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ABSTRACT
Complex coupled multiphysics simulations are ubiquitous in science and engineering. Evaluating these
numerical simulators is often costly which limits our ability to run them sufficiently often for forward
uncertainty quantification. Furthermore outputs are generally not scalar quantities but depend on space
and/or time. Gaussian process emulators are statistical surrogates which can approximate the output of the
complex computer models at untested inputs quickly while also providing uncertainty information about
the accuracy of evaluating the emulator rather than the full physical model. GP emulators were originally
developed in the context of scalar output from a single physical model but have since been extended to
vector-valued quantities of interest (parallel partial emulators) and to coupled physics by connecting two
independent emulators, one for each type of physics (linked emulation). The parallel partial linked GP
emulator (PPLE) developed in this work combines the efficiency of a shared correlation structure with the
accuracy of linked emulators to produce a new tool for emulating compositions of functions with vector-
valued output. The PPLE applied to two numerical experiments out-performs direct emulation of the output
composite function producing results with smaller average prediction error and variance.
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1. Introduction

Coupled simulations of multiphysics systems are ubiquitous
across scientific domains (Brown et al. 2008; Keyes et al. 2013),
but such coupling poses significant challenges for uncertainty
quantification. Gaussian process surrogates of computer models
have developed into a powerful class of tools for uncertainty
quantification since their introduction as emulators of complex
computer models (Currin et al. 1988; Sacks, Schiller, and Welch
1989; Welch et al. 1992). These statistical surrogates allow one to
very quickly approximate computationally intensive determinis-
tic simulators via nonparametric interpolation at different input
settings. Further, the variance of the statistical surrogate offers a
built-in mechanism to quantify the uncertainty of evaluating the
surrogate in place of the simulator. (For a thorough overview,
see Santner, Williams, and Notz 2018.) Yet challenges remain for
constructing Gaussian process (GP) emulators of coupled simu-
lators. A significant obstacle for multiphysics simulators is that,
often, the output of the individual simulators are discretized
fields rather than scalars. In this work, we introduce a GP-based
surrogate suitable for emulating coupled simulators with high-
dimensional output.

As one example of a coupled simulator application, when
hydrocarbons are extracted from subsurface reservoirs during
production, pore pressure depletion may lead to compaction.
In many cases, this compaction is small, but in well-known
instances, this subsidence has caused well failures, platform
collapse, and even loss of human lives. Examples where the
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subsidence was significant enough to cause facilities damage
include the Ekofisk Field in the North Sea (Yudovich and
Morgan 1989; Dangerfield 1992) and Belridge in California
(Fredrich et al. 1996). Sophisticated numerical simulation of
these fields (which may include multiphase flow and nonlinear,
inelastic deformation) is important in order to predict and hence
prevent such catastrophic situations in the future (Gutierrez,
Lewis, and Masters 2001; Minkoff et al. 2003, 2004).

As described in Minkoff and Kridler (2006), simulator cou-
pling generally falls into one of the following categories: full,
loose, or iterative coupling. In full coupling, there is a single
set of equations which connects flow to mechanics tightly (in
other words, the flow equations contain terms for deformation
and vice versa, see Lewis and Sukirman 1993b, 1993a; Lewis
and Ghafouri 1997; Osorio, Chen, and Teufel 1999; Gutierrez
and Lewis 2002). Fully coupled simulators are in some cases
considered the most accurate as there is no time step delay
in solving one equation and then the other, but they almost
always require that modelers make restrictive simplifications of
the physics to develop the single system of equations and the
numerical discretization to solve this system. Therefore, full
coupling has the potential to inflate epistemic uncertainties in
its description of reality. A further limitation of this approach is
that it usually requires a single spatial domain and a single set of
time steps for the different types of physics, neither of which is
realistic. Loose coupling provides an attractive alternative to full
coupling by linking two independent codes through an interface
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(Minkoff et al. 2003). Settari and Mourits (1994), Dean et al.
(2003), and Kim, Tchelepi, and Juanes (2011) discuss iterative
schemes which attempt to ensure that a loosely-coupled solution
converges either to the fully-coupled (“true”) solution or to a
stable value within a specified tolerance. Iterative coupling is
similar to loose coupling in that the two (or more) physical
simulators are run sequentially, passing updated information
between the simulators. However, in loose coupling one does not
repeat the same simulation for a fixed set of time steps until a
convergence tolerance is reached as in iterative coupling. Loose-
coupling schemes ensure that sophisticated physics in each type
of simulator and the decades of work put into these legacy
codes can be brought to bear to realistically model coupled
phenomena. In this article we develop a framework for investi-
gating UQ based on GP emulation of coupled, high-dimensional
multiphysics models and demonstrate GP efficacy in this context
on a prototype two-way loosely coupled model for flow and
deformation.

The computational science community has developed two
general global statistical emulator approaches for computer
models with multi-variate output that lend themselves to cou-
pled multiphysics systems. (Continuous partial differential
equations (pde’s) are discretized using techniques like the
finite difference and finite element methods when solved on
computers—the idea of a limit can only be approximated on
a finite precision machine—and hence numerical solutions of
pde’s are available only on a discrete grid of points.) The first
method involves a dimension reduction to simulator output by
fitting basis functions or low-rank representations to the multi-
variate (often spatial or temporal) output, and emulating only
the associated coefficients with GPs. The second involves treat-
ing multi-variate output as independent, but with a shared cor-
relation structure, and emulating the whole field at once. In the
former approach, researchers have introduced wavelet (Bayarri
et al. 2007), spline (Bowman and Woods 2016), and principal
component representations of field output (Higdon et al. 2008).
These strategies have been widely adopted in the computer
modeling community and have proven to be powerful tools
for emulating simulators that yield high-dimensional output.
One drawback of emulating coefficients of a reduced-dimension
approximation to output fields is that emulator uncertainty now
arises both from limited knowledge of the simulator and approx-
imation error from employing a lower-dimensional model that
may not preserve the physical properties of the simulator. The
other general global strategy of GP emulation of multi-variate
output is parallel partial emulation (PPE) (Gu and Berger 2016).
PPEs treat each output component independently, and only
assume a shared correlation structure with respect to simulator
inputs. (Other parameters, like mean regressors, are assumed
independent.) Further the predictive mean of the PPE inherits
spatial correlations present in the physical simulator without
modeling them directly. Thus, it acts as an interpolator for high-
dimensional output effectively preserving global structures
from the physics in the PPE approximation (Gao and Pitman
2023).

The composition of GP emulators is a natural approach
for emulating loosely coupled simulators. It is well established
that the composition of two Gaussian processes is not itself a
Gaussian process (Damianou and Lawrence 2013; Girard et al.

2003). Yet the composite process emulator can be written as an
integral (albeit with no available closed form expression). One
can compute Monte Carlo approximations of this composite
process (Sanson, Le Maitre, and Congedo 2019), or linearize
the composition (Marque-Pucheu, Perrin, and Garnier 2020).
The effective result of the linearization is a composition of the
GP emulator predictive means of each simulator which may be
reasonable if the predictive variance is small. Another approxi-
mation to the composition of GP’s involves calculating the first
two moments of the composite process and considering the so-
called Linked GP emulator to be the Normal approximation to
the composite process (Kyzyurova, Berger, and Wolpert 2018;
Abdelfatah, Bao, and Terejanu 2018; Ming and Guillas 2021).

