Chapter 6

Parabolic Partial Differential
Equations

6.1 Overview of Parabolic Partial Differential Equations

The simplest parabolic equation is the one-dimensional heat equation
uy = buy,, (6.1.1)

where b is a positive number. This equation arises in the study of heat transfer, in which
case the function (¢, x) gives the temperature attime ¢ and location x resulting from the
initial temperature distribution. Equations similarto (6.1.1) arise in many other applications,
including viscous fluid flow and diffusion processes. As for the one-way wave equation
(i.1.1), we are interested in the initial value problem for the heat equation (6.1.1); i.e.
we wish to determine the solution u(#,x) for ¢ positive, given the initial condition that
u(0, x) = up(x) for some function uo.

We can obtain a formula for the solution to (6.1.1) by using the Fourier transform of
(6.1.1) in space to obtain the equation

~ 2 A
i, = —bw’u.

Using the initial values, this equation has the solution

2
i, w) = e " iig(w),
and thus by the Fourier inversion formula
1 0 iwx —bwt A
u(r,x)=——f elove™" iy (w) dw. (6.1.2)
V2m J-c0

Formula (6.1.2) shows that u attime ¢ is obtained from uo by damping the high-frequency
modes of ug. It also shows why the solution operator for a parabolic equation is called a
dissipative operator, since all high frequencies are dissipated.
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The Backward-Time Central-Space Scheme

The backward-time central-space scheme is
nd4-1 _ 1 n+l 5ol
Uy Upn — bvm+l 2u," + v,’,’,*_'l sl
k 2 + S (6.3.3)

The amplification factor is

1
| + 4bp sin? 10 '

This scheme is implicit and unconditionally stable. It is accurate of order (1,2) and is
dissipative when p is bounded away from 0.

g =

The Crank-Nicolson Scheme
The Crank—Nicolson scheme (see [12]) is given by

n+1 n n+l _ oont1 n+1
Un  — Um _l Un+1 va + Un—1

k 2 h?
(6.34)
1 vr’;‘l—H 3 2”1,111 i v:‘ —1 1
+2b U+ -

The amplification factor is
1 — 2by sin? %9
14 2bpsin® 16

The Crank-Nicolson scheme is implicit, unconditionally stable, and second-order
accurate, i.e., accurate of order (2, 2). It is dissipative of order 2 if u is constant, but not
dissipative if A is constant. Even though the Crank—Nicolson scheme (6.3.4) is second-
order accurate, whereas the scheme (6.3.3) is only first-order accurate, with nonsmooth
initial data and with A held constant, the dissipative scheme (6.3.3) may be more accurate
than the Crank—Nicolson scheme, which is not dissipative when A is constant (also see
Exercises 6.3.10 and 6.3.11). This is discussed further and illustrated in Section 10.4.

g) =

The Leapfrog Scheme

The leapfrog scheme is

Un+1 _vn—l V" l_zvll’l' +ut )
m T n —b m+ hz m l+ ';:' (6.3.3)

and this scheme is unstable for all values of j¢. The amplification polynomial is

gz+8gbusin2%-9—l=0

(see Section 4.2), so the amplification factors ar¢

g+(0) = —4bpu sin® 50 £/ (4bp sin? §60)2 + 1 .

Because the quantity inside the square root is greater than | for most values of 8, the
scheme is unstable.



148 Chapter 6. Parabolic Partial Differential Equatiop,,
o~

The Du Fort-Frankel Scheme
The Du Fort-Frankel scheme may be viewed as a modification of the leapfrog scheme, |,

1S
n4l _ =1 n _ [yt n—I n
U Um I U 41 (vm + Uy ) + U .
=0 + I (6.3.6)

2k h?

This scheme is explicit and yet unconditionally stable. The order of accuracy is given by
0 (h?) + 0 (k) + O (k2h~?). Thescheme is nondissipative, and this limits its usefulness,
The Du Fort-Frankel scheme is distinctive in that it is both explicit and uncondition-

ally stable. It can be rewritlen as

(14 2by0) Uit = 2bpu (v 4y + V) + (1 = 2600) U™
To determine the stability we must solve for the roots of the amplification polynomial

equation (sce Section 4.2):

(1 +2b,u)g2 —4bpcosf g — (1 —2bu) =0.

