The following almost obvious result forms the basis of what is known as the *principle of superposition*.

1.19. Theorem. If Lu = g is a linear equation and u_1 and u_2 are solutions of this equation with $g = g_1$ and $g = g_2$, respectively, then $u_1 + u_2$ is a solution of the equation with $g = g_1 + g_2$; in other words, if

$$Lu_1 = g_1, \quad Lu_2 = g_2,$$

then

$$L(u_1 + u_2) = g_1 + g_2.$$

Exercises

In (1)–(22) find the general solution of the given equation.

- (1) $(x^2+1)y'=2xy$.
- (2) $y' 3x^2(y+1) = 0$.
- (3) $(x-1)y' + 2y = x, x \neq 1.$
- $(4) x^2y' 2xy = x^5e^x.$
- $(5) \ 2y' + 5y = 0.$
- (6) 3y' 2y = 0.
- (7) y'' 4y' + 3y = 0.
- $(8) \ 2y'' 5y' + 2y = 0.$
- $(9) \ 4y'' + 4y' + y = 0.$
- (10) y'' 6y' + 9y = 0.
- (11) y'' + 2y' + 5y = 0. (12) y'' - 6y' + 13y = 0.
- (13) $y' + 2y = 2x + e^{4x}$.
- $(14) \ 2y' 3y = -3x 4 + e^x.$
- $(15) \ 2y' y = e^{x/2}.$
- $(16) \ y' + y = -x + 2e^{-x}.$
- (17) $y'' y = x^2 x + 2$.
- (18) $y'' 2y' 8y = 4 + 4x 8x^2$.
- $(19) \ y'' 25y = 30e^{-5x}.$
- (20) $4y'' + y = 8\cos(x/2)$.
- $(21) \ 2x^2y'' + xy' 3y = 0.$
- $(22) x^2y'' + 2xy' 6y = 0.$

In (23)–(26) verify whether the given ODE is linear or nonlinear.

$$(23) xy'' - y'\sin x = xe^x.$$

$$(24) \ y' + 2x \sin y = 1.$$

$$(25) \ \ y'y'' - xy = 2x.$$

(26)
$$y'' + \sqrt{x}y = \ln x$$
.