Here we extend the emulation methodology to the develop-
ment and application of parallel partial linked GP emulation
(PPLE) for coupled vector-valued models. (See Figure 2 for a
visualization of linked emulation.) Specifically, we derive the
mean and variance for the PPLE which is the main contribution
of this work. We consider the first two moments of the ran-
dom variable that result from the composition of emulators for
the component functions under consideration. In this context
the “outside” function and emulator are vector-valued, and we
update the expectations to derive the mean and variance assum-
ing the “outside” emulator is a parallel partial emulator. The
linked emulator setup also enables one to pass fields between
simulators via dimension reduction on the output of the “inside”
function.

We contrast the accuracy of the PPLE with a composite emu-
lator which directly emulates the final output rather than linking
two independent emulators. We consider two main example
problems. The first example is a composition of two vector-
valued trigonometric functions. In this case we clearly see that
the linked emulator has smaller prediction error and credible
intervals than the composite emulator. The second example is a
more realistic physical model of coupled fluid flow and mechan-
ical deformation in a column of mud with impermeable bound-
aries everywhere but at the top of the column. At the initial time,
a load is dropped on the column, and as the mud compacts,
the single-phase fluid (water) is able to exit out of the top of
the column. In this coupling we assume that the fluid pressure
change is used as a load for the mechanical deformation. The
resulting displacement solution can be differentiated to produce
a strain that we use to update the porosity of the mud for flow
solves at later times. As the porosity along the column passed
from the inner function (mechanics) to the outer function (fluid
flow) is high-dimensional, we make use of dimension reduction
via principal component analysis (PCA) or gradient-based
kernel dimension reduction (gKDR) (Fukumizu and Leng 2014)
to only send a small subset of modes that represent porosity
in the linking step of the PPLE. No dimension reduction is
done to represent the final output (pressure) in the column. In
this example, we also compare the efficacy and efficiency of the
PPLE to four other approaches: many independent emulators fit
to scalar-output components (both composite and linked), and
local approximate GP (laGP) regression (Gramacy and Apley
2015; Gramacy 2016) (both composite and linked). The PPLE
consistently outperforms all of these other methods.

The remainder of the article starts in Section 2.1 with a review
of the basic GP methodology for a single type of physics with
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scalar output quantities. Then in Section 2.2 we explain how
emulators of a single physical model can be extended to vector-
valued quantities of interest via parallel partial emulation (Gu
and Berger 2016). In Section 2.3 we overview the literature for
linked emulation (Kyzyurova, Berger, and Wolpert 2018; Ming
and Guillas 2021) in which a scalar quantity of interest can be
emulated for more than one type of physical simulator coupled
together. We then present the new mean and variance theory for
the parallel partial linked emulator in Section 3, and we illus-
trate the success of this emulator over composite emulation in
Section 4 with the two sets of numerical experiments described
above.

2. Background and Motivation

The task of approximating nonlinear multiphysics systems is
very challenging. To demonstrate this point, let us consider the
simplest composite function η(x) = g

(
f (x)

)
where the “outside”

function g, the “inside” function f , and hence the composite
function η, are nonlinear 1-D functions of a single variable.
Expanding η in a Taylor series about x = xD, we have η(x) ≈
L(x)+R(x) with the linear Taylor series L(x) = g

(
f (xD)

)+ (x−
xD)g′(f (xD)

)
f ′(xD) and the Taylor Series remainder for η given

by

R(x) = 1
2
(x − xD)2

[
(f ′)2(ξin)g′′(ξout

) + f ′′(ξin)g′(ξout
)]

. (1)

Here ξin and ξout are Mean Value Theorem points for the respec-
tive derivatives of f and g. The scaling of the quadratic term in
the local approximation error given by R(x) can be very large if
f and g are strongly nonlinear functions. Instead, if we approx-
imate f and g individually, the equivalent local approximation
error terms are scaled by f ′′ and g′′.

We consider an example from Kyzyurova, Berger, and
Wolpert (2018) with the functions f (x) = 3x + 5 cos(5x),
g(x) = cos(7/5x) − x, and η(x) = g(f (x)). In Figure 1 we
plot the nonlinear portions of η(x), f (x), and g(x) along with
the approximation error R(x) with xD = 0 for each function.
It is clear that the local approximation error for η grows much
more quickly as we move away from the interpolation point than
it does for f and g.

When we seek to approximate a nonlinear multiphysics sys-
tem with Gaussian process emulators, there are two primary
advantages in taking a linked emulator approach that fits GPs
to f and g separately. The first follows from equation 1 where

the error bound of η depends on approximating the slope and
curvature of the inside function f . The construction of a GP
emulator directly on the composite function η is blind to infor-
mation about f , while a linked emulator has the advantage of
modeling the nonlinearities of f directly. The second advantage
of linked GP emulation is that the predictive variance estimate
provided by the GP emulator of f is used directly in the linked
GP estimation of η (Kyzyurova, Berger, and Wolpert 2018; Ming
and Guillas 2021).

Below we present a self-consistent treatment of the back-
ground on standard Gaussian process emulators, parallel partial
emulators for vector-valued output, and linked emulation of
composite functions. While this material can be found in some
form in the references cited below, the notation varies between
references. Thus, here we present a unified overview with con-
sistent notation that leads naturally into our discussion of the
new theory we have developed for parallel partial linked GP
emulators in Section 3.

2.1. Gaussian Process Emulation of a Single Computer
Model with Scalar Output

The standard GP emulator treats computer model output as a
draw of a random function of inputs of interest (parameters, ini-
tial conditions, boundary conditions, etc.) As computer model
evaluations are often computationally intensive, they are only
exercised at a limited number of input combinations (referred to
collectively as a design). The objective of the emulator is to first
learn about a random function that fits the simulator training
data (i.e., the input design and corresponding simulator output)
and then evaluate the GP in place of running the simulator at
untested input combinations. In short, a GP emulator’s mean is
an interpolator that goes through design-response pairs from the
full physics based simulator. Further, the GP’s variance offers a
mechanism to quantify the uncertainty of replacing simulator
runs with emulator evaluations at untested inputs. Detailed
background on GP emulators can be found in Rasmussen and
Williams (2006) and Santner, Williams, and Notz (2018), with
the latter offering additional insights on using GPs to model
physics-based simulators.

Consider a p-dimensional vector of inputs x = (x1, . . . , xp)T

lying in a domain χ ⊆ IRp that represents the setting for a
single simulator run with scalar output, f (x). Simulator output
is assumed to be realizations of a stochastic process. The ith
simulator run is then Yi = hT(xi)β + Z(xi), where hT(x)β is a

Figure 1. The nonlinear portion of the example functions (solid line) and their respective local error bounds (dashed line) for a) η(x), b) f (x), and c) g(x).
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trend function and Z(x) is a realization of a zero-mean Gaussian
process with covariance σ 2c(·, ·; γ ). (Note, in Section 4 we use
a power exponential correlation function, but the methodology
we develop in Section 3 also holds for some Matérn correlation
functions as well.) Further, h(x) = (h1(x), . . . , hq(x))T is a
q−dimensional vector of basis functions, and β = (β1, . . . , βq)T

are the regression parameters for the trend function.
Consider a design matrix, xD, of m sets of inputs for m

computer model runs (or briefly, xD = [xD
1 , . . . , xD

m]T). The
corresponding simulator outputs are yD

i = f (xD
i ), and the

collected response from exercising the model at each of the m
design points is yD = (yD

1 , . . . , yD
m)T. Restricting the GP model

to only GPs that are conditioned to match the design-response
pairs, the best linear unbiased predictive mean and standard
squared error for the GP emulator evaluated at an untested
input, x∗ are respectively given by

