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S U M M A R Y
Repeatedly recording seismic data over a period of months or years is one way to identify
trapped oil and gas and to monitor CO2 injection in underground storage reservoirs and saline
aquifers. This process of recording data over time and then differencing the images assumes the
recording of the data over a particular subsurface region is repeatable. In other words, the hope
is that one can recover changes in the Earth when the survey parameters are held fixed between
data collection times. Unfortunately, perfect experimental repeatability almost never occurs.
Acquisition inconsistencies such as changes in weather (currents, wind) for marine seismic
data are inevitable, resulting in source and receiver location differences between surveys at
the very least. Thus, data processing aimed at improving repeatability between baseline and
monitor surveys is extremely useful. One such processing tool is regularization (or binning)
that aligns multiple surveys with different source or receiver configurations onto a common
grid. Data binned onto a regular grid can be stored in a high-dimensional data structure called
a tensor with, for example, x and y receiver coordinates and time as indices of the tensor. Such
a higher-order data structure describing a subsection of the Earth often exhibits redundancies
which one can exploit to fill in gaps caused by sampling the surveys onto the common grid.
In fact, since data gaps and noise increase the rank of the tensor, seeking to recover the
original data by reducing the rank (low-rank tensor-based completion) successfully fills in
gaps caused by binning. The tensor nuclear norm (TNN) is defined by the tensor singular
value decomposition (tSVD) which generalizes the matrix SVD. In this work we complete
missing time-lapse data caused by binning using the alternating direction method of multipliers
(or ADMM) to minimize the TNN. For a synthetic experiment with three parabolic events in
which the time-lapse difference involves an amplitude increase in one of these events between
baseline and monitor data sets, the binning and reconstruction algorithm (TNN-ADMM)
correctly recovers this time-lapse change. We also apply this workflow of binning and TNN-
ADMM reconstruction to a real marine survey from offshore Western Australia in which the
binning onto a regular grid results in significant data gaps. The data after reconstruction varies
continuously without the large gaps caused by the binning process.

Key words: Image processing; Numerical modeling; Numerical solutions; Computational
seismology.

1 I N T RO D U C T I O N

Time-lapse (4-D) seismic data is used for applications such as reser-
voir monitoring (Lumley 2001) and monitoring of CO2 injection
wells (Eiken et al. 2000). To acquire time-lapse data, multiple sur-
veys are conducted over a region, over a period of months or years.
These surveys can reveal changes in the region caused by produc-
tion or injection. Repeatability is desired for time-lapse surveys in
order to obtain accurate differences and allow for precise interpreta-
tion. However, acquisition inconsistencies such as cable feathering
caused by ocean currents can result in non-repeatable receiver lo-
cations, which makes taking a time-lapse difference challenging.

Feathering refers to the angle between a streamer and a straight
reference line. This angle varies as streamers drift due to wind and
other environmental factors. Schonewille (2005) demonstrates how
feathering reduces repeatability and how non-repeated shot-lines
with azimuth differences cause time-shifts in the data. Pevzner et al.
(2011) find that the soil saturation affects the signal velocity of land
surveys, demonstrating how time-lapse surveys taken during differ-
ent seasons have less repeatability. Zhou & Lumley (2021) show
how non-repeatability can cause artefacts in the velocity models
resulting from 4-D full waveform inversion.

To mitigate non-repeatability issues, pre-stack and post-stack
processing is used to help make the data sets comparable. Processing
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often involves cross-equalization workflows consisting of substeps
such as regularizing, matched-filtering, amplitude balancing, and
warping (Rickett & Lumley 2001; Nguyen et al. 2015). Regulariz-
ing or binning data aligns multiple surveys with different receiver
configurations onto a common grid. Non-repeatability issues cause
receiver coordinates to vary between surveys over the same region.
By aligning two data sets which contain recording inconsistencies,
we inevitably create empty cells that do not have recorded values.
Regularizing the two data sets followed by data completion allows
the surveys to be compared with one another. Lane (1994) describes
a simple binning algorithm to transform the receivers’ spatial co-
ordinates to an integer coordinate system for a single 3-D survey.
Rickett & Lumley (2001) include a spatial anti-aliasing filter to re-
align two surveys to a common grid. The filter serves to equalize
dip content, as steep events on a fine grid are spatially aliased on
a coarse grid. Gierse et al. (2010) use a common-reflection-surface
method to both regularize and interpolate pre-stack data from two
3-D seismic surveys onto a common grid. Once data are binned to
a regular grid, it can be stored in discrete data structures such as
matrices or tensors (i.e. multidimensional arrays). Similar to data
binning, image registration (Hill et al. 2001; Lou et al. 2013) and
pansharpening (Li et al. 2018; Vivone et al. 2021) have been used to
align data defined on different domains. There are a variety of med-
ical imaging modalities such as computerized tomography (CT),
magnetic resonance imaging (MRI) and positron emission tomog-
raphy (PET) that require data to be regularized onto a common
grid to facilitate diagnostics (El-Baz et al. 2011a, b). Pansharp-
ening involves interpolating or sharpening a sequence of spectral
images with low spatial resolution to match a single high-resolution
panchromatic image thereby creating high-resolution hyperspectral
data.

