e., 1.6% of false positive rate), and
over 89.3% of the Bars were detected. We further show
the Area Under Curve (AUC) of the Receiver Operating
Characteristics (ROC) graph, which comes very close to 1
(0.96), demonstrating the good balance we strike between
the FD rate and the coverage. This preliminary analysis
shows that the collective features of the sites connecting
to cloud repositories are promising in detecting Bars.

Evaluation on the unknown set

We now use BarFinder to scan an unknown set. This un-
known set contains HTTP traffic collected using a crawler
as described in Section “Features of Bad Repositories” to
visit a list of websites. This list of websites is also extracted
from common crawl (Crawl 2015) by searching for web-
sites that have loaded some content in the past from the
cloud platforms listed in Table 6 in Appendix. As a result,
the unknown data set contained HTTP traffic generated
from dynamically visiting 1 M websites loading content
from 20 cloud platforms and 6885 cloud buckets.

To validate our evaluation results, we employ a meth-
odology that combines anti- virus (AV) scanning, black-
list checking, and manual analysis. Specifically, for the
Bars flagged by our system, we first scan their cloud
URLs with VirusTotal for malware and check them
against the list of suspicious cloud URLs collected from
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our Spamtrap honeypot for Spam, Phishing, blackhat
Search Engine Optimization (SEO), etc. In the case of
VirusTotal, a URL is considered to be suspicious if at
least two scanners raise the alarm. All such suspicious
URLs (from either VirusTotal or the Spamtrap list) are
cross-checked against the blacklist of CleanMX. Only
those also found there are reported to be a true positive.
Once a URL is confirmed malicious, its corresponding
bucket is labeled as bad. Those unlabeled but flagged (by
BarFinder) buckets are further validated manually.

In the experiment, BarFinder reported a total of 730
Bars, about 10.6% of the 6885 buckets. Among them, the
AV scanning and blacklist verification confirmed that 502
buckets were indeed bad. The remaining 228 were manu-
ally analyzed through, e.g., inspecting the resources in the
buckets for phishing or scam content, running scripts in
the VM to capture binary code download. This validation
further confirmed 192 Bars. The FDR was found to be at
most 5% (assuming those not confirmed to be legitimate),
in line with the finding from the seed set.

Measurement and discoveries

Based on the discoveries made by BarFinder, we further
conducted a measurement study to better understand
the fundamental issues about Bar-based malicious ser-
vices, particularly how the cloud repositories help facili-
tate malicious activities, how the adversary exploited
legitimate cloud buckets and why the adversary uses Bars
in the first place. Our research shows that on the infra-
structure, Bars play a pivotal role, compared with the
content kept on other malicious or compromised sites,
possibly because they are hosted on popular cloud ser-
vices, and therefore hard to blacklist and also easy to
share across different campaigns. Also, in a malicious
campaign, the adversary may take advantage of multiple
Bars, at different attack stages, to construct a compli-
cated infrastructure that supports her mission (Section
“Prevalence and sharing”). More importantly, we discov-
ered that the adversary effectively exploited misconfigured
legitimate buckets to infect a large number of their
front-end web services (Section “Bucket Pollution”). Such
observations, together with the challenge in blocking Bars,
offer insights into the motivation for moving toward this
new trend of repository-based attacks.

Prevalence and sharing

Landscape

As mentioned earlier, BarFinder reported 730 suspicious
repositories from 6885 cloud buckets over 20 cloud plat-
forms. Among them, we utilized 694 confirmed Bars
(through AV/blacklist scanning or manual validation, see
Section “BarFinder”) for the measurement study. These
Bars were found to directly serve 156,608 domains (i.e.,
front-end websites), through which they are further
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attached to 6,513,519 redirection paths involving
166,772 domains. Figure 5 illustrates the number of Bars
we found on different cloud platforms. Among them,
Amazon S3 is the most popular one in our dataset, host-
ing the most Bars (45%), which is followed by Cloud-
Front (Amazon’s CDN) 25.1% and Akamaihd 9.3%. Note
that of these 20 clouds, seven of them provide free stor-
age services (e.g., 15GB free space on Google Drive, 5GB
for Amazon S3), and therefore easily become the ideal
platforms for low-budget miscreants to distribute their
illicit content. Also, eleven of them support HTTPS, on
which malicious activities are difficult to catch by exist-
ing signature-based intrusion detection systems like
snort and Shadow (Snort 2015; Symantec 2015). Inter-
estingly, on some of the most prominent platforms, the
miscreants are found to take advantage of the cloud pro-
viders’ reputations to make their Phishing campaigns
look more credible: for example, we found that the ad-
versary continuously spoofed Gmail’s login page on Goo-
gle Drive, and the software download page for Amazon
FireTV in an Amazon S3 bucket.

