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SUMMARY

An extremely simple single-trace transmission example shows
how an extended source formulation of full waveform inver-
sion can produce an optimization problem without spurious
local minima (“cycle skipping”). The data consist of a single
trace recorded at a given distance from a point source. The
velocity or slowness is presumed homogeneous, and the tar-
get source wavelet is presumed quasi-impulsive or focused at
zero time lag. The source is extended by permitting energy
to spread in time, and the spread is controlled by adding a
weighted mean square of the extended source wavelet to the
data misfit, to produce the extended inversion objective. The
objective function and its gradient can be computed explicitly
in this very simple example, and it is easily seen that all local
minimizers must be within a wavelength of the correct slow-
ness - that is, cycle-skipping cannot occur. Calculation of the
gradient reveals that the minimization avoids cycle-skipping
only if the weight operator is differential, a requirement shared
with extended source inversion algorithms applicable at field
scale.

INTRODUCTION

Full Waveform Inversion (FWI), or estimation of earth struc-
ture by model-driven least squares data fitting, is now well-
established as a useful tool for probing the earth’s subsurface
(Virieux and Operto, 2009; Fichtner, 2010). However, so-called
“cycle-skipping”, the tendency of iterative FWI algorithms to
stagnate at suboptimal and geologically uninformative earth
models, still impedes its use. Because the computational size
of field inversion tasks is very large, only iterative local (de-
scent) minimization of the data misfit function is computation-
ally feasible. However local descent methods avoid subopti-
mal stagnation only if initial models are already quite close to
optimal, in the sense of predicting the arrival times of seismic
events to within a small multiple of a dominant wavelength
(Gauthier et al., 1986; Plessix et al., 2010).

This paper concerns one of the many ideas that have been
advanced to overcome cycle-skipping, namely so-called ex-
tended inversion (Symes, 2008; Huang et al., 2019). “Ex-
tended” signifies that additional degrees of freedom are pro-
vided to the modeling process, in the hope of opening up more
effective routes to geologically informative models with ac-
ceptable data fit. Since these extra degrees of freedom do not
arise from modeling assumptions about the source or receiver
acquisition geometry, they should be suppressed in the final
solution. Extended inversion methods differ by the choice of
additional degrees of freedom, and by choice of penalty ap-
plied to eliminate them in the final result.

Many of these extended inversion concepts sound plausible,
and appear to work at least to some extent as one might hope

from their heuristic justifications. However very few of these
approaches have been underwritten by mathematical argument:
in essence, they are mostly justified only “in the rear-view
mirror”, with no assurance that failure is not just around the
corner, at the next example. On top of that, some of these
approaches, for example those based on the computationally
attractive Variable Projection Method (“VPM”) of Golub and
Pereyra (2003), are cast in such form that the reasons for suc-
cess are not readily apparent.

This note shows exactly how VPM leads to successful velocity
updates for an extended source inversion approach to a very
simple inverse problem, which asks that a homogeneous ve-
locity field be deduced from one trace at known offset. We put
forward this inverse problem and extension-based solution not
because there are not simpler ways of answering the question
it poses - there certainly are - but because the formal ingredi-
ents of waveform-based velocity estimation in this very simple
setting are common to many similar extended inversion algo-
rithms, and because in this case every computation can be done
analytically, nearly to completion. In particular, it becomes
clear why the VPM gradient formula produces a constructive
update, with no possibility of stagnation away from the global
minimum.

In the following sections, we define the single-trace acoustic
model, explain an extended source approach to inverting it,
and compare with standard data-fitting FWI both by explicit
computations of the gradients and by numerical illustration.
We have suppressed some of the mathematical details; these
can be found in (Symes, 2020a).

MODELING

Assume small amplitude (linearized) constant-density, acous-
tic wave propagation and an isotropic point source and re-
ceiver. Denote the slowness (reciprocal velocity) by m, which
is assumed independent of spatial position. Let f (t) be the
time dependence of the point source (“wavelet”) at location
x = xs. Then the pressure trace recorded at location x = xr, at
distance r = |xr−xs| from the source position, is given by

S[m] f (t) =
1

4πr
f (t−mr) . (1)

in which S[m] is the operator of convolution with the well-
known acoustic 3D Green’s function (Courant and Hilbert (1962),
Chapter 5). Apart from amplitude scaling, the relation between
input wavelet f and output trace S[m] f is an m-dependent time
shift. This time shift relation is the basis of many descriptions
of the frequency-dependent cycle-skipping phenomenon (for
example, Virieux and Operto (2009), Figure 7), so it is unsur-
prising that an analysis of cycle-skipping can be based on the
simple modeling operator described above.