After binning, the resulting data structure is not necessarily com-
plete. Gaps between receivers greater than the mesh size result in
empty grid cells. We seek to fill in the gaps of the regularized
data by applying a data completion method and thus improve the
repeatability of the data. Oghenekohwo et al. (2017) use a joint-
recovery method based on compressive sensing to complete regu-
larized data. Their method groups a pair of jointly sparse measure-
ment vectors from the baseline and monitor surveys into a matrix
and solves for the common and unique components of their recon-
structed signals. This joint method improves the repeatability of
time-lapse data compared to splitting the matrix into a set of vec-
tors and recovering each independently. Our novel approach to this
time-lapse completion problem is to apply low rank tensor-based
reconstruction.

Tensor-based data completion has grown enormously in the past
decade and has been applied in several studies to seismic data
(Stanton et al. 2012; Kreimer et al. 2013; [data set] Chen et al.
2016; Sacchi & Cheng 2017; Cheng et al. 2019; Carozzi & Sacchi
2019; Popa et al. 2021), but not previously to time-lapse data.
The motivation for using tensor-based methods is to exploit the
multidimensional structure in a manner not possible for matrices
or vectors. For instance, a single gather taken as a matrix may be
nearly full rank. However, forming a tensor from a group of gathers
often leads to a low rank structure due to redundancy across the
gathers. The theory behind low rank reconstruction assumes the
underlying data has low rank, but missing data and noise present in
an observation can increase the data’s rank, hence we can recover
missing data by minimizing the rank. In practice rank reduction
methods for matrices use the singular value decomposition (SVD),
as the rank of a matrix is equal to the number of non-zero singular
values in its SVD.

There are numerous low rank reconstruction methods applicable
to high dimensional data (tensors) such as multichannel singular
spectrum analysis (MSSA, Oropeza & Sacchi 2011), parallel matrix
factorization (PMF, Xu et al. 2015), higher-order SVD (HOSVD)
reduction (Kreimer et al. 2013) and tensor nuclear norm (TNN)
minimization (Ely et al. 2015). The MSSA method minimizes the
rank of Hankel matrices formed from frequency slices. Oropeza
& Sacchi (2011) apply MSSA to 3-D seismic data, demonstrating
successful recovery of missing traces and noise reduction. Chen
et al. (2019) apply MSSA to USArray recordings of 3-D earthquake
data for simultaneous reconstruction and denoising. Assuming the
data is generated from plane waves, they implement a localized
version of the rank reduction method to subsets of the data volume,
showing improvement over global rank-reduction.

The PMF method unfolds a tensor into a matrix and utilizes an
alternating least squares algorithm that is SVD-free to approximate
the matrix as a product of two low rank matrices. Gao et al. (2015)
apply PMF to seismic data and compare with SVD-based meth-
ods. Gao et al. (2017) present parallel square matrix factorization
(PSMF) as an improvement over PMF by reshaping the unfolded
tensor into a nearly square matrix. This reshaping is achieved by par-
titioning the dimensions into two sets, then reshaping the tensor into
a matrix with rows and columns equal to the product of the first and
second set of partitioned dimensions respectively. This reshaping
reduces the required number of measurements for reconstruction
and maintains the low-rank property of the tensor (Mu et al. 2014).
The HOSVD is a generalization of the matrix SVD for higher orders
of data (De Lathauwer et al. 2000). This generalization is based on
unfolding the tensor into a matrix and computing the matrix SVD.
Kreimer et al. (2013) develop a HOSVD reduction method and find
completion of a 4-D spatial volume (with sources and receivers in
two dimensions) to be more accurate than 2-D and 3-D completion.

The TNN is defined by the tensor SVD (tSVD), a generalization
of SVD (Kilmer & Martin 2011). Ely et al. (2015) apply alternating
direction method of multipliers (ADMM, Boyd et al. 2010) for TNN
minimization to synthetic and field data, demonstrating successful
reconstruction and denoising. This combination of model and algo-
rithm is referred to as TNN-ADMM (Liu et al. 2020). Popa et al.
(2019) show that TNN-ADMM results in improved reconstruction
as the amount of data in the tensor increases and as the physical
space between samples decreases. This result is explained by how
data sampled closely together contains more redundancies and re-
sults in a tensor of lower rank. Popa et al. (2020, 2021) demonstrate
how using conjugate symmetry significantly speeds up the compu-
tation of the tSVD for tensors of any dimension. Additionally, they
analyse the impact of a tensor’s orientation on reconstruction. Since
the singular values of a tensor are equivalent to the singular values
of a block diagonal matrix containing the Fourier transformed slices
(Zhang et al. 2014), TNN minimization is expected to perform best
for the tensor with the most-square orientation since rectangular ma-
trices perform worse for low rank reconstruction methods than do
square matrices. Furthermore, Popa et al. (2021) provide a physical
explanation to motivate the success of the most-square orientation
for seismic data: the most-square orientation of a seismic data ten-
sor often has frontal faces formed over the spatial dimensions, and
lateral continuity of a region causes data to be low rank with respect
to the spatial dimensions. In Popa et al. (2021) TNN-ADMM is ex-
tensively compared to two well known methods for data completion:
projection onto convex sets (POCS) and MSSA. They demonstrate
that TNN-ADMM provides more accurate results in less runtime
than these other completion methods for a synthetic and real data
example.
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In this paper our contribution is a data reconstruction workflow
for pre-stack time-lapse seismic data, consisting of regularizing
data into a tensor and applying TNN-ADMM, a tensor-based com-
pletion method. By regularizing the time-lapse data, we create a
domain that allows seismic traces to be compared at the same phys-
ical locations for each survey. However, there is no guarantee that
time-lapse data is recorded at the same physical locations due to
issues of non-repeatability. Hence we use data completion to fill in
missing data so that these surveys can be compared. We use a vari-
ant of the TNN-ADMM algorithm described by Popa et al. (2021),
optimized for efficiency using conjugate symmetry and accuracy
using the most-square tensor orientation. We validate this method
on a synthetic example and demonstrate its performance on real
data. In the synthetic example we generate baseline and monitor
surveys with different acquisition geometries. We regularize the re-
ceiver data onto a grid to construct tensors containing the observed
data. We then apply TNN-ADMM to the baseline and monitor data
tensors independently to reconstruct the data over the entire grid. By
completing the data we are able to accurately determine the time-
lapse difference. In the real data example we regularize a shot from
a baseline and monitor marine survey and apply the same comple-
tion method described for the synthetic problem. The reconstructed
gathers appear continuous and reasonable for seismic data.