Figure 6 shows the distribution of Bars’ frontend web-
sites across 81 countries, as determined by the geoloca-
tions of the sites. The number of Bars’ frontend sites in
each country is ranked and described with different
levels of darkness in the figure. We observe that most of
these frontends stay in United States (14%), followed by
Germany (7%) and United Kingdom (5%).

Content sharing

Our research reveals that Bars have been extensively
shared among malicious or compromised websites, also
across different positions on malicious redirection chains.
Figure 7c illustrates the cumulative distribution of Bars’
in- degrees in their individual redirection graphs: that is,
the number of the sites utiliz- ing these Bars. On average,
each Bar shows up on 252 sites and 12% of them are used
by more than 200 websites. Table 5 lists the 10 most
popular Bars we found. Among them, eight, including
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s3.amazonaws.com_content.sitezoogle.
s3.amazonaws.com publisher configura-
tions.shareaholic, etc, host services for website
generation, blackhat SEO or Spam. Particularly, aka-
maihd. net_cdncache3-a turns out to be a distribu-
tor of Adware, whose scripts are loaded into the victim’s
browser to redirect it to other sites for downloading differ-
ent Adware. Also, we found that another Bar s3.amazo-
naws.com_files.enjin. Com hosts exploits utilized
by 1020 bad sites. Finding Bars can help to effectively de-
tect more sites with malicious contents.

Another interesting observation is that malicious con-
tent is also extensively shared across different Bars. To
understand such content reuse, we grouped the mali-
cious programs retrieved from different Bars based on
the similarity of their code in terms of edit distance. Spe-
cifically, we removed the spaces within the pro- grams
and ran the Python library scipy.cluster.hierarchy.linkage
(Scipy 2015) to hierarchically cluster them (now in the
form of strings) according to their Jaro scores (Cohen et
al. 2003). In this way, we were able to discover three
types of content sharing: intra-bucket sharing,
cross-bucket sharing, and cross-platform sharing. Specif-
ically, within the Amazon bucket akamaihd.ne-
t_asrv-a, we found that many of its cloud URLs are
in the form of http://asrv-a.akamaihd.net/
sd/[num]/[num].Jjs. The JavaScript code turns out
to be all identical, except that each script redirects the visi-
tor to a different website. The similar code also appears in
another Amazon bucket akamaihd.net cdncache-a.
As another example, we discovered the same ma- licious
JavaScript (JS.ExploitBlacole.zm) from the Bars on
CloudFront and Qiniudn respectively, even under the same
path (ie, media/system/js/modal. Jjs). Moreover,
we found that attackers used sub-domain generation algo-
rithm to automatically generate sub-domain for Bars, then
further reused the same malicious contents for these Bars.
Specifically, we found that 28 content sharing Bars on Aka-
maihd have the same format in their names. Attackers
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Fig. 6 Impact of Bars' front-end websites around the globe
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utilized a word bank based sub-domain generation algo-
rithms (damballa 2015), which concatenates fixed terms and
a se- ries of domain names (remove dot), then truncates the
string if its length is over 13, e.g, apismarterpoweru-a
(truncated from smarterpowerunite.com). The com-
mon patterns of Bars indicate the potential of developing
an accurate detection procedure.

