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The meaning of the mysterious terms in this theorem is as follows:
9
h—+k f(x y) = f,y)

(hi+k——) i) = (h-’f+k f)( »
ox dy

a8\ (29 ?f *f
(h-é;+k5;) fo,y) = (h 7 T kg5 S )(x »)

and so on. Letting f, = 8f/3x, fy = 8f/3y, fux = 02f/3x%, fuy = 02 f/3x 3y,
fy= 32 f/3y?, we can write the first few terms of (5) as

fG ARy +k) = f+ (hfs +kfy) + 5 (B fux + 2hkfry + K fry) +---

where on the right-hand side the function f and each of the following partial deriva-
tives are evaluated at (x, y). o

EXAMPLE 4 What are the first few terms in the Taylor formula for f(x, y) = cos(xy)?

Solution  For the given function, we find that

d af
il = —ysin(xy) 3 = —x sin(xy)
dax dy
82 32 . 52
—a—é— = —y2 cos(xy) Y gy = —xycos(xy) — sin(xy) 8_y£ = —x? cos(xy)

Thus, if we let n =1 in Taylor’s formula (5), the result is
cos[(x + h)(y + k)] = cos(xy) — hy sin(xy) — kx sin(xy) + E1(h, k)
The remainder E; is the sum of three terms—namely,
1
- Ehz(y + 0k)? cos[(x + Oh)(y + 6Kk)]

— hk{(x + 0h)(y + 0k) cos[(x + 8h)(y + 6k)] + sin[(x + 6h)(y + 0K)1}

1
— 5k2(x + 6h)? cos[(x + 6h)(y + 6Kk)] n
PROBLEMS 1.1 1. Show that [x2 —4| < & when 0 < [x — 2| < &(5+ &)~ and prove lim, ., x> = 4 by usingr
these inequalities.

. Show that the function f(x) = xsin(1/x), with f(0) = 0, is continuous at 0 but not
differentiable at 0.

. Show that f(x) = x2sin(1/x), with f(0) = 0, is once differentiable at O but not twice.




1.1 Basic Concepts and Taylor's Theorem 13

. Let f(x) = x73(x — sinx) for x # 0. How should f(0) be defined in order that f be
continuous? Will it also be differentiable?

5. a. Derive the Taylor series at 0 for the function f(x) = In(x + 1). Write this series

in summation notation. Give two expressions for the remainder when the series is
truncated.

b. Determine the smallest number of terms that must be taken in the series toyieldIn 1.5
with an error less than 102, '

¢. Determine the number of terms necessary to compute In 1.6 with error 10~'° at most.

6. Determine whether the following function is continuous, once differentiable, or twice
differentiable:
X+x—-1 ifx<0

x?—x—=1 ifx>0

7. (Continuation) Repeat the preceding problem for the function

ifx<1

ifx>1

x

X) =
@) {xz
8. Criticize this reasoning: The function [ defined by

3 »
x*+x ifx<0
X) =
F&) {x3~x ifx>0
has the properties
; BN 1 _
i 9700 i =0
lim f"(x) = lim 6x =0
x—=0" x—>0"
- Therefore, f” is continuous.
9. Prove that if f is differentiable at x, then

. fx+h)— f(x—h) ’
i 2h —=f®

Show that for some functions that are not differentiable at x, the preceding limit exists.
(See Eggermont [1988] or thie following problem.)

10. Prove or disprove this assertion: If f is differentiable at x, then for o #1,
h) = f(x +ah)
h—ah
11. Show that lim,_,,(4x +2) =6 by means of an ¢-8 proof.
12. Show that lim,,(1/x) = 1 by means of an &-§ proof.

13. . For the function' f(x) = 3 — 2x + x? and the interval [a, b] = [1, 3], find the number & -
that occurs in the Mean-Value Theorem.

£/) = lim fox+

" 14. (Continuation)-Repeat the preceding problem with the function f(x) = x® + x* —1and
the interval [0, 1].

15. Find the Taylor series for f(x) = cosh x about the point ¢ = 0.

16. If the series for Inx is truncated after the term involving (x — 1)1%% and is then used to
compute In 2, what bound on the error can be given?

v
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17. Find the Taylor series for f(x) = e* about the point ¢ = 3. Then simplify the series and
show how it could have been obtained directly from the series for f about ¢ =0.

i

§? 18. Let k be a positive integer and let 0 < o < 1. To what classes C™*(R) does the function
x*+2 belong?