Our paper is organized as follows; in Section 2 we provide an
overview of our method. We first give background on tensor linear
algebra, then we detail how to bin data to a regular grid and use this
binning to form a tensor. Finally, we describe TNN-ADMM, our
choice of completion algorithm. In the third and fourth sections we
apply our method to synthetic and real data examples, respectively.
The discussion in Section 5 covers topics including determining
whether low rank reconstruction is appropriate for the data, how the
choice of mesh size affects receiver binning, correcting for receiver
centre offsets and temporal smoothing.

2 M E T H O D

This section contains three subsections. First, we review terminol-
ogy and notation related to tensors. Next, we discuss how we regu-
larize data onto a grid, leading to a tensor with data gaps. In the last
subsection, we present details about TNN-ADMM, the completion
algorithm we use for reconstruction.

2.1 Terminology and notation

We define necessary terminology and background on tensor algebra
in this section. Tensor algebra generalizes linear algebra to higher
dimensions. The order of a tensor refers to the number of dimensions
of the tensor. For example, vectors and matrices can be considered
as order-1 and order-2 tensors, respectively. In this paper, we are
primarily concerned with order-3 tensors. However the theory holds
for higher order tensors as well. An order-3 tensor is a cube of data.
We use capital letters to denote matrices and script capital letters to
denote tensors of orders three and greater, such as X .

As an illustration of tensor operations, we consider a 3-D seismic
survey with the spatial x and y directions as the first two dimensions
respectively and time as the third. A slice of a tensor refers to a
submatrix obtained by fixing one of the three indices. A frontal
slice refers to a slice for a fixed value of the third dimension. In
this example, a frontal slice would be a cross-section in the x–y
directions for a fixed t value. A tube is a vector oriented along the
third dimension, for example a tube would correspond to a single

time trace (see Fig. 1b). To refer to a scalar entry of a tensor we use
subscripts, for example Xi, j,k is the entry of X in the ith row, jth
column and kth frontal slice.

The orientation of a tensor is the order of its dimensions (Kilmer
& Martin 2011). By permuting the dimensions of a tensor it is pos-
sible to obtain different orientations. The most-square orientation is
the orientation for which the frontal slices are the closest to square
matrices out of all possible orientations (Popa et al. 2021). For 3-D
seismic data, the time dimension is often significantly larger than
the spatial dimensions. In this case the most-square orientation cor-
responds with ordering the spatial dimensions first and second, with
time third.

Martin et al. (2013) define the tensor SVD (tSVD) as a gener-
alization of the matrix SVD, which is a critically important part of
low rank reconstruction. Given a real valued tensor X ∈ R

n1×n2×n3 ,
the tSVD decomposes X into a product of three tensors as follows,

X = U ∗ S ∗ VT , (1)

such that U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal tensors
and S ∈ R

n1×n2×n3 is a diagonal tensor. We use the symbol ∗ to
denote the tensor product and VT to denote the transpose of V . For
definitions of tensor product, transpose, orthogonal and diagonal
tensors, see the Appendix. The diagonal entries of Ŝ (the Fourier
transform of S in the tubal direction) are the singular values of X .
Using tSVD we can define the TNN as the sum of singular values
of the tensor. For example, for order-3 tensors the TNN is defined
by:

‖X‖TNN =
n3∑

k=1

min(n1,n2)∑
i=1

Ŝi,i,k . (2)

The TNN is motivated by the matrix nuclear norm, that is the
sum of the singular values, which is NP-hard to minimize (Candès
& Recht 2009). For a matrix X let s denote a vector comprised
of the singular values of X. The rank and nuclear norm of X are
equivalent to the l0 and l1 vector norms of s, respectively. The l0

norm counts the number of non-zero entries, whereas the l1 norm
sums the magnitude of each entry. Since the l1 norm is the tightest
convex relaxation to the l0 norm, minimizing the matrix nuclear
norm does a good job of approximating rank minimization (Candès
& Tao 2005; Cai et al. 2010). Likewise, TNN provides a convex
relation to tensor tubal rank (Semerci et al. 2014; Zhang & Aeron
2017), which is defined as the number of non-zero tubes of Ŝ or
more specifically the maximal rank among all the frontal slices Ŝ:,:,k .