μ(x∗) =hT(x∗)β + rT(x∗)R−1(yD − HD
x β), and (2)

v(x∗) = σ 2
(

1 − rT(x∗)R−1r(x∗) + (
h(x∗) (3)

− (HD
x )TR−1r(x∗)

)T

× (
(HD

x )TR−1HD
x
)−1(h(x∗) − (HD

x )TR−1r(x∗)
))

(Sacks, Schiller, and Welch 1989; Welch et al. 1992). Here HD
x =

[h(zD
1 ), . . . , h(zD

m)]T is an m × q matrix of regressors evalu-
ated at the design, σ 2 is the scaling of the variance of the
process, and r(x∗) = c(x∗, xD; γ ) is a vector of correlations
between the untested and design inputs that depend on the
range parameters, γ . The correlation matrix, R, is an m × m
matrix comparing pairs of design points in xD. That is, (R)i,j =
c(xD

i , xD
j ; γ ). Coefficients of the mean trend are estimated by

β̂ :=
(
(HD

x )TR−1HD
x

)−1
(HD

x )TR−1yD.
The GP parameters σ 2 and γ are typically not known, and

must be approximated or sampled. Replacing β with β̂ , the
likelihood function for GP parameters is given by

L(σ 2, γ ) =
exp

{
− 1

2σ 2
(
yD − HD

x β̂
)TR−1(yD − HD

x β̂
)}

|R| 1
2 |(HD

x )TR−1HD
x | 1

2 (2πσ 2)
m−q

2
.

(4)
To estimate σ 2 and γ , one can follow the objective Bayesian
approach introduced in Gu, Wang, and Berger (2018) which
uses reference priors and further marginalizes the likelihood
function over σ 2. One can then obtain maximum a posteriori
(MAP) estimates of the range parameters via the RobustGaSP
package (Gu, Palomo, and Berger 2019). One can also estimate
σ 2 with σ̂ 2 = 1

m−q (yD − HD
x β̂)TR−1(yD − HD

x β̂). We use this
objective Bayesian approach for fitting all GP emulators in this
article—both for the component GPs used in the PPLE deriva-
tion in Section 3 and for all other GPs we use for comparison in
Section 4 except for the laGP.

2.2. Parallel Partial Emulator Background

For simulators that yield vector-valued outputs (e.g., spatial
or space-time fields), we consider the parallel partial emulator
(PPE) introduced by Gu and Berger (2016). The PPE assumes

that each output component is independent and has its own
mean trend and scalar variance, but that all output components
share a common correlation structure. The common correlation
structure is key to the PPE’s relatively low computational cost
despite its ability to accurately emulate potentially massive
output fields.

To describe the PPE, consider a simulator with s-dimensional
vector valued output. Let yj(x) (j = 1, . . . , s), denote the
simulator output at a single coordinate such that y(x) =(
y1(x), . . . , ys(x)

)
is the entire vector-valued response from the

simulator evaluated at a single input vector, x. Further, one
can concatenate the (length s row) vector valued outputs of the
simulator responses of each design point in an m × s matrix,
YD = [

yT(xD
1 ), . . . , yT(xD

m)
]T. The s-dimensional predictive GP

mean conditioned on the design/response pairs is then given as
the following row vector:

μ(x∗) = hT(x∗)Bx + rT(x∗)R−1(YD − HD
x Bx), (5)

where HD
x is the m × q matrix of regressors evaluated at the

design and h(x∗) is a q × 1 vector of regressors at the untested
input, x∗. Further, Bx is a q × s matrix where each column is the
q-dimensional vector of regression coefficients, β j (j = 1, . . . , s),
associated with each output component. The predictive variance
for each output component is given by

vj(x∗) =σ 2
j

(
1 − rT(x∗)R−1r(x∗) + (

h(x∗) − (HD
x )TR−1r(x∗)

)T

× (
(HD

x )TR−1HD
x
)−1(h(x∗) − (HD

x )TR−1r(x∗)
))

,
(6)

j = 1, . . . , s. Taking yD
j to be the jth column of YD,

the output component-wise scalar variance is estimated by
σ̂ 2

j = 1
m−q (yD

j − HD
x β j)

TR−1(yD
j − HD

x β j), and the output
component-wise regression coefficients are estimated by β̂ j =(
(HD

x )TR−1HD
x

)−1
(HD

x )TR−1yD
j . We use the RobustGaSP

package to estimate range parameters for the PPE. In the case of
vector-valued or spatial outputs, RobustGaSP uses a compos-
ite likelihood strategy (Varin, Reid, and Firth 2011) within the
same objective Bayesian framework as it does for scalar outputs.

In the above expressions one only needs to calculate two
relatively small matrix inverses (even in the case of mas-
sive output dimension, for example, s � m, q), namely of the
m × m matrix R and the q × q matrix (HD

x )TR−1HD
x . Perhaps

most important from a physical perspective, the PPE mean is
a linear combination of the simulator output and thus inherits
the smoothness properties of the simulator, such as the spatial
correlations, without modeling them directly (Gu and Berger
2016). On the other hand, approaches without shared correla-
tion models such as constructing many independent emulators
or local approximate GP regression (Gramacy and Apley 2015)
will have different weights corresponding to different output
coordinates and thus will not retain the smoothness proper-
ties of the simulator. In recent work, Gao and Pitman (2023)
demonstrate that the PPE can also inherit conservation proper-
ties of the simulator which methods based on localized designs
cannot. The PPE does not come without drawbacks. If some
spatial output coordinates are responsive and vary with changing
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inputs while other coordinates are relatively flat, obtaining MAP
estimates based on a composite likelihood is a challenging and
perhaps futile task given the spatial nonstationarity. Further, due
to the independence assumption, spatially correlated samples of
the PPE are not available.

2.3. Linked Emulator Background

Consider a multiphysics simulator that results from the com-
position of two computer models, η(x, z) = g(f (x), z). Direct
emulation of a composite model, that is with x and z as inputs
to the emulator and assuming no knowledge of f , is referred
to as composite emulation. In contrast, Kyzyurova, Berger, and
Wolpert (2018) developed an approach that fits a GP emulator
to g and a GP emulator to f , and then considers the resulting
random variable that is the composition of the two individual
GPs. That random variable does not have a closed form descrip-
tion, but for power exponential kernels, the first two moments
are calculated in Kyzyurova, Berger, and Wolpert (2018). Those
calculations are extended to other common kernels in Ming and
Guillas (2021). The emulator using these first two moments is
called a linked GP emulator.

