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SUMMARY

The data completion problem involves recovering missing
seismic data from incomplete observations. 3D seismic data
can be naturally arranged into an order-3 tensor with dimen-
sions for time, offset, and gather number. Redundancy in the
data leads to a low rank tensor. We apply low rank optimiza-
tion and solve the data completion problem using the alternat-
ing direction method of multipliers (ADMM). Computation of
the tensor singular value decomposition (tSVD) is a significant
component of this procedure. We improve the runtime of the
tSVD algorithm by taking advantage of the even-symmetry of
the Fourier transform. We demonstrate that the tensor nuclear
norm (TNN) of a sampling operator is correlated with the TNN
of the corresponding observation, thus producing a useful tool
for determining if low rank optimization is appropriate for a
given observation. Of the possible six orientations for order-
3 tensors, the orientation with the most square frontal slice is
best for low-rank recovery. We present our data completion
results on two real datasets, the Viking Graben (offshore Nor-
way) and Northwest Shelf 3D marine streamer data (offshore
Australia).

INTRODUCTION

The data completion problem refers to recovering missing in-
formation from partial observations. It arises in many applica-
tions including for example, seismic data completion (Kreimer
et al. (2013), Gao et al. (2015)), computerized tomography
(Semerci et al. (2014), Mohd Sagheer and George (2019)), and
video completion (Zhang et al. (2014), Long et al. (2019)).
Specific situations in which data completion is implemented
for exploration seismology include the need to fill in missing
near and far offsets, interpolation of missing crossline data,
and recovering traces when a receiver fails.

Seismic data can be naturally recorded in higher (more than
two) dimensions. By arranging the data into a higher order
tensor, we can use efficient and more reliable methods than by
treating the data as a series of independent matrices.

There exist a variety of data completion methods including
completion methods for tensors such as higher-order singu-
lar value decomposition (Kreimer and Sacchi (2012), Gao and
Sacchi (2018)), parallel matrix factorization (Gao et al. (2015),
Sacchi and Cheng (2017)), randomized QR decomposition
(Carozzi and Sacchi (2017), Cheng and Sacchi (2015)), min-
imum weighted norm interpolation (Sacchi et al. (2017)), and
adaptive weighted tensor completion (Ng et al. (2017)). We fo-
cus here on low rank optimization techniques, which assume
the underlying true data has low rank. The rank of a matrix
refers to the number of non-zero singular values in its singular
value decomposition (SVD). The low rank assumption is suit-
able for seismic data recovery, as seismic data often contains

redundancies, indicating an underlying low rank structure. It
should be noted that minimizing rank directly is an NP-hard
problem (Semerci et al. (2014)). Thus, the low rank require-
ment is often relaxed and approximated by the summation of
singular values (called the nuclear norm).

In particular, we examine data completion techniques for 3D
data organized as a tensor. Key concepts for matrix completion
have generalized notions for higher order tensors. The tensor
singular value decomposition (tSVD) generalizes the matrix
SVD (Kilmer and Martin (2011)). It is used to decompose
a tensor into a product of orthogonal tensors and a diagonal
tensor, containing the singular values. The sum of a tensor’s
singular values is the tensor nuclear norm (TNN), which we
use as our relaxation for the concept of tensor rank.

This paper contributes three new results for data completion of
real-valued 3D data. We first present a cost improved tSVD al-
gorithm, which makes use of the even-symmetry of the Fourier
transform. The inner loop of the tSVD algorithm computes the
matrix SVD for each frontal slice. A frontal slice is formed by
slicing a tensor along its first and second dimensions (see Fig-
ure 1). For an n1× n2× n3 tensor, we compute the conjugate
for O(b n3−1

2 c) many slices thereby, reducing the SVD compu-
tations from O(n3) to O(n3−b n3−1

2 c).

Figure 1: Visualization of two orientations for the same data.
The green lines on the left highlight a frontal slice. On the
right the green lines highlight a lateral slice.

The structure of the sampling operator (e.g. random or reg-
ular) has previously been shown to impact recovery (Kumar
et al. (2015), Zhang and Lumley (2019), Ng et al. (2017), Popa
et al. (2019)). Low-rank optimization performs better when the
observation has higher rank than the ground truth. Our second
contribution in this paper is demonstrating that the TNN of the
sampling operator is correlated with the TNN of its observa-
tion, i.e. sampling operators with large norm tend to produce
observations of large norm. This correlation is useful for pre-
dicting the success of applying low rank optimization given
only the sampling operator.

Third, we present novel insight in understanding which orien-
tation leads to the best low-rank recovery. Previous research
discussed in general the dependence of algorithms, and hence
recovery, on the tensor’s orientation (Martin et al. (2013)).
We clarify here the optimal tensor orientation for low rank
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Seismic data completion

recovery specifically. For 3D data, there are six tensor ori-
entations, Figure 1 illustrates two orientations. A rectangular
matrix with dimensions n1×n2 has min(n1,n2) many singular
values. Hence, the rank of the matrix is bounded by its smallest
dimension. The orientation exhibiting the most square frontal
slices, or ‘most square’ orientation, allows for observations to
have higher tensor rank, resulting in better recovery. Further-
more, the ‘most square’ orientation coincides with the orienta-
tion of minimal runtime (Popa et al. (2019)).