2.2 Regularizing data

Given a seismic survey, we seek to form a tensor containing the
seismic traces while preserving the locations of the receivers. That
is, we map the physical coordinates of a receiver to indices of a
matrix. By regularizing data in this manner, we can apply a tensor-
based completion method to fill in missing data for coordinates
where no receiver is present.

First we discretize the region over which the survey is taken.
This process enables us to use discrete data structures such as ma-
trices and tensors to organize real data. We illustrate this concept
in Fig. 1(a). The three solid lines represent streamers, with nodes
indicating receivers. We discretize this region into a 5 × 5 grid,
resulting in each receiver being contained within a unique grid cell.
We colour these grid cells, illustrating how we use the discretiza-
tion to map receiver locations to indices of a matrix. Since receivers
are not necessarily located at the centres of grid cells, there is an
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Figure 1. (a) The receiver locations (shown as black circles) are mapped to grid squares. Each shaded grid square contains a receiver. (b) Tensor with seismic
traces shown as tubes. The indices of each binned receiver in (a) are used to determine the indices of the tube. (c) A completed tensor.

inherent error to naively binning receivers at the cell centres as we
have here. This binning error is the difference between the recorded
trace and an ideal trace recorded at the centre of the cell. In general,
this error cannot be calculated for real data. However, the grid size
spacing bounds the furthest distance a trace can be from a grid cell
centre, and hence bounds the binning error. We note that our ap-
proach is to work with data after it has been recorded and processed.
Thus, while the frequency bands of the sources and receivers and
the acquisition geometry could certainly affect the accuracy of data
binning and completion, we have not undertaken a careful study
of when these effects would negatively impact our algorithm. In
Fig. 1(b) we display an order-3 tensor with a 5 × 5 frontal face.
Each shaded tube of this tensor contains a recorded trace from the
receiver whose binned indices match the tube’s indices. The white
tubes of this tensor are empty (zero entries), as no data was recorded
at these locations. Now that we have formed a tensor with incom-
plete data, incomplete in the sense we do not have data for every
tube, we can apply a completion method to fill in the missing data.
In Fig. 1(c), we colour the formerly white tubes to indicate the data
has been completed for all grid locations.

With a completed tensor we have estimated data at each grid loca-
tion. Performing this process for both baseline and monitor surveys
results in complete tensors for each survey with estimated data at
every grid location. Thus the surveys can be compared pointwise
to calculate the 4-D difference. We use TNN-ADMM as our choice
of completion method, discussed in detail in the following section.
Other completion algorithms such as transform or frequency based
methods (projection onto convex sets or MSSA) could also be used.

For our examples we choose a grid spacing such that each receiver
is binned into a unique grid square. When considering time-lapse
data the grid spacing should be chosen carefully as it is possible
for one survey to satisfy the unique binning assumption while the
other does not. Having multiple receivers binned to the same grid
cell creates ambiguity as each tube can contain only one trace. A
solution to this problem is to use an interpolation method to produce
a single trace from the binned traces. For simplicity we will avoid
the case of binning multiple receivers to the same grid cell in this
work.

2.3 TNN-ADMM

Data completion methods are used to reconstruct missing or incom-
plete data. The relation between observed data and completed data
can be represented by,

Y = A(X ), (3)

where Y is the observation, A is a sampling operator and X repre-
sents the complete data. The sampling operatorA can be considered

as a tensor with ones where data are recorded and zeros where it is
not. The sampling operator acts on X by the Hadamard or entry-
wise product (Kreimer et al. 2013). Observed seismic data often
contains redundancies or similarities. When representing data as a
matrix or tensor, repeated rows or columns is an indicator of low
rank.

Using TNN as the objective function, one can formulate the low
rank minimization problem as follows,

min ||X ||TNN s.t. Y = A(X ). (4)

We can solve (4) using the ADMM (Boyd et al. 2010). ADMM
alternates between reducing the TNN objective function and satis-
fying the data matching constraint, Y = A(X ). This formulation of
the objective function with an exact equality constraint is used for
completion without denoising, which is the focus of this paper. The
denoising case requires an additional regularization term in the ob-
jective function μ‖Y − A(X )‖2

F in place of the equality constraint
and requires tuning of the denoising parameter μ.

In order to implement this method for data completion without
denoising, we introduce an auxiliary variable Z to decouple the
TNN term and the constraint, expressing the problem (4) equiva-
lently as,

min ||Z||TNN + 1Y=A(X ) s.t. X = Z. (5)

Here the term 1Y=A(X ) is the indicator function, taking a value of
zero when the subscript equation is satisfied and a value of ∞
otherwise.

Using the decoupled eq. (5), we define the augmented Lagrangian
as,

Lρ (X ,Z;B) = ||Z||TNN + 1Y=A(X ) + ρ

2
‖X − Z + B‖2

F − ρ

2
‖B‖2

F , (6)

where B is the dual variable, the parameter ρ > 0 is the step size
and ‖ · ‖F is the Frobenius norm (for details see the Appendix). The
dual variable B is also referred to as the Lagrange multiplier, which
is introduced to deal with the equality constraint X = Z.