Correlation

We further studied the relationships between different
Bars, fetched by the same websites. From our dataset,
11,442 (3.5%) websites are found to access at least two

Bars. Among them, 8283 were served as front-end web-
sites, and 3159 other sites on redirection chains. Also,
60.9% of these sites link to the repositories on the same
cloud platforms and 39.1% use those on different plat-
forms. In some cases, two buckets are often used to-
gether. For example, we found that a click-hijacking
program was separated into the code part and the con-
figuration part: the former is kept on CloudFront while
the latter is on Akamaihd; the two buckets always show
up together on redirection chains. Such a separation
seems to be done deliberately, in an attempt to evade
detection. Also we saw that Bars carrying the same
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Table 5 Top 10 most popular Bars
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Rank Cloud bucket # of front-end sites Avg path len Popularity
1 s3.amazonaws.com content.sitezoogle.com 4429 29 2.8%
2 cloudfront.net d3n8a8pro7vhmx 1829 33 1.4%
3 $3.amazonaws.com assets.ngin.com 1643 32 1.2%
4 s3.amazonaws.com publisher configurations.shareaholic 1434 27 0.9%
5 cloudfront.net d2e48ltfsb5exy 1340 4.0 0.9%
6 cloudfront.net d1t3gia0in9tdj 1297 32 0.9%
7 cloudfrontnet d2i2wahzwrm1n5 1249 25 0.8%
8 cloudfront.net d202m5krfgbpi5 1062 28 0.8%
9 s3.amazonaws.com files.enjin.com 1020 7.1 0.7%
10 akamaihd.net cdncache3-a 976 64 0.6%

attack vectors are often used together, which are appar-
ently deliberately put there to serve parties of the same
interests: as another example, a compromised website
was observed to access four different Bars on different
cloud platforms, redirecting its visitors to different
places for downloading Adware to the visitor’s system.
Our findings show that Bars are widely deployed in at-
tacks and serve in a complex infrastructure.

Bar-based malicious web infrastructure
Role in attack infrastructures
Actually, most nodes on a malicious infrastructure are the
malicious websites with newly registered domains and
those that are compromised. To better understand the crit-
ical roles of Bars, we compared those nodes with the bad
cloud buckets. Specifically, we first identified both types of
nodes from the redirection paths and then analyzed the
number of unique paths each member in either category is
associated with and the position of the member on the
path. Figure 7a presents the cumulative distribution of the
paths going through a Bar and that of a compromised or
malicious site. As seen in the figure, compared with other
nodes on the infrastructure, Bars clearly sit on much more
paths (47.4 on average vs. 8.6), indicating their importance.
Further, Fig. 7b shows the histogram of position distri-
butions (again, Bars vs. bad sites). The observation is that
more Bars (41%, 11%) show up at the beginnings and the
ends of the paths than bad websites (22%, 5%), which
demonstrates that they often act as first-hop redirectors
or attack-payload repositories. For example, in our
three-month-long monitoring of the campaign based on
the Spyware distribution Bar akamaihd.net_rvar-a,
we found that besides the Bar, 320 newly-registered web-
sites participated in the attack; here the Bar acted very
much like a dispatcher: providing JavaScript that identified
the victim’s geolocation and then using an iframe to redir-
ect her to a selected bad site.

Attack vectors and payloads

In a malicious infrastructure, the attackers run an attack
vector to compromise the victim’s systems (browser, cli-
ent, server, etc.), and then deliver an attack payload (e.g.,
malware). We found that Bars often serve the infrastruc-
ture as repositories for such vectors and payloads. In our
study, we ran AV/blacklist scanners and also checked
fingerprints collected through manual analysis on the
websites in our dataset (Section “BarFinder”). We iden-
tify attack vectors using the labels generated by the AV/
blacklist scanners whenever available. Figure 8a and b il-
lustrate our findings, in which Spam, Phishing, Fake AV
scams and vulnerability exploits are considered to be the
attack vectors, and virus, Spyware, Trojan, malicious
scripts and other malware-related content are treated as
payloads. As we can see from the figure, both types of
malicious content are extensively hosted by Bars. On the
other hand, malicious or compromised websites typically
only serve attack vectors (and retrieve the payload from
dedicated servers or the cloud repositories) (Li et al.
2014; Li et al. 2013). Interestingly, we found a malicious
payload (CVE-2015-0029) on S3 Bar, which was
uploaded in 2013 while the vulnerability is released in
February, 2015. The malicious payload can stay active
for a relatively long time in Bars.