In their work, Ming and Guillas (2021) assume for the
“inside” function f that each dimension of the input space has its
own mapping to the output space. (In the following discussion
we largely follow their notation.) That is, for Xk,Yk ⊆ IR (k =
1, . . . , p), they assume for x ∈ Xk that fk : Xk → Yk and
f = (f1, . . . , fp)T. They then construct p emulators of f . At
one untested input, x∗, the conditional Normal pdf of each GP
emulator, k = 1, . . . , p, is defined to be

f̃k(x∗) | xD, yD
fk := N

(
μfk(x∗), vfk(x∗)

)
, (7)

where yD
fk represents the kth element of the output training data

for the vector-valued function f (or the reduced-dimensional
representation of the output training data), and where μfk and
vfk are the predictive mean and point-wise variance conditioned
on the training dataset (xD, yD

fk ) as given in (2) and (3).
Assume that the “outside” function g potentially takes as

input both the output from w = f (x) and additional external
inputs. That is, for w ∈ W ⊆ IRp and z ∈ Z ⊆ IRl, g : W ,Z →
IR. One can now construct a Gaussian process emulator for the
“outside” function g(w, z). With m design runs, the training
data for composite inputs has the form wD = [wD

1 , . . . , wD
m],

where wD
j = f (xD

j ). Likewise, the training data for the direct
input to g is denoted by zD = [zD

1 , . . . , zD
m]. The m × 1 response

vector to that training data is yD
g = g(wD, zD). At one untested

input, (w∗, z∗), the point-wise conditional Normal pdf of the GP
emulator for g is

g̃(w∗, z∗) | wD, zD, yD
g := N

(
μg(w∗, z∗), vg(w∗, z∗)

)
. (8)

Here μg and vg are the predictive mean and point-wise variance
conditioned on the training dataset (wD, zD, yD

g ) as given in
(2) and (3), respectively, using the shorthand μg(w∗, z∗) ≡
μg([w∗T, (z∗)T]T) (and likewise for vg). The trend function of
the mean of the GP for g is assumed to be the form t(w, z; θ , β) =
wTθ + hT(z)β , where h(z) = (

h1(z), . . . , hq(z)
)T is a vector

of regression basis functions, and θ = (θ1, . . . , θd)
T and β =

(β1, . . . , βq)T are the regression parameters associated with w
and z, respectively.

The key assumption for linked emulation is that the output
from the GP emulator for fk is a random variable. Specifically,
Wk(x∗) ind∼ f̃k(x∗) | xD, yD

fk .
To construct the linked GP emulator, consider the linked

emulator Y ∼ pη | x, z, where

pη(y | x, z) =
∫

w
pg(y | w, z)pf (w | x)dw, (9)

and where pg = g̃ | wD, zD, yD
g and pf = f̃ | xD, yD

f
(Kyzyurova, Berger, and Wolpert 2018; Ming and Guillas 2021).
The predictive mean of the linked GP emulator at an untested
input (x∗, z∗) is given by

μη(x∗, z∗) = μT
f θ + hT(z∗)β + ITA, (10)

where each component of μf , μfk(x∗), is the predictive mean
of f̃k (k = 1, . . . , p) evaluated at x∗. The ith component of
the vector of correlations between untested and design points
is given by

Ii =
( p∏

j=1
ξij

)( l∏
j=1

c(z∗
j , zD

ij ; νj)
)

, (11)

where ξij = E
[

c(Wj, wD
ij ; γj)

]
, and ν and γ are range param-

eters corresponding to z and w, respectively. Here A =
R−1

g

(
yD

g − wDθ − HD
z β

)
, so ITA is analogous to the last term

in (2). Details of analytic expressions for ξij can be found in
(Ming and Guillas 2021). The variance of the linked emulator at
an untested input is vη(x∗, z∗) = V1(x∗, z∗)+V2(x∗, z∗). Using
the shorthand r(W, z∗) ≡ r([WT, (z∗)T]T), V1 and V2 are given
by

V1(x∗, z∗) =E
[
WTθθTW + hT(z∗)ββTh(z∗)

+rT(W, z∗)AATr(W, z∗)
]

+ 2E
[
θTWhT(z∗)β + θTWrT(W, z∗)A

+hT(z∗)βrT(W, z∗)A
] − μ2

η(x∗, z∗), (12)

and

V2(x∗, z∗) = σ 2E
[

1 − rT(W, z∗)R−1
g r(W, z∗)

+ ([WT, hT(z∗)]T − (HTR−1r(W, z∗)
)T

× (HTR−1H
)−1([WT, hT(z∗)]T

− HTR−1
g r(W, z∗)

)]
. (13)

Analytic expressions for each of the expectations in V1 and V2
can be found in Ming and Guillas (2021).
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3. Parallel Partial Linked Gaussian Process Emulation

Here we derive the new parallel partial linked Gaussian process
emulator (PPLE) that combines the efficiency of the parallel
partial emulator with the enhanced accuracy of linked emula-
tion for constructing stochastic surrogates in the case of com-
posite functions. We further show that the mean of the parallel
partial linked GP emulator inherits the smoothness properties
of the composite simulator. As such, the PPLE is a powerful
advancement in methodology for faithfully emulating high-
dimensional nonlinear multiphysics simulators.

We will still consider the case where the “outside” function
g takes as input both output from an “inside” function, f , and
external inputs, but now the output of g is s-dimensional. We
further consider a different case than Ming and Guillas (2021)
for the inside function with input, x ∈ X ⊆ IRp, and output,
yf ∈ Y ⊆ IRn, so that f : X → Y . We make the assumption
that we can approximate f with d independent emulators, with
d ≤ n and in some cases d � n. The choice is consistent
with Kyzyurova, Berger, and Wolpert (2018) and supported by
observations in chap. 3 of Kyzyurova (2017). Further, for cou-
pled computer models with, say n > 15, this setup is compatible
with employing a dimension-reduction technique to offer a low-
dimensional representation of the vector-valued function f as
input to g while constructing linked GP emulators. In summary,
for the outside function we then have w ∈ W ⊆ IRd and
z ∈ Z ⊆ IRl, g : W ,Z → IRs. The derivation of the PPLE
requires carefully identifying terms in the predictive mean and
variance of the linked emulator whose dimension changes when
considering s-dimensional coupled simulator output instead of
scalar coupled simulator output. Figure 2 offers a schematic of
the linked parallel partial GP emulator.

We will now derive a parallel partial linked GP emulator,
η̃(x∗, z∗) = MVN

(
μη, diag(vη)

)
for the vector-valued com-

pound function η(x, z) = g(f(x), z) given the design ({xD, zD}),
the independent GP emulators f̃k = N (μfk , vfk) (k = 1, . . . , d),
and the PPE for g, g̃ = MVN(μg , diag(vg)). For the PPE of g,
the design ({wD, zD}) remains the same as for the scalar-output
case, but now the response, YD

g , is an m × s matrix with the
ith row given by gT(wD

i , zD
i ). Recall that the basic premise of

parallel partial emulation is that emulators of each component
of vector-valued output share a common correlation structure,
but each component has its own set of regressor coefficients and

Figure 2. Schematic representation of the linked parallel partial GP emulator.

its own scalar variance. So fitting the PPE for g yields estimates
for σ 2 (an s × 1 vector of scalar variances), Bz (a q × s matrix
of regression parameters associated with z), � (a d × s matrix of
regression parameters associated with W), and range parameters
γ and ν associated with W and z, respectively. Further, we let
� = [�T BT

z ]T (a (d +q)× s matrix), and H = [wD HD
z ] where

HD
z is the m × q matrix of regressors evaluated at the design.

We estimate � with �̂ = (
HTR−1

g H
)−1HTR−1

g YD
g . For each of

the j = 1, . . . , d scalar emulators, f̃j and the PPE emulator, g̃, we
utilize reference priors for the GP range parameters and obtain
MAP estimates of the range parameters with the RobustGaSP
package (Gu, Palomo, and Berger 2019).

To construct the PPLE, we need to update the mean and vari-
ance of the linked GP emulator as given in (10), (12), and (13),
respectively, to account for vector-valued outputs from g. We
find the mean by taking the iterated expectation,

μη(x∗, z∗) =E
[
μg(W, z∗)

]
(14)

=E
[
WT� + hT(z∗)Bz

+rT(W, z∗)R−1
g

(
YD

g − H�
)]

=μT
f (x∗)� + hT(z∗)Bz + ITA,

where, due to the shared correlation structure, I is identical to
the definition given in (11). Further, A is the m × s equivalent of
the same term in (10). That is, A = R−1

g (YD
g − H�).