ADMM is an iterative method that alternates between minimiz-
ing the augmented Lagrangian (6) with respect to X and Z , and
updating the dual variable B by using gradient ascent. The ADMM
iterations are given by (Ely et al. 2015),

X k+1 = arg minX (1Y=A(X ) + ρ

2 ||X − Zk + Bk ||2F), (7)

Zk+1 = arg minZ (||Z||TNN + ρ

2 ||X k+1 − Z + Bk ||2F), (8)

Bk+1 = Bk + X k+1 − Zk+1, (9)

where the superscript k denotes iteration number. Eq. (7) represents
the solution to the data matching constraint. Eq. (8) represents the
solution to minimizing the TNN objective function. Eq. (9) is the
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Figure 2. Tensor of synthetic data containing parabolic events. Tensor has
dimension (x, y, t) = 60 × 100 × 700. The x–t and y–t faces illustrate a
single gather or slice of the tensor.

dual variable update. In our numerical experiments we apply TNN-
ADMM to reconstruct incomplete tensors formed by binning data
onto a regular grid.

3 N U M E R I C A L E X P E R I M E N T S

3.1 Synthetic Example

We first demonstrate our method of regularization and completion
on a synthetic data set. We will see that for this example completing
baseline and monitor surveys on a regular grid results in accurate
estimation of the time-lapse difference. We choose to use TNN-
ADMM as our completion method. In Popa et al. (2021) TNN-
ADMM is shown to be more accurate and efficient than two other
completion methods, POCS and MSSA. On a synthetic example all
three methods successfully reconstruct the data, with TNN-ADMM
and MSSA having errors of less than 1 per cent, and POCS having an
error of less than 4 per cent. Additionally, TNN-ADMM converges
with a runtime that is one order of magnitude less than the time
taken by POCS and two orders of magnitude less than MSSA.
On a real data example TNN-ADMM results in the best recovery,
having an error 5 per cent less than MSSA and 10 per cent less than
POCS. The runtime of TNN-ADMM for the real data example is an
order of magnitude less than POCS and three orders of magnitude
less than MSSA. While these runtime comparisons and errors are
only from a small subset of possible experiments, we believe they
are representative of some of the advantages of TNN-ADMM over
competing methods.

We generate synthetic data using a modified version of a code
made publicly available by [data set] Chen et al. (2016). The com-
plete synthetic baseline data consists of a trace for every bin on a
regular grid of size 60 × 100. Each trace is recorded for 1.4 s with a
2 ms time sampling, resulting in a tensor of data with dimensions 60
× 100 × 700. Each trace recording contains three Gaussian pulses,
each corresponding to an event. Fig. 2 illustrates the tensor of data
with gathers in the x–t and y–t dimensions. Along these faces it can
be seen that one of the events is linear in x and parabolic in y, one
is linear in y and parabolic in x, and one is parabolic in both x and
y. For this synthetic experiment we assume during production the
event which is parabolic in x and linear in y undergoes an amplitude
increase by a factor of two from the initial time to the time the
monitor data is recorded.

Figs 3(a) and (c) show the baseline and monitor streamers, re-
spectively. Figs 3(b) and (d) display the gather corresponding to the

bold highlighted streamer in (a) and (c), respectively. In both sur-
veys there are 50 streamers, each with 60 receivers. The streamers
in the baseline survey are designed with greater feathering than
the monitor survey, resulting in differing receiver locations be-
tween the surveys. Additionally, the monitor streamers are designed
to be slightly shorter, with smaller spacing between consecutive
receivers.

We have binned each receiver into a unique grid cell, and hence,
the trace of each receiver is binned to a unique tube of a tensor.
We assign each receiver location an integer (x, y) coordinate pair
corresponding to the index of the grid square for the receiver, which
is then used for assigning the receiver’s trace to a tube of a ten-
sor. This binning process results in a tensor that contains non-zero
traces only at receiver locations. Fig. 4(a) illustrates the receivers
on the grid and Fig. 4(b) shows the gather that corresponds to the
highlighted row in Fig. 4(a). This gather is comprised of the traces
of receivers that intersect the designated row. The empty space be-
tween receiver locations results in observable gaps in this gather.
Similar gathers can be produced by plotting the binned traces along
any row or column. Each such gather can be considered as a slice of
the tensor containing the regularized traces. The ratio of receivers
(i.e. non-zero tubes) to the total number of grid cells can be calcu-
lated to reveal the percent of the tensor that is filled with non-zero
data. For this synthetic example 50 per cent of the tensor is filled
and 50 per cent is missing.