Revenue estimate

We also investigated the revenues that could be received
by the adversary leveraging malicious infrastructure. To
this end, we utilized a model as proposed in the prior re-
search (Alrwais et al. 2014; Moore et al. 2011): R(¢)
= N,(t) P, R, where the total revenue R(f) during the
time period ¢ is calculated from the total number of ac-
tions taken (i.e., click-through number, number of visi-
tors N,(¢) weighed by the probability that the visitors
take action P,) and the average revenue per action R,.
Here, we assume the price model as pay per action: that
is, the adversary gets paid only when a specified action
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(e.g., software installation) is taken by the victims. Using a
PassiveDNS dataset (DNSDB 2015), which contains DNS
lookups recorded by the Security Information Exchange,
we estimated the daily number of visitors in February
2015 (data crawling time, ie., attack time) N, =32 M.
Note that the probability of a visitor taking action P, is
difficult to estimate due to the various malicious pages on
different sites. According to the prior works (Alrwais et al.
2014), we set P, =0.02 and R, = $1.25. These parameters
yield a daily revenue for attackers utilizing Bars of 32 M
0.02 $1.25 = 0.8 million US dollars per day, which corre-
sponds to a huge amount of illicit profit.

Bucket pollution

Polluted repositories

To find polluted buckets, we searched the Alexa top
20 K websites for the Bars in our dataset and 276 Bars
were found. When a legitimate site links to a Bar, the
reason might be either the website or the repository is
hacked. Differentiating these two situations with cer-
tainty is hard, and in some cases, it may not be possible.
All we could do is to get an idea about the prevalence of
such bucket pollution, based on the intuition that if a
website is less vulnerable, then it is less likely to be com-
promised. To this end, we ran WhatWeb, a powerful
web vulnerability scanner, on these sites and found 134
Bar’s front-end websites contain various flaws, such as
using CMS in vulnerable version (e.g. wordpress 3.9),
vulnerable plugins (e.g., JCE Extension 2.0.10) and vul-
nerable software (e.g., Apache 2.2). The remaining 142
Bar’s front-end websites look pretty solid in web protec-
tion and therefore it is likely that the Bars they include
were polluted. This set of potentially compromised
buckets takes 19% of all the Bars flagged by BarFinder.
These buckets, together with the additional 30 randomly
sampled from the set, went through a manual analysis,
which shows that indeed they were legitimate buckets
contaminated with malicious content.

Misconfiguration and impact

It is even more challenging to determine how these buckets
were compromised, which could be caused by exploiting ei-
ther the cloud platform vulnerabilities or the bucket mis-
configurations. Without an extensive test on the cloud
platform and the repositories, which requires at least direct
access to them, a comprehensive study on the issue is im-
possible. Nevertheless, we were able to identify a misconfig-
uration problem widely existing in popular buckets. This
flaw has never been reported before but was likely known to
the underground community and has already been utilized
to exploit these repositories. We reported the flaws to the
vendors and they confirmed our finding.

Specifically, on Amazon S3, one can configure the
access policies for her bucket to defines which AWS ac-
counts or groups are granted access and the type of access
(ie., list, upload/modify, delete and download): this can be
done through specifying access control list on the AWS
Management Console. Once this happens, the cloud veri-
fies the content of the authorization field within the
client's HTTP request header before the requested access
is allowed to go through. However, we found that by de-
fault, the policy is not in place, and in this case, the cloud
only checks whether the authorization key (i.e., access key
and secret key) belongs to an S3 user, not the authorized
party for this specific bucket: in other words, anyone, as
long as she is a legitimate user of the S3, has the right to
upload/modify, delete and list the resources in the bucket
and download the content. Note that this does not mean
that the bucket can be directly touched through the
browser, since it does not put anything into the
authorization field. However, the adversary can easily
build his own HTTP header, filling in his own S3 key, as
illustrated in Fig. 10, to gain access to the misconfigured
repository. In our research, we verified that all such opera-
tions can be performed on any repositories with the con-
figuration flaw, which suggests that site operators need to
take more caution when setting the configuration rules.
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To understand the impact of this problem, we devel-
oped a simple web testing tool, which checked a bucket’s
configuration using our own S3 key. By scanning all
6885 repositories (including both Bars and legitimate
buckets), we discovered that 472 are vulnerable, which
were associated with 1306 front-end websites. The Alexa
global ranks and the bounce rates of their front-end
websites are illustrated in Fig. 9a and b. Sixty-three per-
cent of them have bounce rates from 20% to 60%; 9 sites
are ranked within Alexa top 5000 (e.g., groupon.com,
space.com).

