Math 6318 Homework Dr. Minkoff

[1] Using linear lagrange finite elements, obtain a solution to

$$
\left\{\begin{array}{l}
-\frac{d}{d x}\left((1+x) \frac{d u}{d x}(x)\right)+u=0,0<x<1 \\
u(0)=1 \\
u(1)=0
\end{array}\right.
$$

Be sure you use adequate quadrature to exactly integrate all terms. Refine the mesh and plot the solution with different mesh values on the same plot. Clearly label all solutions.
[2] Consider the heat equation with inhomogeneous boundary conditions:

$$
\left\{\begin{array}{l}
\rho c \frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}=f(x, t), 0<x<l, t>0 \\
u\left(x, t_{0}\right)=\Psi(x), 0<x<l \\
u(0, t)=g(t), t>t_{0} \\
u(l, t)=h(t), \quad t>t_{0} .
\end{array}\right.
$$

Define

$$
p(x, t)=g(t)+\frac{x}{l}(h(t)-g(t))
$$

and

$$
v(x, t)=u(x, t)-p(x, t) .
$$

What initial-boundary value problem does v satisfy?