The regularized tensor represents a limited observation, with
data available only at the receivers. This observation is produced
by applying a sampling operator to a tensor containing the data on
the entire grid. We reconstruct the baseline and monitor data in-
dependently by applying TNN-ADMM to the sampled data. Due
to the differences in streamer length and feathering, the moni-
tor data covers a subset of the baseline survey. This subdomain
consists of baseline rows 5–99 (out of 1–100), and excludes the
first and last columns due to the initial offset of the streamers and
the spacing between receivers. On this subdomain, approximately
46 per cent of the tubes of the tensor are empty or missing. In the
TNN-ADMM algorithm we use a step size of ρ = 10−2 for both
baseline and monitor data sets. This value is selected by running a
fixed number of iterations over a range of ρ values and determin-
ing the value of ρ which produces the least error relative to the
ground-truth. We discuss our strategy for finding ρ in real data ex-
amples where the ground-truth is unknown in the next subsection.
We calculate the error as ‖X ∗ − X k‖F/‖X ∗‖F, whereX ∗ represents
the ground-truth and X k represents the ADMM solution at the kth
iteration. We multiply the error by 100 to express it as a percent-
age. We consider the algorithm to have reached convergence when
the relative change in the reconstructed tensor between consecu-
tive iterations is below a threshold ε = 10−4. Additionally, we use
the most square orientation of the tensor to yield optimal results
(Popa et al. 2020).

The baseline and monitor completion problems converge in 147
and 84 iterations, respectively. Figs 5 and 6 show the TNN value and
relative error as a function of iteration. We observe that the TNN
of the observation is larger than the TNN value of the underlying
true data, which is significant since TNN-ADMM will not suc-
ceed when the observation has lower TNN value than the original
data.

Figs 7(a) and (b) display a reconstructed gather for the baseline
and monitor data sets, respectively. The baseline is reconstructed
with error around 7.27 per cent over the entire domain. The majority
of the error occurs near the boundary, that is, in the first and last
slices of the tensor. The difference between the true data and these
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Figure 3. The streamers and receiver locations for the (a) baseline and (c) monitor surveys. For each survey we highlight a streamer and plot the corresponding
gather in (b) and (d). The time lapse difference is contained in the later parabolic event which has twice the amplitude in the monitor survey compared to the
baseline.

Figure 4. (a) The baseline survey on a regular grid. (b) A single gather (horizontal slice of the tensor) from receivers along the row highlighted in (a). Note
the gaps between receivers.
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644 J. Popa, S.E. Minkoff and Y. Lou

Figure 5. TNN objective function for the reconstructed (solid line) and ground truth (dashed) data as a function of iteration for the (a) baseline and (b) monitor
data sets.

Figure 6. The relative error in the reconstructed data as a function of it-
eration for TNN-ADMM for the baseline (solid) and monitor (dotted) data
sets. The method converges in fewer iterations for the monitor survey than
for the baseline.

reconstructed edge slices is shown in Fig. 8. These slices have errors
of 57.64 and 34.82 per cent, respectively. If these slices are removed,
then the error over the rest of the tensor is 2.78 per cent. The large
errors at the boundaries are likely due to undersampling at these
locations.

The monitor survey is reconstructed with error around
1.8 per cent over the whole tensor. While the reconstructed monitor
data has the largest error at its boundaries, it is not as severe as
for the baseline. In Fig. 9 we show the difference between the true
and reconstructed monitor data for the first and last slices. These
slices have errors around 14.68 and 5.63 per cent, respectively. The
interior (excluding these two slices of the tensor) has an error of
0.81 per cent. We attribute better performance for the monitor’s re-
construction to a smaller feathering angle than the baseline, leading
to more samples per row near the boundary.

After reconstruction, we compute the time-lapse difference. We
observe an accurate difference between the reconstructed data sets,
with the lower parabolic event clearly identified in Fig. 10. This
difference is within 4.52 per cent of the difference in the true data
between baseline and monitor data sets, demonstrating the success
of this method.

3.2 Real data example

We now illustrate the regularization and reconstruction method on
real time-lapse data from offshore Western Australia. For this exam-
ple we use the data from only a single shot location. After selecting a

shot in the baseline survey, we select the closest shot in the monitor
survey. The source locations in our example are are within 1.18 m
of each other.

Fig. 11 shows the acquisition geometry for our selected base-
line and monitor shots, as well as a streamer gather from each.
The baseline gather includes 12 streamers, each with 288 receivers.
The monitor gather includes 12 streamers as well, but each con-
tains only 204 receivers. For both surveys the receivers are spaced
approximately 12.5 m apart and the streamers are separated by ap-
proximately 51 m. The recording duration is 3.462 and 3.514 s for
the baseline and monitor data sets, respectively, with 2 ms sampling.

Before regularizing the surveys, we rotate the streamers to align
horizontally. We refer to the axes of this rotated coordinate system as
u and v. By aligning the receivers horizontally we seek to avoid the
undersampling issue that occurred at the boundaries of the synthetic
problem. Furthermore, if there is redundancy in the data across the
streamers, that is the rows are redundant, then the frontal slices
will have low rank. Due to the differences in the survey geome-
tries, we seek the rotation angle that results in the best compromise
between these surveys. For these data the baseline streamers ex-
perienced greater feathering than the monitor streamers. Thus, we
choose our rotation angle such that the first and last receiver for the
first streamer of the baseline survey are close to horizontal so that
multiple receivers are binned to each row. Other rotation angles re-
sult in some horizontal rows near the top and bottom of the domain
having very few baseline receivers.