To compute the variance of the PPLE, consider the Law of
Total variance with vη(x∗, z∗) = V1(x∗, z∗) + V2(x∗, z∗), where

V1(x∗, z∗) =var
[
WT� + hT(z∗)Bz + rT(W, z∗)A

]
, and

(15)

V2(x∗, z∗) = σ 2E
[

1 − rT(W, z∗)R−1r(W, z∗)

+ ([WT, hT(z∗)]T − (HTR−1
g r(W, z∗)

)T

× (HTR−1
g H

)−1([WT, hT(z∗)]T

− HTR−1
g r(W, z∗)

)]
. (16)

In V2, no terms inside the (scalar) expectation differ from V2
in (13). The only update to this term is that each component of
the PPE for g has its own value of scalar variance, and hence
σ 2 = (σ 2

1 , . . . , σ 2
s )T. Thus, we will focus on updates to V1. The

jth component of V1, (j = 1, . . . , s) is given by[
V1(x∗, z∗)

]
j =var

[
WT�j + hT(z∗)bj + rT(W, z∗)Aj

]
,
(17)

where �j, bj and Aj are the jth columns of �, Bz, and A,
respectively. Further, W, �j ∈ IRd, while h(z∗), bj ∈ IRq, and
r(W, z∗), Aj ∈ IRm. The jth component of vector V1 is thus
equivalent to (12) and thus given by[

V1(x∗, z∗)
]

j =E
[

WT�j�
T
j W + hT(z∗)bjbT

j h(z∗) (18)

+rT(W, z∗)AjAT
j r(W, z∗)

]
+ 2E

[
�T

j WhT(z∗)bj + �T
j WrT(W, z∗)Aj

+hT(z∗)bjrT(W, z∗)Aj
] −

[
μ2

η(x∗, z∗)
]2

j
.
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Closed form expressions of the expectations in [V1(x∗, z∗)]j are
available in Ming and Guillas (2021), and hence we have analytic
expressions to evaluate the parallel partial linked GP emulator,
η̃(x∗, z∗) = MVN

(
μη(x∗, z∗), diag

(
vη(x∗, z∗)

))
.

We can rewrite the PPLE mean in (14) as μη(x∗, z∗) =
wT(x∗, z∗)YD

η , where YD
η = YD

g and w(w∗, x∗) is an m×1 vector
of weights given by

wT(x∗, z∗) =[μT
f (x∗) hT(z∗)](HTR−1

g H
)−1HTR−1

g + ITR−1
g

− ITR−1
g H

(
HTR−1

g H
)−1HTR−1

g . (19)

The PPLE being the weighted sum of simulator output has sev-
eral positive implications for emulating nonlinear coupled sys-
tems with high-dimensional output. In the case where dimen-
sion reduction is not needed for the inside function f , (i.e., d =
n) the PPLE mean interpolates the composite simulator η at the
input design. When d < n the PPLE mean is a near interpolator
in that any dimension reduction used for f propagates through
the I vector of correlations and linear trend via μf , but no
approximations are made to the simulator outputs YD

η . As with
the PPE, the PPLE is a linear combination of simulator responses
and as such inherits the smoothness and conservation properties
of the simulator (Gu and Berger 2016; Gao and Pitman 2023).

4. Numerical Experiments and Results

We illustrate the effectiveness of the parallel partial linked emu-
lator methodology developed in Section 3 with two different
sets of numerical experiments involving vector-valued com-
posite functions. In the first set of numerical experiments we
consider a combination of trigonometric functions designed
to ensure the function is sufficiently nonlinear locally to test
out the capabilities of the GP emulator. In the second set of
experiments we investigate emulation for a simulator of coupled
fluid flow and mechanical deformation of a column of mud
saturated with water which compacts when a load is applied to
the top of the column. This problem (classically referred to as
the Terzaghi consolidation problem (Terzaghi and Peck 1948))
is numerically simulated using two-way loose coupling. This
model serves as a prototype for more sophisticated physical
simulators. Specifically, in a related study we are using emulation
to investigate the effectiveness of hydraulic fracture stimulation.
Fluid is injected at high pressures to break the low-permeability
shale rock and create pathways for fluid to flow to production
wells. Employing a physically realistic hydromechanical mod-
eling code, the Complex Fracture Research Code developed by
Mark McClure (see McClure and Horne 2011; McClure 2012),
we consider one-dimensional fluid flow in fractures which are
embedded in a 2D homogeneous medium undergoing mechan-
ical deformation. Similar to the Terzaghi two-way loose coupling
scheme described in this section, flow and deformation are
loosely coupled (in this case iteratively coupled).

4.1. Pedagogical Example

We first compare parallel partial linked GP emulation vs parallel
partial composite emulation (PPCE) for a “simulator” that is a
simple analytic function designed to ensure the function is (a)

vector-valued, (b) a composition, and (c) nonlinear enough to
showcase the properties of a GP emulator. (Note, PPCE is a PPE
fit directly to η). The general form of this coupled pedagogical
simulator is η(x, z) = g

(
f(x), z

)
where

f(x) = 〈sin(c1x1) + c2x2
2︸ ︷︷ ︸

w1

, sin(c3x1 cos(c4πx2))︸ ︷︷ ︸
w2

〉 (20)

g(z, w) = 〈 cos(c5z2) sin(c6w1) + sin(c7z1) cos(c8w2)︸ ︷︷ ︸
g1

, (21)

cos(c9z2) sin(c10w1) + sin(c11z1) cos(c12w2)︸ ︷︷ ︸
g2

〉,

with nominal values for c chosen as [c1, . . . , c12] = [5, 1,
3, 1, 3, 3, 3, 3, 4, 2, 4, 2]. The functions f , g and the constants c
were chosen to ensure that the test function exhibits nonlinear
behavior. Although f and g are periodic, this feature is not
necessary to demonstrate the capabilities of the emulator. The
design for training the emulators is generated from a Latin
Hypercube sampler to ensure the design points are space filling
(McKay, Beckman, and Conover 1979; Sacks, Schiller, and Welch
1989; Welch et al. 1992). For this experiment our independent
variables are taken from a cube, (x, z) ∈ [−1, 1] × [−1, 1], and
we train both the linked and composite GP emulators using the
same 75 design points and test their predictions with 100 out-
of-sample test points sampled from the same cube.

In Figure 3, we illustrate the performance of the emulators
for this pedagogical problem. The top row in Figure 3 shows the
results produced by the PPLE for the two components of η. The
bottom row shows the results produced by the composite emula-
tor for these same two components. We see that for component
η2 (and to a lesser extent for η1) the prediction errors (distance
between the red squares and black dots) are smaller for the PPLE
than for the composite emulator. The credible intervals for both
components of the PPLE model are also smaller (on average)
than the credible intervals for the respective components of the
composite emulator, particularly for η2.

To further test the PPLE we generate a collection of 100
different pairs of functions f and g by sampling c uniformly with
values taken from intervals that are ±20% around the nominal
values. In Figure 4, we plot the normalized histograms of
prediction errors (the difference between the true model and
the mean value predicted by the GP) for the 104 GP model
predictions (100 untested inputs for each of the 100 different
composite models). It is evident from this figure that the errors
from the parallel partial linked emulator (dashed line shaded
brown) are generally smaller than those from the composite
emulator (solid line shaded in blue).