19. Prove: If f € C*(R), then f' € C*1(R) and fax f(t) dt belong to C**!(R).

20. Prove Rolle’s Theorem directly (not as a special case of the Mean-Value Theorem).

21. Prove: If f € C*"(R) and f(xp) = flx1)=---= f(x,) =0forxp < x; <--- <Xx,,then
f®(&) = 0 for some & € (xo, x,). Hint: Use Rolle’s Theorem n times.

22. Prove that the function f(x) = x? is continuous everywhere.

23. For small values of x, the approximation sinx = x is often used. Estimate the error in
using this formula with the aid of Taylor’s Theorem. For what range of values of x will
this approximation give results correct to six decimal places?

24. For small values of x, how good is the approximation cosx =~ 1 — %xz? For what range
of values will this approximation give correct results rounded to three decimal places?

25. Use Taylor’s Theorem with n = 2 to prove that the inequality 1+ x < ¢* is valid for all
real numbers except x = 0. )

26. Derive the Taylor series with remainder term for In(1 + x) about 1. Derive an mequahty
that gives the number of terms that must be taken to yield In 4 with error less than 27™.

27. What is the third term in the Taylor expansion of x 4 x — 2 about the point 37

28. Using the series for *, how many terms are needed to compute e? correctly to four deci-
qmal places (rounded)?

29. Develop the Taylor series for f(x) = lnx about e, writing the results in summatlon

notation and giving the remainder term. Suppose |x — e < 1 and accuracy 3 110!
is desired. What is the minimum number of terms in the series required to achleve this

accuracy?

30. Determine the first two terms of the Taylor series for x* about 1 and the remainder
term Ej.

31. Determine the Taylor polynomial of degree 2 for f(x) = e“** expanded about the
point 7.

32. First develop the function 4/ in a series of powers of (x =.1) and then use it to approxi-
mate +/0.99999 99995 to ten decimal places.

33. Assume that |x| < % and determine by Taylor’s Theorem the best upper bound.
a. |cosx — (1 — x%/2)|
b. isinx — x(1 — x%/6)]

34. Determine a function that can be termed the linearization of x3 —2xat2.

35. How many terms are required in the series
o0
1
e= Z n
k=0

to give e with an error of at most 6/10 unit in the 20th decimal place?

36. Find the first two terms in the Taylor expansion of x'/* about the point x = 32. Approxi-
mate the fifth root of 31.999999 using these two terms in the series. How accurate is your
answer?

37. Find the Taylor polynomial of degree 2 for the function f(x) = &% sin x expanded about

the point 77 /2.
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38. Determine the Lagrange form of the remainder when Taylor’s Theorem is applied to the
function f(x) = cosx, with n = 2 and ¢ = /2. How small must we make |x — /2| if
this remainder term is not to exceed % x 10~ in absolute value?

39. An error term of the form (—1)"(n + 1) 71771 (x — 1)"*! was obtained in the example
illustrating Taylor’s formula. Compare this to the error term that arises from the integral
form of the remainder.

40. Use Taylor’s Theorem with Integral Remainder and the Mean-Value Theorem for Inte-
grals to deduce Taylor’s Theorem with Lagrange Remainder.

Orders of Convergence and Additional Basic Concepts

In numerical calculations, especially on high-performance computers, it often hap-
pens that the answer to a problem is not produced all at once. Rather, a sequence of
approximate answers is produced, usually exhibiting progressively higher accuracy.
Convergence of sequences is an important subject that will be taken up again later,
such as in Chapter 3 (p. 73). Here we present just a few introductory concepts.

Convergent Sequences

Let us consider an idealized situation in which a single real number is sought as the
answer to a problem. It might be, for example, a zero of a complicated equation
or the numerical value of an intractable definite integral. In such a case, a computer

program may produce a sequence of real numbers x1, xp, X3, . . . that are approaching
the correct answer.

We write

lim x, =L
n—o0

if there corresponds to each positive ¢ a real number r such that |x, — L| < ¢ when-
ever n > r. (Here n is an integer.)

For example,
1
g 2T = q
=00 n
because
1
s — 1' <é&
n

whenever n > g1,

For another example, recall the equation

1 n
e = lim (1 + —)
n->00 n