To regularize the data, we choose a discretization such that no
grid cell contains more than one receiver. To find this discretiza-
tion we compute the differences between the coordinates of con-
secutive receivers in both the horizontal and vertical directions,
then take the minimum values of these differences for our grid
spacing in each direction. This selection of grid spacing paired
with the rotation of the data aims to minimize the total number of
grid cells under the constraint of binning receivers uniquely. Using
smaller cells increases the percent of dead traces, which conse-
quently increases the error. Using larger cells can cause ambiguities
as multiple traces may be binned into the same cell. The dimen-
sions of our discretized grid are 304 × 18. We plot the streamers
in the rotated coordinate system with the receivers on the regular-
ized grid shown in Fig. 12. The receiver locations on the grid are
then used to bin the traces at those locations into a tensor. This
binning process is performed for both baseline and monitor sur-
veys. In Fig. 13, we display a slice of the tensor for the baseline
and monitor surveys. Each slice corresponds to a single row of the
grid and contains all the traces from any receivers that are binned
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Figure 7. A gather from the reconstructed tensor for (a) the baseline and (b) monitor. The vertical dashed lines in (b) mark the edges of the domain, as the
monitor streamers are slightly shorter than the baseline streamers.

Figure 8. The baseline difference for the (a) first and (b) last slices of the 3-D tensor which contain the largest errors. These slices have relative errors of 57.64
and 34.82 per cent, respectively.

Figure 9. The monitor difference for the (a) first slice and (b) last slice of the monitor domain (corresponding to slices 5 and 99 in the baseline tensor). These
plots have been amplified by a factor of five to better show the difference. These slices have errors of 14.68 and 5.63 per cent, respectively.
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Figure 10. A slice of the time-lapse difference between the reconstructed
baseline and monitor surveys on their common domain. The true time-lapse
difference is concentrated in the lower parabolic event as is clearly observed.

to this row, with gaps between receivers regarded as zeros in the
tensor.

The slices in Fig. 13 are plotted on the same range in u. How-
ever we use dashed lines to indicate the subregion over which each
survey resides. While the baseline survey spans the entire grid hori-
zontally, covering all 304 discretized columns, the monitor survey is
contained within a subset, spanning only 218 of these columns. This
difference in span is due to the shorter cable lengths in the monitor
survey. Furthermore, the monitor survey has a greater initial offset
and does not contain data for the first column of the grid. The dif-
ference in the vertical alignment of these surveys in this coordinate
system causes them to span different sets of rows on the grid. The
monitor survey spans the first 17 rows of the grid. The baseline sur-
vey spans rows 2–18. The baseline and monitor survey data tensors
have approximately 33 and 34 per cent of the tubes empty for each
respective survey’s subdomain. Additionally, the difference in the
recording duration results in the baseline data having a smaller time
duration than the monitor data. These domain differences need to
be considered when examining the time-lapse difference post data
completion.

After binning the data from each survey, we apply TNN-ADMM
to complete each survey independently on their respective domains.
For the step size parameter in TNN-ADMM eqs (7) and (8) we use
ρ = 2 × 10−4 and a convergence threshold of ε = 10−3. In real
data examples where the ground-truth is unknown, we approximate
the best value for ρ among a pre-determined set of values from
the procedure described in Popa et al. (2021). In that paper, we
completed the same baseline data discussed here and considered
values of ρ from the set P = {10−5, 10−4, 2 × 10−4, 5 × 10−4,
10−3}. The procedure is as follows: data traces are arranged into
a tensor T with dimensions for receiver number, streamer number,
and time. Without binning, the tensor T is considered complete and
can thus be regarded as the ground-truth. We then apply a sampling
operator to decimate 60 per cent of the traces. For a specific ρ ∈ P,
we apply TNN-ADMM to fill in the missing data and calculate the
error between the reconstructed result and the original tensor T . We
choose as our value for ρ the one that produces the least error. The
ρ that yields minimal error by this procedure may not be the best ρ

for completion of the tensor obtained by binning the data, but in the

absence of the ground-truth it is our best estimate. In the experiments
described in this paper we repeat this process for the monitor data.
Fig. 14 shows the slices of the reconstructed tensor corresponding
to the same slices shown in Fig. 13 for the baseline and monitor
surveys. We observe the recovered result appears reasonable, with
events that are continuous although somewhat noisy.

Real data requires further processing to see a time-lapse differ-
ence. Post-stack processing techniques such as deghosting, phase
rotation, time-shift and amplitude correction are beyond the scope
of this work. The reconstruction of data in the pre-stack domain
aims to provide an improved starting point for these processing
methods.

4 D I S C U S S I O N

When applying this binning and recovery method to data in gen-
eral several factors must be considered. Low rank methods require
the observation to have higher rank than the underlying data, oth-
erwise minimizing an approximation of rank can not be expected
to succeed. In the synthetic case, the rank of the observation and
underlying data can be compared to ensure low rank reconstruction
is suitable. For real data while the rank of the observation can be
computed, the rank of the ideal reconstruction or ground truth is
not known. However, the norms of operators are correlated with the
norms of the observations they produce, that is for two operators
A and B if the norm of A is greater than the norm of B then it is
expected that the norm of A(X) will be greater than the norm of
B(X) for most X (Popa et al. 2019). Hence comparing the norm of
a sampling operator, A, to the identity operator can give an indica-
tion of whether the observation produced by the sampling operator,
A(X ), is likely to have a lower norm value than the (unknown) true
X .