TSVD SPEED-UP USING EVEN SYMMETRY

For real-valued order-3 tensors, the runtime of the tSVD al-
gorithm can be reduced by making use of the even-symmetric
property of the Fourier transform. For a vector x= [x1 x2 ... xN ],
let x̂ = fft(x) be the result of the fast Fourier transform (fft) ap-
plied to x. If x is real-valued then

x̂k = x̂∗[−(k−1) mod N]+1, ∀k ∈ {1,2, ...,N}. (1)

This relation means that bN−1
2 c of the values in the trans-

formed vector x̂ are complex conjugates of the other values
in the transformed vector. The tSVD algorithm first computes
the fft of each tube (a vector in the third dimension). The re-
sulting transformed tensor has even-symmetry along its frontal
slices, which can be seen in Figure 2.

Figure 2: Visualization of an even symmetric tube in an n1×
n2×6 tensor. Slices of the same color are entry-wise complex
conjugates.

Frontal slice k is the complex conjugate (entry-wise) to slice
[−(k− 1) mod N]+ 1. These slices have the same set of sin-
gular values in their SVD. For an n1× n2× n3 tensor, we can
compute the matrix SVD for the first b n3

2 c slices and store the
conjugate result in each corresponding symmetric slice. It was
shown in Popa et al. (2019) that computing the SVD for all n3
slices costs O((n2

1 + n2
2)n2n3), whereas calculating the SVD

and conjugate for the first b n3
2 c slices costs O((n2

1+n2
2)[n2n3−

(n2−1)b n3−1
2 c]).

Algorithm 1 outlines the accelerated tSVD, with the improve-
ment highlighted in red. In our pseudocode, we use the no-
tation fft(X, [],3) to denote the Fourier transform in the tubal
direction, ifft to denote the inverse Fourier transform, X(:, :, i)
to denote the ith frontal slice of X, and X̄ to denote the entry-
wise conjugate of X. In Figure 3 we compare the empirical
runtime of the original and improved tSVD algorithms applied
to two datasets: the Viking Graben, offshore Norway, and the
Northwest Shelf 3D marine streamer data, obtained from the
west coast of Australia. For the Viking Graben data we ob-
serve a 48% reduction in runtime of the inner loop and for the
Northwest Shelf we observe a 35% improvement.

Algorithm 1: Efficient tSVD for real-valued order-3 ten-
sors
Input: X ∈ Rn1×n2×n3 ;
X̂← fft(X, [],3);
[Û(:, :,1), Ŝ(:, :,1), V̂(:, :,1)] = svd(X̂(:, :,1));
for i = 1 to b n3

2 c do
[Û(:, :, i+1), Ŝ(:, :, i+1), V̂(:, :, i+1)] = svd(X̂(:, :
, i+1));

j = n3− i+1;
Ŝ(:, :, j) = Ŝ(:, :, i+1);

Û(:, :, j) = ¯̂U(:, :, i+1);

V̂(:, :, j) = ¯̂V(:, :, i+1);
end
U← ifft(Û, [],3);
S← ifft(Ŝ, [],3);
V← ifft(V̂, [],3);

Figure 3: Comparison of empirical runtime of the inner loop of
the original and improved tSVD applied to the Viking Graben
(left) and the Northwest Shelf datasets (right).

SAMPLING OPERATOR RESULTS

The data completion problem can be expressed mathematically
as,

Y = A(X). (2)

From (2) we seek to reconstruct the true data X, provided with
observation Y and sampling operator A. We consider the prob-
lem without denoising for simplicity.

We can treat the sampling operator as a tensor containing ze-
roes and ones; a zero where data is missing and a one where
data is sampled. The sampling operator applied to a data tensor
requires taking the Hadamard product (entrywise multiplica-
tion). In our experiments, we remove 60% of the data using our
sampling operator. We compare three types of sampling oper-
ators: regular, random, and random column. Regular sampling
decimates traces with regular spacing. Random sampling se-
lects data at random to be removed. Random columns removes
traces (columns) selected at random. We note that fully ran-
dom sampling does not occur in real world applications, but
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Seismic data completion

is presented for mathematical completeness. We apply each
operator to our ‘ground truth’ data to produce an observation.

For a tensor we compute the tensor nuclear norm (TNN) as,

||X||TNN =

N∑
i=1

||X̂(:, :, i)||nuc, (3)

where X̂ is the Fourier Transform of X and || · ||nuc is the matrix
nuclear norm, calculated by summing the singular values.