To make wavelet frequency content manifest, introduce a fam-
ily { fλ } of wavelets indexed by λ , a parameter having dimen-
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Extended source inversion

sions of time,

fλ (t) =
1√
λ

f1
( t

λ

)
. (2)

The argument s of the “mother wavelet” f1 is nondimensional.
The only constraints placed on f1 are that (i) f1(s) = 0 for
|s| ≥ 1, and (ii) f1 has positive mean-square, that is, does not
vanish identically. Note that the scaling is such that the mean-
square

‖ fλ ‖2 =

∫
dt | fλ (t)|2

is independent of λ .

We shall refer to λ as “wavelength”: if f1 has a dominant pe-
riod of oscillation, then so does fλ , and it is proportional to
λ .

To this family of wavelets and a choice of target slowness m∗
corresponds a family of noise-free data

dλ = S[m∗] fλ . (3)

This family of data in turn defines a family of inverse prob-
lems, to which we now turn.

FWI

The preceding section provided all of the raw ingredients to de-
fine full waveform inversion for estimation of m from a single
trace. It is only m that is to be determined: the λ−dependent
family of wavelets { fλ } is regarded as known, along with the
data family {dλ }. The aim is to chose m to minimize

JFWI[m] =
1
2
‖S[m] fλ −dλ ‖2

=
1

32π2r2

∫
dt | fλ (t−mr)− fλ (t−m∗r)|2 . (4)

The essence of the cycle-skip problem is clearly visible in the
integral expression 4. Since fλ (t) = 0 if |t| > λ , the shifted
copies of fλ under the integral sign do not overlap (that is, are
not non-zero at the same times) if |m−m∗|> 2λ/r, so

|m−m∗|r > 2λ ⇒ JFWI[m] =
1

16π2r2 ‖ f1‖2. (5)

That is, if m differs from the optimal m∗ by more than a mul-
tiple (2/r) of wavelength (λ ), then m is a local minimizer of
JFWI - that is, we have found a continuum of spurious local
minimizers, not just a few.

For example, suppose that the mother wavelet f1 is a 1 Hz
(peak frequency) zero phase Ricker wavelet (which has negli-
gible values for |t| > 1), and that the source-receiver distance
r = 1 km. Figure 1 shows plots of JFWI for peak frequencies
λ = 20,40 Hz and offset r = 1 km. The structure described
above is clearly visible, along with a couple of local minima
even closer to the global minimum at m = m∗.

Figure 1: The FWI objective function plotted as a function of slowness for data from two
sources: a 40 Hz Ricker (blue curve) and a 20 Hz Ricker (red curve).

EXTENDED FWI

The known-source modeling operator m 7→ S[m] fλ , may be ex-
tended simply by including the source wavelet as one of the
model parameters: that is, the model vector becomes (m, f ),
and the modeling operator, (m, f ) 7→ S[m] f . The reader will
have no trouble seeing that the data misfit using this extended
modeling operator can always be made to vanish entirely by
proper choice of wavelet f , unless f must satisfy some ad-
ditional constraints. Huang et al. (2019) describe a plethora
of possible constraints for this and similar source extensions.
Many (but not all) take the form of a quadratic penalty, that is,
the mean square of A f , A being a suitable operator, commonly
dubbed an annihilator: in many examples the ideal output for
A applied to a source obeying the target constraints is the zero
vector (Symes, 2008). Thus the penalty form of extended in-
version is: given data d, minimize over {m, f}

Jα
ESI[m, f ;d] =

1
2
(‖S[m] f −d‖2 +α

2‖A f‖2). (6)

The choices of the annihilator A and the weight α are crucial
to the performance of extended inversion. We mention some
possibilities for the choice of α in the discussion section. The
choice of A depends on modeling assumptions, not fundamen-
tal physics, as is characteristic of extended source inversion.
We have assumed that the data arises from a source wavelet
active only over a short time interval - as λ → 0, the target
source wavelet fλ focuses at time t = 0, in the sense that it
vanishes for |t| > λ . Therefore we choose A to penalize en-
ergy away from t = 0:

A f (t) = t f (t). (7)

This particular annihilator has been employed in earlier pa-
pers on extended source inversion (Plessix et al., 2000; Luo
and Sava, 2011; Warner and Guasch, 2014; Huang and Symes,
2015; Warner and Guasch, 2016; Huang et al., 2017). Amongst
many operators that could be used to penalize energy spread,
this choice has a very important quality: it is differential of or-
der zero. We will explain the importance of this characteristic
in the Discussion section.