The two solutions of this equation are

) 2bjicosd + / 1 — 4b2u2sin0
g+(0) = T+ 200 :

If 1 —4b%u?sin®6 is nonnegative, then we have

2bu| cos 6| + 1 —4b2u?sin®0  2bp+ 1

< =1,

0)| <
L I+ 2b I+ 2bp

and if 1 —4b%u2sin?6 is negative, then

(2bu cos 9)2 + 4b2u2 sin?6 — 1
(1 +2bu)?

lg£(0)|* =

. e
Tap44but+1

Thus for any value of 4 or @, we have that both g4 and g_ are bounded by | in
magnitude. Morcover, when g.. and g_ are equal, they both have magnitude less than 1,
and so this introduces no constraint on the stability (see Section 4.2). Thus the scheme is
stable for all values of u.

Even though the Du Fort—Frankel scheme is both explicit and unconditionally stable,
it is consistent only if k/h tends to zero with h and k (see Exercise 6.3.2). Theorem
1.6.2, which states that there are no explicit unconditionally stable schemes for hyperbolic
equations, does not extend directly to parabolic equations. However, the proper analogue
of the results of Section 1.6 for parabolic equations is the following theorem.

SiSoreny .6.'3'1‘ An explicit, consistent scheme for the parabolic system (6.2.1) is conver
gentonly if k/h tends to zero as k and h tend to zero.
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tends to zero as it and k tend to zero. Thus, to be convergent we must have
u (nk', xm) — u (nk, xm)

iend to zero as h and k tend to zero with nk fixed, and therefore n (k — k') must tend
zero for nk =1 fixed. We then have

Thus 1 = p'/pe must tend to zero for the scheme to be convergent. But

W e — (1 —2bp)
1-L = =
I 2 O (bp)

as ju tends to zero. This shows that scheme (6.3.9) is convergent only if p tends to zer
with h and k. This makes this scheme less efficient than the standard forward central
scheme (6.3.1). In fact, for explicit second-order accurate schemes, the forward centra)

scheme is essentially optimal.

Exercises

6.3.1. Justify the claims about the stability and accuracy of schemes (6.3.3), (6.3.4), and
(6.3.5).

6.3.2. Show that if A = k/h is a constant, then the Du Fort—Frankel scheme is consistent
with

blzlttt + uy = buyy + f(2,X).

6.3.3. Prove Theorem 6.3.1 for the equation (6.1.1). Hint: If uo is nonnegative and not
identically zero, then u(t, x) will be positive for all x when ¢ is positive.
6.3.4. Show that scheme (6.3.9) with x held constantas h and k tends tozero is consistent
with
u, = buyy,

where b’ is defined by
e~ = | —2b'p.

6.3.5. Show that a scheme for (6.1.1) of the form

04
n n
2 (vm+l + Um-—l) ’

with & constantas # and k tend to zero, is consistent with the heat equation (6.1.1)
only if

n+l _ n
vm - avm +

a=1-2bu.
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6.3.10, Solve the initial-boundary value problem for (6.1.1)on —1 < x < I with ini

data given by |
(1 if x| < 3,

uo(x) = { % il x| =3,

0 if x| > 5.

Solve up to ¢+ = 1/2. The boundary data and the exact solution are given by

¢ cosm(28+ 1)x L,
w2+ 1)

l (0 0]
u(t,,\)=§+2£§(:) (=D

Use the Crank—Nicolson scheme (6.3.4) with 4 = 1/10, 1720, 1/40. Compare
the accuracy and efficiency when A = 1 and also when p = 10.

Demonstrate by the computations that when A is constant, the error in the
solution does not decrease when measured in the supremum norm, but it does
decrease in the L2 norm.

6.3.11. Solve the initial boundary value problem for u; = ux, on —1 <x =1 for 0 <
t < 0.5 with initial data given by

1 —|x| for|x| < %,
i for |x| = 1,
0 for |x| > 3.
Use the boundary conditions
ut,—1) =u*@,—1) and ux(t,1)=0,

where u*(t, x) is the exact solution given by

* (-1t 2 —n2Qe+1)
ut(t,x) = Z ( (2£+1) 2001 1)2>cosn(2€+ Dxe

i cos2r(2m + 1)x g4t em+1)%
n2@2m + 1)2

m=0
Consider three schemes:

(a) The explicit forward-time central-space scheme with u = 0.4.
(b) The Crank-Nicolson scheme with A = 1.
(¢) The Crank-Nicolson scheme with p = 5.

For the boundary condition at xy = 1, use the scheme applied at x) and sel
UM+] = vy,_, toeliminate the values at xp+1 for all values of n.

For cach scheme compute solutions for 4 = 1/10, 1/20, 1740, and 1/80.

Compare the accuracy and efficiency for these schemes.