4.2. Multiphysics Simulator: Loosely Coupled Fluid Flow
and Mechanical Deformation

In this section we provide a second example of coupled emula-
tion, this time for a multiphysics simulator consisting of two-
way loose coupling of fluid flow and mechanical deformation
(Minkoff et al. 2003, 2004). For this set of coupled physics we
consider the Terzaghi consolidation problem (Terzaghi and Peck
1948) which models a column of mud saturated with a single-
phase fluid (water). An instantaneous load is dropped on the top
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Figure 3. Emulation results for the pedagogical example given by equations 20 and 21 at the nominal value of c. Red squares are the true function values. Black dots are
the predicted function values given by GP mean evaluations, and the vertical bars are 95% credible intervals. The four plots contain the following: (a) η1 with PPLE; (b) η2
with PPLE; (c) η1 with PPCE; (d) η2 with PPCE. Note that the indices are sorted in increasing order by the true output function value, so indices correspond for the columns
of the figure grid, but not across the rows.

Figure 4. Results from the pedagogical example using 100 different sets of values for c. (a) Histogram of the errors for the predictions of η1 for the PPLE (dashed line) and
PPCE (solid line); (b) Histogram of the errors for the predictions of η2 for the PPLE (dashed line) and PPCE (solid line).

of the column at the start of simulation. The two vertical edges
and bottom of the column are assumed impermeable, but when
the mud compacts, water is able to escape out of the top of the
column. The fluid flow equation is derived from conservation
of mass and Darcy’s law (see Aziz 1979) where we solve for fluid

pressure p = p(x, t) (our quantity of interest). The flow equation
is given by

ρ0
∂φp
∂t

= ∇
(

k
μc

∇p
)

+ q. (22)
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Here ρ0 is initial fluid density, φ is porosity, k is permeability, μ is
fluid viscosity, c is fluid compressibility, x is depth, t is time, and
q is a source or sink. The quasi-static linear elastic deformation
equation (Middleton and Wilcock 1994; Minkoff and Kridler
2006) is given by

− (λ + μ̂)
d2u
dx2 = fel − dp

dx
, (23)

where we solve for displacement u = u(x) (our quantity of
interest); λ and μ̂ are the Lamé constants, and fel is the external
load. For our implementation, both the fluid flow and mechan-
ical deformation equations are solved using the finite element
method.

As mentioned in the Introduction, in this work our numerical
simulator involves a two-way loose-coupling scheme in which
we solve these two equations independently, first for flow and
then for deformation over a fixed time period. This two-way
loose coupling has been shown to mimic the fully-coupled
physics without requiring multiple simplifying assumptions on
the model (Minkoff et al. 2003, 2004; Minkoff and Kridler 2006).
To allow the flow parameters to be realistically updated as com-
paction occurs, we periodically pass control from fluid flow to
mechanical deformation even though the deformation equation
is not time dependent. Specifically, we solve the flow equation
for a fixed simulation time period with several smaller flow time
steps taken during that period. At the end of this simulation
time period, control is passed to the mechanical deformation
code, and in particular, we send the change in pressure from
flow to mechanics where it becomes a load for deformation (see
the right hand side of (23)). We then solve the deformation
equation for displacement, and using the fact that strain, ε, is the
derivative of displacement, we update the porosity of the column
as follows:

φ(x, t) = 1 − 1 − φ0
eε

. (24)

This updated fluid flow parameter, the porosity field, is sent back
to the flow equation which is then solved for a subsequent set
of time steps. Therefore, porosity is both a vector-valued input
(function of space) for flow and a vector-valued output from
deformation. We note that all material parameters for both fluid
flow and mechanical deformation are functions of space. Any
parameter which is updated during the loose coupling algorithm
becomes, by definition, also a function of time.

Because we assume the column of mud contains a single fluid
(water), we fix fluid density (ρ0), fluid viscosity (μ), and fluid
compressibility (c) at a single value, focusing instead on three
parameters of interest for the two equations ((22) and (23)).
Sensitivity analysis of this coupled system indicates that in fact
the influential parameters for fluid flow are porosity, φ, and
permeability, k (see Lee, Spiller, and Minkoff 2019). However,
as mentioned above, the porosity field is both an input and an
output parameter, and as such is considered a quantity of interest
itself. Hence, for flow we only vary permeability as a direct
input parameter. For mechanical deformation the sensitivity
analysis indicates that both the mechanics and flow parame-
ters are influential, namely, permeability, Young’s modulus, and
Poisson’s ratio [k, E, ν]. (Here that we have made use of the
equivalence between the Lamé parameters (which show up

Table 1. The nominal, maximum, and minimum values of the input parameters.

Variable Name Nominal Maximum Minimum
values values values

k (in/s) Permeability 1.86 · 10−11 1.86 · 10−10 1.86 · 10−12

ν Poisson’s ratio 0.3 0.33 0.27
E (lb/in2) Young’s modulus 108 1.1 ·108 0.9 ·108

μ (psi · s) Viscosity 5.6 · 10−5 – –
c (psi) Fluid compressibility 1.2 · 10−8 – –
φ0 Initial porosity 0.6 – –
ρ0 (lb/in3) Density 0.37275 – –
fel (psi/in) Load 108 – –

in the deformation equation (23) ) and Young’s modulus and
Poisson’s ratio which we choose to vary as these values can
be found in the literature for the Terzaghi problem.) Nominal
values for these three influential parameters as well as the range
over which they are varied are given in Table 1. (All inputs are
normalized to a unit hypercube before training the emulators.
Because permeability can vary over several orders of magnitude
in a particular geologic region, we map the logarithm of k to the
unit cube.)

In contrast to the two-way loosely coupled simulator, at a
single instance in time the composite function we consider
for emulation is unidirectional, with mechanics serving as the
inside function, f , and flow being the outside function, g. (In
our implementation we discretize the column using 100 spatial
grid points.) In summary, flow (g), takes in both porosity w =
f(x), and permeability z, yielding pressure η. We consider two
experiments below: one where the whole column has a single
value of permeability (constant permeability), and a second
where the column has one value of permeability in the top half
of the column and a different permeability in the bottom half
(varying permeability).