Gradient-based minimization of Jα
ESI performs poorly, as Huang

(2016) has shown, because of dramatically different sensitiv-
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Extended source inversion

ity to m versus f . Instead, a nested approach, in which f is
eliminated in an inner optimization, generally gives far bet-
ter numerical performance. This Variable Projection Method
(VPM) (Golub and Pereyra, 2003) takes advantage of Jα

ESI be-
ing quadratic in f to solve for f given m, thus producing a
reduced objective function of m alone:

Jα
VPM[m;d] = min

f
Jα

ESI[m, f ;d] = Jα
ESI[m, f [m;d];d], (8)

where f [m;d] is the minimizer of Jα
ESI[m, f ;d] over f for given

m. As is well-known, f [m;d] solves the normal equation

(S[m]T S[m]+α
2AT A) f = S[m]T d (9)

For the problem considered here, f [m;d] is explicitly com-
putable. Straightforward computations (Symes, 2020a) show
that

S[m]T d(t) =
d(t +mr)

4πr
, (10)

S[m]T S[m] f (t) =
f (t)

(4πr)2 , (11)

and AT A f (t) = t2 f (t), so taking d = dλ as in equation 3,

f [m;dλ ] =
(

1+(4πr)2
α

2t2
)−1

fλ (t +(m−m∗)r) (12)

Explicit expressions for Jα
VPM and its gradient can be extracted

by elementary means from the identity 12. Instead, we sketch
a computation of the gradient that works for other extended
inversion methods, with appropriate modifications. To begin
with, the gradient of a VPM objective of the form 8 is given by
the formula

∇Jα
VPM[m] = (D(S[m] f ) f= f [m,d])

∗(S[m] f [m;d]−d). (13)

This easily derived result is in some sense the main content
of Golub and Pereyra (2003). In this formula, D(S[m] f ) is
the derivative of the modeling operator S[m] f with respect to
m, and the superscript ∗ signifies the adjoint of the linear map
from model space to data space: δm 7→D(S[m] f )δm. The key
to unlocking the meaning of the VPM gradient formula for this
and similar problems is a remarkable factorization identity:

D(S[m] f )δm = S[m](Q[m]δm) f (t), (14)

(Q[m]δm) f = −rδm
d f
dt

. (15)

That is, Q[m]δm is a skew-adjoint operator depending linearly
on δm. The relation defined by equations 14, 15 is a simple
calculus identity, but similar factorizations have been estab-
lished for much more complicated extended models (Symes,
2014; ten Kroode, 2014; Symes, 2015).

A straightforward calculation, detailed in (Symes, 2020a) yields
an expression for the gradient 13 in terms of Q:

δm ·∇Jα
VPM[m] =

α2

2

∫
dt f [m;d](t)([(Q[m]δm),AT A] f [m;d])(t) (16)

Here, the symbol [L,M] denotes the commutator of the oper-
ators L and M: [L,M] = LM−ML. Note that the annihilator

A is explicitly present on the right-hand side of equation 16,
whereas its role is hidden in the expression 13. Formulae sim-
ilar to 16 hold for many other extended inversion methods.

In the present case, AT A amounts to multiplying by t2, and Q
is the scaled time derivative (equation 15). Together with the
expression 12 for f [m;d], these observations imply that

∇Jα
VPM[m] =−rα

2
∫

dt
t( fλ (t +(m−m∗)r)

2)(
1+(4πr)2α2t2

) (17)

Since fλ (t) = 0 if |t|> λ , it is easy to see that

• if m > m∗+λ/r, then ∇Jα
VPM[m]> 0, and

• if m < m∗−λ/r, then ∇Jα
VPM[m]< 0.

That is, Jα
VPM has no local minima further than O(λ ) from the

global minimum: the gradient has the correct sign and slow-
ness updates computed from it will be constructive, unless the
slowness estimate is already “within a wavelength” of being
correct.

Figure 2 shows the behavior described above for the same two
examples described earlier for FWI, and presented in Figure
1: that is, data from 20 and 40 Hz Ricker wavelets ( f20 and
f40), and source-receiver distance = 1 km. Note that these two
curves are very similar, in dramatic contrast to the behavior
shown in Figure 1. The annihilator output A f40 is considerably
smaller than A f20, which explains the sag towards zero of the
minimum value for the higher frequency.

Figure 2: The VPM objective function plotted as a function of slowness for data from two
sources: a 40 Hz Ricker (blue curve) and a 20 Hz Ricker (red curve).

The parameter α is set = 1 in this example. Since α is dimen-
sional, this choice is truly arbitrary. The next section mentions
an approach to rational choice of α .

