approach $g(x_1)$. The condition (6) is weaker than having a bounded derivative. Indeed, if g'(x) exists everywhere and does not exceed L in modulus, then by the Mean-Value Theorem,

$$|g(x_1) - g(x_2)| = |g'(\xi)| |x_1 - x_2| \le L|x_1 - x_2|$$

Show that the function $g(x) = \sum_{i=1}^{n} a_i |x - w_i|$ satisfies a Lipschitz condition with the constant $L = \sum_{i=1}^{n} |a_i|$.

Solution

$$|g(x_1) - g(x_2)| = \left| \sum_{i=1}^n a_i |x_1 - w_i| - \sum_{i=1}^n a_i |x_2 - w_i| \right|$$

$$= \left| \sum_{i=1}^n a_i \{ |x_1 - w_i| - |x_2 - w_i| \} \right|$$

$$\leq \sum_{i=1}^n |a_i| \left| |x_1 - w_i| - |x_2 - w_i| \right|$$

$$\leq \sum_{i=1}^n |a_i| |x_1 - x_2| = L|x_1 - x_2|$$

1. Find two solutions of the initial-value problem

$$\begin{cases} x' = x^{1/3} \\ x(0) = 0 \end{cases}$$

Hint: Try $x = ct^{\lambda}$, or observe that the equation is separable.

- 2. a. Use Theorem 1, on initial-value problem existence, to predict in what interval a solution of the initial-value problem (3) exists. Find the largest interval.
 - b. Repeat Part a for the initial-value problem (2).
- 3. Show that $x = -t^2/4$ and x = 1 t are solutions of the initial-value problem

$$\begin{cases} 2x' = \sqrt{t^2 + 4x} - t \\ x(2) = -1 \end{cases}$$

Why does this not contradict Theorem 2, on initial-value problem uniqueness?

4. Solve the initial-value problem x' = f(t, x), x(0) = 0 in these special cases:

a.
$$f(t, x) = t^3$$

b.
$$f(t, x) = (1 - t^2)^{-1/2}$$

c.
$$f(t, x) = (1 + t^2)^{-1}$$

d.
$$f(t, x) = (t+1)^{-1}$$

5. Solve the initial-value problem x' = f(t, x), x(0) = 0 in the following cases. Use the fact that $dt/dx = (dx/dt)^{-1}$ when $dx/dt \neq 0$.

a.
$$f(t, x) = x^{-2}$$

b.
$$f(t, x) = 1 + x^2$$

c.
$$f(t, x) = (\sin x + \cos x)^{-1}$$

6. Use Theorem 1, on initial-value problem existence, to show that the initial-value problem

$$\begin{cases} x' = \sqrt{|x|} \\ x(0) = 0 \end{cases}$$

has a solution on the entire real line.

7. Show by using Theorem 1, on initial-value problem existence, that the initial-value problem

$$\begin{cases} x' = \tan x \\ x(0) = 0 \end{cases}$$

has a solution in the interval $|t| < \pi/4$.

8. Let f be a continuous function of one variable, defined on all of \mathbb{R} . Let M(r) denote maximum of |f(x)| for $|x| \le r$. If M(r) = o(r) as $r \to \infty$, then the initial-value problem

$$\begin{cases} x' = f(x) \\ x(0) = 0 \end{cases}$$

has a solution on all of \mathbb{R} . Prove this assertion.

9. Prove that the initial-value problem

$$\begin{cases} x' = t^2 + e^x \\ x(0) = 0 \end{cases}$$

has a unique solution in the interval $|t| \le 0.351$.

10. Prove that if f(t, x) is continuous and bounded in the domain $a \le t \le b$, $-\infty < x < \infty$ then the initial-value problem

$$\begin{cases} x' = f(t, x) \\ x(a) = \alpha \end{cases}$$

has a solution in the interval $a \le t \le b$.

- 11. Let R denote the rectangle in the tx-plane defined by $|t t_0| \le \alpha$, $|x x_0| \le \beta$ be a continuous function defined on this rectangle and satisfying $\beta \ge \alpha |f(t,x)|$. That the initial-value problem x' = f(t,x), $x(t_0) = x_0$ has a solution on the $|t t_0| \le \alpha$.
- 12. Establish that the initial-value problem

$$\begin{cases} x' = 1 + x + x^2 \cos t \\ x(0) = 0 \end{cases}$$

has a solution in the interval $-1/3 \le t \le 1/3$.

MPUTER OBLEM 8