In addition to applying the vector-valued global GP emulator
methods—PPCE and PPLE—to this example, we will also con-
sider methods that fit many independent scalar-output compo-
nent emulators (or SC), specifically one for each depth. Under
each of these two general classes of methods we present results
for several sub-methods for comparison. While both PPCE and
PPLE emulate a vector-valued function, the PPCE predicts the
final output of the composite function η directly. In contrast, the
PPLE links together separate emulators for f and g. For the PPLE
methodology, when input to the outer function g includes high-
dimensional output from f , dimension reduction is required
to construct the emulator for f . Here we present results from
two dimension reduction techniques for f : principal component
analysis (PCA) and gradient-based kernel dimension reduction
(gKDR) (Fukumizu and Leng 2014). We refer to these two sub-
methods as PPLE PCA and PPLE gKDR. With PCA we include
enough PCA modes to capture 90% of the variance observed in
the training data for porosity (Gu and Shen 2020). In contrast
to PCA, gKDR identifies low-dimensional structures between
input and output data, leveraging the covariance structure in
reproducing kernel Hilbert spaces (Fukumizu and Leng 2014).
We note other dimension reduction techniques could also be
employed in the PPLE for f including ICA and/or non-Euclidean
PCA (see Anowar, Sadaoui, and Selim 2021). Note, with PPLE,
we do not use dimension reduction on g during emulation, only
on the output of the linking function f .
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Conversely for linked GP emulators, if we treat our QoI pres-
sure as a scalar at each depth, dimension reduction is not neces-
sary. However, a notable drawback of using scalar emulators for
vector-valued output is that we must construct many indepen-
dent emulators. We consider four scalar-output sub-methods to
compare to our PPLE methodology: scalar-output component
linked GP emulators (LESC), scalar-output component com-
posite emulators (CESC), linked GP emulators using a local
approximate Gaussian process (LE laGP), and composite emu-
lators using a local approximate Gaussian process (CE laGP).
In LESC, both f̃ and g̃ are a collection of many scalar-output
valued emulators and the linked GP emulator framework is used
to construct each component of η̃ independently (Ming and
Guillas 2021). In CESC, we directly predict pressure using many
independent scalar emulators of pressure, one at each depth in
the column of mud (Gu and Berger 2016). For both the CESC
and LESC, we again utilize the objective Bayesian approach
with reference priors on the range parameters and obtain MAP
estimates of range parameters (for each scalar-output emulator
constructed) via the RobustGaSP package (Gu, Palomo, and
Berger 2019). The laGP effectively considers depth as an input
which expands the size of the training data from m to m × s (m
inputs for each depth). It then uses an optimized local subdesign
of training data to build a GP emulator at each depth (Gramacy
and Apley 2015; Gramacy 2016). Within the scheme to obtain
a local subdesign, the laGP uses MLEs to obtain a set of range
parameters specific to each depth. For CE laGP we treat pressure
as the output, while for LE laGP we treat porosity as the output
and then use the subdesign chosen by the laGP to construct an
emulator for pressure at each depth. (Note, in our implementa-
tion of the laGP methods with m training simulations available,
we used sub designs of size 1.5m. Results with sub designs sized
2m and 1.5m were effectively equivalent and both were much
better than results from sub designs sized m.) Attributes of the
seven methods whose results we compare are shown in Table 2.

The efficacy of each emulator is compared using average root
mean squared error (RMSE), average length of the 95% credible
interval (LCI), and the coverage, or percent of true values that fall
within the 95% credible interval. The RMSE and LCI are given
by

RMSE =

√√√√√ 1
sN

s∑
j=1

N∑
i=1

(
ηj(x∗

i , z∗
i ) − μj(x∗

i , z∗
i )

)2, and (25)

LCI = 1
sN

s∑
j=1

N∑
i=1

CIij, (26)

where N is the number of testing inputs, μj(x∗
i , z∗

i ) is the pre-
dictive emulator mean evaluation for the ith testing input, and
ηj(x∗

i , z∗
i ) is the evaluation of the composite simulator for the

Table 2. Comparison of emulation strategies for the Terzaghi consolidation multi-
physics simulator.

PPLE PCA PPLE gKDR PPCE LESC CESC LE laGP CE laGP

Vector output? Y Y Y N N N N
Linked? If Y, Y/Y Y/Y N Y/N N Y/N N
dim. red. for f̃ ?

ith testing input at the jth spatial coordinate. CIij is the 95%
posterior credible interval at each depth for each GP model
under consideration. Note, when results are reported spatially
the averages over s are omitted in (25) and (26). We also report
on the efficiency of each emulator by reporting the timing which
we define to be the time to train each emulator plus the time to
evaluate each emulator once over the whole column.

In our experiments we ran the simulator 200 times, each time
varying the three influential input parameters. ( We used half the
simulations for training, m = 100, and the other half for out-of-
sample testing, N = 100.) In particular, we varied Poisson’s ratio,
ν, and Young’s modulus, E, within ±10% of their nominal values
using a Latin hypercube sampler (see Table 1). As noted earlier,
we varied permeability over a log rather than a linear scale. For
linked GP emulators, we do not attempt to ensure the porosity
which is the input to the outer function is space filling. However,
an adaptive strategy could be used to improve on this design as
is done in Ming and Guillas (2021).

Constant permeability experiment. Figure 5 shows the sim-
ulated pressure fields along with the RMSE and LCI all plotted
over the column for the both of the PPLEs and the PPCE. All of
these emulators do an excellent job of predicting the simulated
pressure curves used for testing, but the PPLE methods outper-
form the PPCE. (Note the magnitude of the errors is on the order
of one tenth of one percent of the size of the data as shown in
Figure 5(a)–(c).) At the top of the column, the average credible
intervals are a bit larger for the PPLE methods as compare to
PPCE, but all LCIs are small compared to the magnitude of
the data. Figure 6 shows the same content as Figure 5, but
these results come from applying the scalar-output indepen-
dent emulator methods. We see that the independent scalar-
output emulators do worse than the PPE-based emulators. (Note
that the error and credible interval scales are 1–2 orders of
magnitude larger in Figures 6(b)&(c) than in Figure 5(b) and
(c), respectively.) Amongst scalar-output component emulators,
the linked GP models (LESC and LE laGP) significantly out-
perform the composite GP models (CESC and CE laGP) both
in terms of RMSE and LCI . However, the linked GP models
are noisier in their predictive efficacy along the column. We
further summarize these results in Table 3 by reporting values
of RMSE and LCI averaged over the column depth. We also
report the average coverage of each method which is reasonable
for each of the seven methods explored. Finally, we report the
timing for each method. Amongst all methods, PPLE PCA is
the fastest. For the PPLE methods, the difference in timings is
entirely driven by computational intensity of applying dimen-
sion reduction to f . Dimension reduction method gKDR is rela-
tively expensive as compared to PCA. It is further worth noting
that all four of the scalar-output component emulators could
be sped up by performing the computations for each output
component in parallel. For the laGP methods, each emulator
evaluation amounts to constructing a new local emulator which
would be an added computational burden if one were to use
LE laGP and CE laGP in a forward or inverse UQ problem
that requires many emulator evaluations across each output
component.

We note that while it makes physical sense to look at a
homogeneous column with a single value for permeability since
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Figure 5. Global GP emulator results for the test case with constant permeability throughout the column. (a) Simulated pressure values along the column of mud used for
testing the emulators. (b) RMSE over the column for PPCE (blue solid line), PPLE PCA (long dashed black line), and PPLE gKDR (short dashed red line). (c) LCI over the column
for each method with line styles corresponding to those shown in (b).

Figure 6. Single depth results for the test case with constant permeability throughout the column. (a) plot of the simulated pressure values along the column of mud used
for testing the emulators; (b) the root mean squared error (RMSE) plots for CE laGP (solid blue line), LE laGP (dash-dotted orange line), CESC (long dashed black line), and
LESC (short dashed purple line); (c) the average 95% credible interval (LCI) for these methods.

we have held the other input parameters constant, this particular
case is simple enough that all emulators give relatively small

errors. Therefore, we extend our experiment to a variable per-
meability column in the next section. This case is both more
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Figure 7. Results for the experiment with two permeability values in the column of mud. (a) The true pressure values along the mud column used for testing. (b) The root
mean squared error (RMSE) plots for PPCE (blue solid line), PPLE PCA (long dashed black line), and LE gKDR (short dashed red line). (c) The average 95% credible interval
(LCI) for the three methods.

Figure 8. Results for the experiment with two permeability values in the column of mud. (a) the true pressure values along the mud column used for testing; (b) the root
mean squared error (RMSE) plots for CE laGP (solid blue line), LE laGP (dash-dotted orange line), CESC (long dashed black line), and LESC (short dashed purple line); (c) the
average 95% confidence interval (LCI) for the four methods.

realistic and results in a discontinuity in the pressure field which
poses a greater challenge for emulation.