DISCUSSION

We emphasize that factorizations similar to relation 14, and
the resultant recasting of the VPM gradient similar to equa-
tion 16, are common features of extended inversion. Deeper
analysis shows that this relation depends on approximate in-
vertibility of the extended modeling operator (obvious for the
simple problem considered here) and generic characteristics
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Extended source inversion

Figure 3: The FWI (blue curve) and VPM (red curve) objective functions plotted as a function
of slowness for data from a 40 Hz Ricker wavelet.

of wave propagation. While the implications of equation 16
were easy to understand for the very simple setting of this pa-
per, in other more complex and physically realistic settings the
analogous result reveals that extended inversion is equivalent
to some form of travel-time tomography (ten Kroode, 2014;
Symes, 2014, 2015; Huang and Symes, 2015).

The penalty weight α has been “along for the ride” in the
discussion above. In any practical inversion algorithm, some
mechanism must be introduced to choose it. Fu and Symes
(2017) describe a dynamic updating rule of α based on the
Discrepancy Principle, in which the first (mean-square error)
term of the extended objective 6 is kept within a range repre-
senting the expected error in the data. See the cited reference
for an extended discussion and evidence of effectiveness.

Perhaps the most important general message implicit in the
example presented here is that the choice of the annihilator A
determines whether the extended inversion algorithm achieves
global or semiglobal convexity, as is accomplished in the present
example. (See Figure 3 for a comparison of the FWI and VPM
objective functions as functions of slowness for data generated
by a 40 Hz Ricker wavelet.) The annihilator used here has a
property whose importance can be guessed by examining the
gradient formula 16. The operator Q is a first order differential
operator. The gradient is a quadratic form whose Hessian is the
commutator [Q,AT A], and whose argument is f [m;d]. In order
that the VPM objective be continuous for any model m and
finite energy data d, this form should admit any finite-energy
source as argument: in technical terms, it should be a bounded
(or continuous) operator on the Hilbert space of finite energy
traces. If one asks for a bit more, namely that the VPM objec-
tive function have derivatives of arbitrary order, then it is not
too hard to see that the iterated commutators [Q, ...[Q,AT A]...]
must all be bounded operators. This is a very strong restric-
tion on AT A: this operator must be pseudodifferential, that
is, a combination of differential operators and powers of the
Laplace operator (Taylor (1981), Chapter VIII, Lemma 5.3).
For the present example, AT A is multiplication by t2, a very
simple differential (therefore pseudodifferential) operator. For
more discussion of this requirement in the context of annihila-
tors in extended inversion, see Symes (2008), where you can
also find references to the technical backstory.

This constraint actually rules out some popular approaches to
FWI. To begin with, basic least-squares FWI as formulated in
the third section above can be reformulated as a quadratic form
whose Hessian turns out not to be pseudodifferential. There-
fore the FWI objective is not smooth in data and model jointly,
a fact that is linked to the cycle-skipping behavior demon-
strated above. More surprising, perhaps, the same turns out to
be true for Wavefield Reconstruction Inversion (WRI), an ex-
tended source inversion algorithm introduced by van Leeuwen
and Herrmann (2013), and further developed by van Leeuwen
and Herrmann (2016), Wang et al. (2016), and Aghamiry et al.
(2019), amongst others. This approach turns out to be closely
linked to basic FWI, and can be formulated as minimization of
a similar quadratic form: as in FWI, its Hessian is not pseudod-
ifferential. Not coincidentally, it also exhibits cycle-skipping
behavior. In simple cases such as the problem studied in this
paper, WRI can be shown explicitly to have local minima far
from the global minimum, and a region of attraction for the
global minimum on the order of a wavelength in diameter, just
as does FWI (Symes, 2020b).

CONCLUSION

Despite its simplicity, the single-trace transmission inversion
problem proves typical of many more complex waveform in-
version problems. The structure of the derivative is similar in
many of these problems, and for the particularly simple one ex-
plained here, can be analyzed on paper to the point of showing
explicitly why a simple extended source approach to waveform
inversion works - that is, generates an objective all of whose
local minima are “within a wavelength” of the global mini-
mizer. Otherwise stated, this particular extended source inver-
sion is genuinely immune to cycle-skipping. The simple struc-
ture of this problem showcases the importance of the variable
projection reduction (elimination of the extended source) and
a proper choice of annihilator in the formulation of the basic
objective. It also makes clear the central role played by a fac-
torization of the linearized modeling operator, a feature shared
with many more complex extended source methods applicable
at field scale.
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