We compare the TNN of each operator and its corresponding
observation in Figure 4(a) for the Viking Graben data, observ-
ing that operators with larger norm produce observations of
larger norm. Both random sampling operators have greater
TNN values than the identity operator, and produce observa-
tions of larger TNN than the ground truth. Conversely, the
regular operator has smaller TNN than the identity and pro-
duces an observation with TNN value less than the true data’s.
Thus comparing the TNN of a sampling operator to the TNN of
the identity operator can indicate if the observation has higher
rank than the ground truth, indicating whether low rank opti-
mization is suitable for any given observation.

(a)

(b)

Figure 4: (a) TNN of sampling operators (left) and observa-
tions (right) for the Viking Graben data. (b) Error for each
sampling operator applied to the Viking Graben data across 20
iterations of ADMM.

To demonstrate the effect of the sampling operator on the re-
covered result we solve the data completion problem. We seek
to recover X by minimizing TNN (our relaxation of tensor

rank), which results in the optimization problem,

min ||X||TNN, s. t.Y = A(X). (4)

To solve, we apply the alternating direction method of multi-
pliers (ADMM) (Boyd et al. (2010), Ely et al. (2015)). ADMM
splits the TNN penalty and data matching constraint, Y=A(X),
into two subproblems, each having a closed-form solution.

In Figure 4(b) we plot the error in recovery for each sampling
scheme and in Figure 5(b) we compare the recovered results.
Since the observation produced by regular sampling has lower
TNN than the underlying data, low rank optimization is unable
to recover the data, and the algorithm produces an error around
80%. In contrast, the two random sampling schemes converge
with error near 20%.

ORIENTATION RESULTS

The tSVD algorithm is dependent on orientation, resulting in
different sets of singular values. 3D tensors have six orien-
tations. Orientations for which the first two dimensions are
transposed have the same singular values, meaning we can
consider only three distinct orientations, a× b× c, a× c× b
and b× c×a. The set of singular values determines the TNN
and ultimately, impacts the recovered result.

It has been shown that the tSVD runtime for an n1 × n2 ×
n3 tensor is O(n3[(n1 + n2)

2 log(n3)+ (n2
1 + n2

2)n2]), the sum
of costs for the ftt, SVD, and ifft steps (Popa et al. (2019)).
Choosing n2 as the smallest dimension and n3 as the largest
minimizes the runtime, i.e. n2 ≤ n1 ≤ n3. Additionally, if n1
is relatively closer to n2 than to n3, then this orientation is the
‘most square.’

To demonstrate which orientation gives the best recovery, we
apply the data completion algorithm to CMP gathers from the
Northwest Shelf dataset. Each gather has 1732 time steps and
182 receivers. Using 20 gathers, we permute the 3D data ten-
sor for the three distinct orientations and compare recovery af-
ter 20 iterations of ADMM. Figure 6(a) contrasts the error for
each orientation. Bars of the same color have their first and
second dimensions transposed, and produce the same result.
The ‘most square’ orientations (leftmost in Figure 6(a)) have
a relative error around 13.5%, an 11% improvement over the
other orientations.

To better see the effect of orientation on the true data, we com-
pare the normalized cumulative sum of singular values for the
three distinct orientations in Figure 6(b). Low rank tensors
can be identified if a small percent of singular values contain
the majority of the information in the data. The ‘most square’
orientation exhibits the most low rank behavior since for any
given percent of singular values, the sum is a greater percent
of the cumulative total than for the other orientations.

While orientation plays an important role in recovery, the sam-
pling operator has a more dominant effect. We compare the
final recovery error for each orientation and each sampling op-
erator in Table 1. Regular sampling fails for all three orienta-
tions. For the two random sampling schemes we note that the
most square orientation performs best.

10.1190/segam2020-3423985.1
Page    2776

© 2020 Society of Exploration Geophysicists
SEG International Exposition and 90th Annual Meeting

D
ow

nl
oa

de
d 

10
/1

9/
20

 to
 7

2.
18

0.
10

3.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

s:
//l

ib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/s

eg
am

20
20

-3
42

39
85

.1



Seismic data completion
(a)

(b)

Figure 5: (a) (left to right) True data and observations from the Viking Graben data for regular, random column, and fully random
sampling. (b) Recovered result for each operator.

Northwest Shelf Recovery Error
Sampling
Operator

1732×
182×20

1732×
20×182

182×20×
1732

Random .27867 .24913 .13565
Rand Col .37463 .30951 .27634
Regular .74862 .61836 .69592

Table 1: Error in recovery of the Northwest Shelf data for each
sampling operator and each orientation. The third column cor-
responds with the ‘most square’ orientation.

CONCLUSIONS

For real-valued order-3 tensors, the tSVD algorithm runtime
can be reduced by utilizing the even-symmetric property of
the Fourier transform. The norm of the sampling operator in-
dicates the effect sampling will have on the observation, which
in turn affects recovery. Our orientation results support that the
‘most square’ orientation produces the best low rank recovery,
while also minimizing runtime.
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(a)

(b)

Figure 6: (a) Error for each orientation of the Northwest Shelf
data after 20 iterations of ADMM. (b) The normalized cumu-
lative sum of the singular values for the three distinct orienta-
tions of the Northwest Shelf data.
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