Varying permeability experiment. We now repeat the pre-
vious experiment for a column of mud with two values for
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Table 3. Comparison of the different emulation methods applied to the constant
permeability Terzaghi experiment.

PPLE PCA PPLE gKDR PPCE LESC CESC LE laGP CE laGP

Timing (s) 2 377 2 143 69 342 135
RMSE (psi) 4.1e3 3.9e3 1.4e4 3.6e4 1.7e5 5.7e4 2.0e5
LCI (psi) 1.7e4 6.5e3 2.1e4 3.9e4 4.7e5 2.7e4 7.9e5
Coverage (%) 97 93 92 93 99 80 94

Table 4. Comparison of the different emulation methods applied to the two-
permeability Terzaghi experiment.

PPLE PCA PPLE gKDR PPCE LESC CESC LE laGP CE laGP

Timing (s) 2 383 1.8 176 62 291 140
RMSE (psi) 1.2e5 1.1e5 2.6e5 2.4e5 6.6e5 2.6e5 5.6e5
LCI (psi) 2.2e5 2.4e5 6.0e5 4.1e5 1.7e6 1.7e6 1.8e6
Coverage (%) 93 92 94 91 100 86 95

permeability: one in the top half of the column, and a second
distinct value in the bottom half. Figures 7, 8, and Table 4 sum-
marize the results for the two-permeability simulation experi-
ment, analogous to Figures 5, 6, and Table 3 for the constant
permeability experiment. In Figure 7 we see that the results
from the PPLE methods are nearly identical, both for RMSE and
LCI . Further, both PPLE’s LCI values are small throughout the
column, and significantly smaller that the PPCE LCI near the
discontinuity in the pressure field halfway down the column.
In Figure 8 we see that the two scalar-output linked methods
(LESC and LE laGP) are comparable to each other with smaller
RMSEs than the scalar-output composite methods (CESC and
CE laGP). The LE laGP has the largest credible interval of
all seven methods, particularly near the discontinuity in the
pressure field. Note that while the scale of the errors is the same
for Figures 7(b) and 8(b), the scales of the credible intervals in
Figures 7(c) and 8(c) differ by an order of magnitude. Table 4
confirms that the two PPLE methods again outperform the other
five methods while PPLE PCA is faster than PPLE gKDR. The
timings in Tables 3 and 4 include fitting the emulators and a
single predictive mean evaluation for a design with size m = 100
and s = 100 outputs locations. Evaluating a PPE predictive
mean scales like O(m2) + O(ms) (Gu and Berger 2016) which
the PPLE inherits. Additionally, the PPLE requires evaluations
of the predictive means and variances for each inside emulator,
each O(m2). In applications with s � m, this PPLE scaling
which is dominated by O(ms) is advantageous over evaluating
many scalar component emulators which would scale as O(m2s).
Further, the PPLE also scales to large-dimensional output better
than laGP methods where each new emulator mean evaluation
for each output component effectively requires fitting a new
laGP.

5. Discussion

There are several outstanding challenges and opportunities that
would make the PPLE an even more effective tool for uncer-
tainty quantification of multiphysics models. One common chal-
lenge for high-dimensional coupled simulators, which the PPLE
would inherit, is a mismatch of spatial domains. For example,
in more realistic flow and deformation simulation of a region
of the subsurface undergoing compaction during pore pressure

depletion from oil and gas production, the fluid flow domain
would generally only consist of the reservoir itself. However,
the mechanics domain would extend up to the Earth’s surface
to include the overburden, below the reservoir (underburden)
and also further out laterally than just the reservoir domain (see
Minkoff et al. 2004). In such situations, it might be possible for
the PPLE to play a role in quantifying uncertainties introduced
by such domain mismatches. A further challenge for the PPLE
itself (which it inherits from the PPE) is that, although the mean
and variance are readily available, there is no mechanism to draw
spatially correlated samples from the PPLE.

We also note that while the examples in this article are to
loosely coupled multiphysics simulators, the theory we develop
would apply to any type of coupling (including full coupling)
as long as the quantities of interest can be extracted from the
simulator. For example, a fully coupled model would likely out-
put pressure and displacement. One can estimate porosity from
strain and hence from displacement. In our formulation here,
porosity is the QoI passed from the inner to the outer simulator
in our loosely coupled model, but it could be directly determined
from a fully coupled multiphysics model as well and hence
emulated. Further, perhaps only one simulator in a loosely cou-
pled system is computationally expensive to exercise. Perhaps
the whole space-time field of that expensive simulator could be
emulated and the full multiphysics system then emulated with
the PPLE. In such a case, it would be interesting to study how
the emulator error propagates in this system and to determine if
that error could be controlled. Another use of the PPLE might
be for existing tightly coupled multiphysics systems such as
biomechanics applications for cartilage of the knee (Shim et al.
2021). Conceptually, one may be able to glean knowledge of the
simulator itself and build more effective emulators by emulating
the interacting fields individually and combining them with the
PPLE. This list of outstanding problems is just a subset of future
extensions for the PPLE methodology described in this work.

6. Conclusions

In this work, we derive the mean and variance for the parallel
partial linked Gaussian process emulator, which is a new and
useful framework for investigating uncertainty quantification
based on GP emulation of coupled, high-dimensional multi-
physics models. Specifically we build on methodology for the
linked emulator (Kyzyurova, Berger, and Wolpert 2018; Ming
and Guillas 2021) and the parallel partial emulator (Gu and
Berger 2016). The linked emulator is the Normal approxima-
tion to a composition of two Gaussian Processes, one for each
coupled computer model under consideration. The parallel par-
tial emulator is a computationally efficient approach for emu-
lating computer models with high output dimensions because
although it treats output components independently, it utilizes
a shared correlation structure for all output components. The
PPLE exploits the ease and efficiency of the PPE and the Linked
emulator for high-dimensional, coupled simulators.

We demonstrate the effectiveness of the PPLE by applying
it to two coupled systems with vector valued output. The first
application of the PPLE is to a trigonometric composite func-
tion, and when compared to direct emulation of the composite
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function, the PPLE offers a more accurate predictive mean and
tighter credible intervals. For the second application of the
PPLE, we consider solving the Terzaghi consolidation problem
for compaction of a column of mud saturated with a single
fluid, which we solve via a two-way loose coupling of fluid
flow and mechanical deformation. This loose coupling allows us
to consider porosity changes in time. Specifically, we consider
the porosity field output from the mechanics as an input to
the flow simulator, and we emulate the resulting pressure field.
Because this coupling parameter is high dimensional, we use
dimension reduction, namely PCA or gKDR, in the emulation
of the porosity field to construct the linked emulator for pres-
sure without utilizing dimension reduction on the pressure field
itself. We compare the PPLE to the parallel partial composite
emulator as well as to 4 strategies that fit emulators to each scalar
component of the output pressure vector. The PPLE produces
a more accurate predictive mean and tighter credible intervals
than either direct composite emulation or scalar-output com-
ponent emulation. Further, the PPLE is very computationally
efficient, and inherits smoothness properties from the output of
the multiphysics simulator.

Supplementary Materials

The zip file contains MATLAB code and data to reproduce Figure 7. These
files can also be found on GitHub Dolski, Spiller, and Minkoff (2024). This
code employs two available MATLAB packages: ppgasp() and gkDR().
The function gKDR.m and associated function files are included in the
zip file, and can also be found here Fukumizu and Leng (2013). The
RobustGaSP-in-Matlab package can be found here: Gu (2019).
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