Focusing on the 104 bad buckets with the flaws, we
further manually sampled 50 and confirmed that these
buckets were indeed legitimate, including high-profile
ones like s3.amazonaws.com groupon. Further,
looking into the these buckets’ file uploading time (re-
trieved from the buckets through the flaw), we found
that in some cases, the attack has been there for six
years. Particularly the Amazon bucket s3.amazo-
naws.com_groupon, Groupon’s official bucket, was
apparently com- promised five times between 2012 and
2015 (see Section “Case Studies” for details), according
to the changes to the bucket we observed from the bucket
historical dataset we collected from archive.org. We
also estimated the volume of traffic to those Bar-related
sites using a PassiveDNS dataset (DNSDB 2015), which
contains DNS lookups recorded by the Security Informa-
tion Exchange. Figure 9c illustrates the traffic of the web-
sites during the time period when their buckets were
compromised, which was increased significantly compared
with what those sites received before their compromise,
indi- cating that they likely received a lot of visits. This
provides evidence that the impact of such compromised
buckets is indeed significant.

Case studies
In this section, we discuss two prominent examples.
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PUP campaign

Our study reveals a malicious web campaign dubbed
Potentially Unwanted Programs (PUP) distribution:
the attack redirects the victim to an attack page,
which shows her fake system diagnosis results or
patch requirements through the images fetched from
a Bar, in an attempt to cheat the victim into down-
loading “unwanted programs” such as Spyware,
Adware or a virus. This campaign was first discovered
in our dataset. Altogether, at least 11 Bars from 3 dif-
ferent cloud platforms and 772 websites (not hosted
on the cloud) were involved in.

Through analyzing the redirection traces of the cam-
paign, we found that two Aka- mai Bars, akamaid.-
net cdncache3-a and akamaihd asrv-a, frequently
inject scripts into compromised websites, which serve as
first-hop redirectors to move a visitor down the redirection
chain before hitting malicious landing pages (that serve ma-
licious content). Interestingly, all the follow-up redirectors
are compromised or malicious websites that are not hosted
on the cloud. The scripts in the Bars were found to change
over time, redirecting the visitor to different next-hop sites
(also redirectors). On average, the life span of such sites is
only 120 h, but the Bar was still alive when we submitted
this paper. Such redirections end at at least 216 mali- cious
landing sites, which all retrieve deceptive images from an
Amazon S3 bucket s3.amazonaws.com cicloud-
front (a Bar never reported before and is still alive). An
example is a system update warning, as shown in Fig. 1.
From the reposi- tory, we collected 134 images, including
those for free software installation, updates on all main-
stream OSes, browsers and some popular applications. If
she clicks and downloads the program promoted on the
site, the code will be fetched from multiple Bars, such as
s3.amazonaws.com wbt media where the PUP puts
a Bitcoin miner on the victim’s system, and cloud-
front.net_d12mrm7igk59vqg, whose program modi-
fies Chrome’s security setting.
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GET /?delimiter=/ HTTP/1.1

Host: (bucket—-name).s3.amazonaws.com
Accept-Encoding: identity
content-length: 0

Authorization: AWS (access key) : (secret key)

Fig. 10 Constructed request header

Groupon Bar

We discovered that a misconfigured Amazon S3 bucket
s3.amazonaws. com_groupon belongs to Groupon
(Alexa global rank 265) (Fig. 10), a global e-commerce
marketplace serving 48.1 million customers worldwide.
The bucket was used as the resource repository for
Groupon’s official website (i.e., groupon.com) as well as
its marketing sites (12 websites observed in our dataset).
When tracking its historical content from archive.org,
we were surprised to see that the Groupon S3 bucket has
been compromised at least eight times in the past five
years (e.g., 2015/08/06, 2014/12/18, 2014/06/25, 2014/01/
27, 2014/02/26, 2013/06/23, 2011/11/08, 2010/09/28).
These attacks caused different types of malicious pay-
loads to be uploaded to their repository, including
Adware, Trojan, virus and others. Even though the
bucket owner changed the access control policy in
2012 to prevent the unauthorized party from directly
listing the bucket content through browser, it
remained accessible by our tool mentioned in Section
“Bucket Pollution”, which constructs an Authorization
field in HTTP header, and unauthorized listing, upload
and even modification can still occur.

Discussion

Limitations of BarFinder

As mentioned earlier, Bar detection is hard, since cloud
repositories cannot be directly accessed by the parties
outside the cloud. Therefore, the goal of BarFinder is to
leverage the sites served by Bars to find suspicious re-
positories. For this purpose, we chose to utilize the col-
lective features of these sites, such as their topological
relations, content shared across sites, etc. This strategy
could make the approach more robust, as the collective
features are more difficult to evade compared with those
from individual sites. On the other hand, it requires that
the party running the system first makes efforts to
gather the sites using cloud buckets, the more the better.
Further, there are repositories that only serve a small set
of front-end sites: e.g., we found that among the Alexa
top 3 K sites, 67 sites are connecting to the cloud buckets
only used by themselves. Those “self-serving” buckets are
rather popular in reputable websites such as appspot.-
com_android-site only used by android.com,
s3.amazonaws.com_ttv-backgroundart only used
by twitch.tv, etc. This fact makes the bad apples among
them hard to catch by BarFinder simply because not
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enough sites using them are out there to allow us to differ-
entiate these two types of repositories. Detection techniques
covering this type of Bars need to be developed in the
follow-up research.

Other defenses against bars

Besides the detection effort made by the third party, as
BarFinder does, more can be done to mitigate the
threats posed by Bars, from the ends of the website
owner, the bucket owner and the service provider. The
website owner could perform integrity checks on the re-
sources her website retrieves from the bucket, making
sure that it is not compromised. The cloud bucket
owner should carefully configure her cloud bucket to
avoid the issue we found and other misconfiguration
flaws. In this case, an automatic configuration checker
could be helpful. Most im- portantly, the cloud provider
does have the responsibility to move more aggressively
on detecting and removal of Bars from their systems.
This, however, is non-trivial, given the privacy concern
and the fact that some Bars can only be considered to be
malicious by looking at the malicious activities they are
involved in, such as those hosting Phishing pictures. Fur-
ther research is needed to better understand what the
provider can do to address the issue.

Ethical issues

Most findings of the paper were made through analyzing
the data crawled from the public domain. Regarding the
study on the misconfiguration problem we found, our
scanner was designed to minimize the privacy impacts
on vulnerable repositories: specifically, it only tried out
the functionality like file listing, uploading and down-
loading. The impact of such operations are very much in
line with those of running online web testing tools (e.g.,
Sucuri (Sucuri 2015)) on others’ websites. Most import-
antly, we did this with the full intention to protect such
repositories from future exploits, and also carefully
avoided changing any existing content there and deleted
from our system all the files downloaded. Further, we
have already contacted the major vendors such as
Groupon and the cloud providers like Amazon about
those security breaches, and will continue to notify
others and help them fix the configuration problem. So
far, Groupon has acknowledged the importance of our
findings and expressed gratitude for our help.

Related work

Cybercrime hosting service

The cybercrime hosting infrastructure is a basic building
block of the cyber-crime ecosystem. It provides servers and
networking infrastructure for the cyber criminals, and it
also persist in the face of takedown attempts and
complaints of illicit activities. Alrwais et al. (Alrwais et al.
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2014) investigated a trending and stealthy cybercrime host-
ing service, that malicious activities were hosted on the
sub-allocations of legitimate service provider Networks. Li
et al. (Li et al. 2013) also found that Internet Service
Provider (ISP) were used for abusive hosting. Compared
with those prior studies, we shed light on the emerging and
evasive cybercrime hosting platform: cloud service, which
has never been studied before.

Bad site detection

Malicious web activities have been extensively studied
(Invernizzi et al. 2012; Invernizzi et al. 2014; Moore et al.
2011; Nelms et al. 2015). Most related to our work here is
the use of HTML content and redirection paths to detect
malicious or compromised websites. Examples for the
content-based detection include a DOM-based clustering
systems for monitoring Scam websites (Der et al. 2014),
clas- sification of websites for predicting whether some of
them will turn bad based on the features extracted from
HTML sources, and a monitoring mechanism (Borgolte
et al. 2013) (called Delta) to keep track of the changes made
to the content of a website for detecting script-injection
campaigns. For those using malicious redirection paths,
prominent prior approaches use short redirection se-
quences to capture bad sites (Li et al. 2014), unique prop-
erties of malicious infrastructure (its density) for detecting
drive-by downloads (Invernizzi et al. 2014) or malware dis-
tribution (Stringhini et al. 2013) and a trace-back mechan-
ism that goes through the redi- rection paths (Nelms et al.
2015) for labeling malware download sites. Compared with
those prior studies, which all rely on the properties of the
targets they try to capture, BarFinder utilizes the features
found from the front-end websites using cloud buckets, as
those repositories may not be directly accessible. Also, our
approach leverages a set of unique collective features, based
on the connected components of a graph, which, to our
knowledge, has never been used before.

Cloud security

Previous studies on security and privacy issues in cloud
storage primarily focus on the confidentiality of the data
stored in the cloud or the attacks targeting the cloud
computing infrastructure. Examples include the study on
co- locating attack virtual machines (VM) with the
target one on Amazon EC2 (Ristenpart et al. 2009),
which enables a cache-based side-channel attack to infer
sensitive user information from the target (Zhang et al.
2014), and the work on controlled-channel attacks on
multi-user cloud hosting environment (Xu et al. 2015),
which allows an untrusted VM to extract sensitive infor-
mation from protected applications. More recently, at-
tention has moved to abuse of cloud- based services for
fraudulent activities. For example, prior research (Mulaz-
zani et al. n.d.) analyzed Dropbox client software and
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discovered that it can be exploited to hide files with un-
limited storage capacity. Additionally, (Han et al. 2015)
studied the use of the Amazon EC2 to host malicious
domains acting as command and control centers, exploit
servers by downloading malware samples and executing
them in sandbox environments to analyze their interac-
tions with the cloud. (Liao et al. 2016) studied the
long-tail SEO spam on cloud platforms and measured its
effectiveness. Our study differs from these works by pro-
posing BarFinder to identify malicious cloud repositories
and provide an in-depth analysis of the use of cloud re-
positories in malicious campaigns and how they correl-
ate with the websites they serve. In another study,
researchers (Idziorek et al. 2011) inspected the fraudulent
traffic to cloud-hosted pages for the purpose of squander-
ing the user’s resources and raising her cloud-usage cost.
They also proposed detection methods based on the
consistency of the requests. Unlike these works, our re-
search investigated the abuse of cloud bucket as a mali-
cious service, an emerging new cloud-based security
threat that has never been studied before.

Conclusion

The emergence of using cloud repositories as a mali-
cious service presents a new challenge to web security.
This new threat, however, has not been extensively
studied and little is known about its scope and magni-
tude and the techniques the adversary employs. In this
paper, we report the first systematic study on malicious
and com- promised cloud repositories and the illicit on-
line activities built around them. We collected a small set
of seeding Bars and identified a set of collective features
from the websites connecting to them. These features de-
scribe the effort made by the adversary to protect Bars
and utilize them to quickly build up a large campaign.
Using these features, we developed a new scanner that de-
tected over 600 Bars on top-of-the-line cloud platforms,
including Google, Amazon, and others. Over these Bars,
we per- formed a large-scale measurement study that led
to surprising findings of such attacks. Examples include
the central roles those buckets play at each stage of a web
attack (redirection, displaying Phishing content, exploits,
attack payload delivery, etc.), the strategy to separate mal-
ware code and configuration files to avoid detection, and a
configuration flaw never reported before that was likely
exploited to compromise many cloud buckets. Our find-
ings made an important step toward better understanding
and effective mitigating of this new security threat.

Endnotes

"We have manually examined and confirmed all those
instances.

*The terms repositories and buckets are used inter-
changeably throughout this paper.
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Appendix
Table 6 A List of cloud hosting platforms

Cloud Platform Domain

heroku herokuapp.com
amazon S3 $3.amazonaws.com
cloudfront cloudfront.net
windowsnet windows.net
azure azurewebsites.net
google googledrive.com
appspot appspot.com
msecdn msecdn.net
bitbucket bitbucket.org
github github.io

sina sinaapp.com
olympe olympe.in
rackcdn rackcdn.com
baiduyun duapp.com
giniu giniucdn.com
akamaihd akamaihd.net
yahoo hostingprod.com
S0go sogoucdn.com
go2cloud go2cloud.org
aliyun aliyuncs.com
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