For our real data example, the regularized baseline data had a
sampling operator with a TNN value of 2.71 × 105 while the identity
operator for this data has a TNN value of 1.25 × 105. For the
regularized monitor data the sampling operator and identity operator
have TNN values of 2.2 × 105 and 1.07 × 105, respectively. In
both cases since the TNN of the sampling operators are greater
than the identity we expect the observation has greater rank than the
(unknown) ground truth, hence low rank reconstruction is a suitable
approach for recovery.

When discretizing surveys there is freedom in the choice of the
mesh size. The size of the discretization should be selected based
on the needs of the experiment. For our experiments we choose the
mesh to be sufficiently small such that receivers are binned uniquely.
In general, finer discretizations are more computationally expensive
and increase the percent of empty bins, creating a more challenging
reconstruction problem. Any mesh coarser than the one we used may
bin multiple receivers into the same grid cell. This binning creates
ambiguity as to which trace to assign to the corresponding tube for
that bin in the tensor. In such a case one could apply interpolation
to produce a single interpolated trace at the centre of the cell from
the binned traces (Carozzi & Sacchi 2021).

For the synthetic problem we observed significant error near the
boundaries where undersampling is most pronounced. These errors
appear to be the time-shifted duplicates of the correct events. Since
the events in this example should be smooth with respect to time,
we hypothesize that a temporal smoothing operator could help to
reduce these errors.
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Figure 11. The acquisition geometry of (a) a baseline shot and (c) the monitor shot with matching source locations. The receiver locations are marked with
black (baseline) and grey (monitor) nodes. The source location is marked with a square in the top left for each survey. For the highlighted baseline and monitor
streamers, we plot the corresponding gathers in (b) and (d), respectively.

Figure 12. We rotate the streamers such that the receivers align horizontally. We plot (a) the receiver locations in this rotated coordinate system, using black
and grey to distinguish the baseline and monitor surveys, respectively, and mark the source location by a square on the left edge of the domain. Panel (b) shows
a blow up of the region in the upper left dashed box in panel (a). We use u and v to denote the horizontal and vertical axes of this rotated coordinate system,
respectively.

Figure 13. Slices of the (a) baseline and (b) monitor tensors for the row v = 11. Each slice is composed of traces from all receivers binned into this row. The
horizontal dashed line in (a) marks the end of the recording duration for the baseline traces, as the monitor data was recorded for a slightly longer interval. The
vertical dashed lines in (b) mark the edges of the monitor domain, as the baseline streamers are longer and cover a larger region for a single shot gather.
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Figure 14. The slices of the reconstructed tensor for (a) baseline and (b) monitor, corresponding to the same regularized tensor slices shown in Fig. 13. The
dashed lines indicate the boundary of each survey.

5 C O N C LU S I O N S

The low-rank tensor-based reconstruction method TNN-ADMM is
useful for reconstructing seismic data. We show how one can apply
this method to time-lapse data. In order to create comparable tensors
for two sets of data recorded over the same region, a regularization
method is required to bin traces. We bin receivers to unique grid cells
and record gaps as zero entries in the tensor to generate observed
data. By applying TNN-ADMM to this tensor for both baseline and
monitor surveys, we are able to reconstruct the data at every grid
location. This reconstruction allows the surveys to be compared.

In the synthetic example we showed how this method produced
an accurate time-lapse difference. For the real data example addi-
tional processing is required before taking a time-lapse difference.
However, the reconstructed results are encouraging as recovered
events appear continuous, and reconstructed pre-stack data is bene-
ficial for post-stack processing. Future studies can be conducted to
analyse the effects of differing mesh sizes, binning multiple traces
to grid cells, adjusting traces for centre offsets, implementing de-
noising into the reconstruction and applying a smoothing operator
to smooth events near the boundary of the domain.
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A P P E N D I X : T E N S O R A L G E B R A

To define the product between two tensors we use the t-product
described by Kilmer & Martin (2011) for order-3 tensors and later
generalized by Martin et al. (2013). For two order-3 tensors A ∈
R

n1×m×n3 and B ∈ R
m×n2×n3 , the product C = A ∗ B ∈ R

n1×n2×n3

can be computed in three steps. First, perform the Fourier transform
along each tube of both tensors and denote the transformed tensors
as Â and B̂, respectively. Secondly, compute the matrix product
between each frontal slice of Â and B̂, and denote this resulting
tensor as Ĉ. In the last step, apply the inverse Fourier transform to
each tube of Ĉ, and denote this resulting tensor as C, representing
the product between A and B.

We now generalize matrix properties that are relevant to the
tSVD. A diagonal tensor has the property that each frontal slice is
a diagonal matrix. The transpose of a tensor is denoted as X T and
is defined for order-3 tensors by taking the matrix transpose of each
frontal slice, and then reversing the order of the transposed slices
except for the first slice. The identity tensor, I, has the identity
matrix as its first frontal slice, with all other slices containing only
zeros. The product of the identity tensor with any other tensor X
results in the same tensor X . A real-valued tensor is orthogonal if
the product with its transpose results in the identity tensor, that is
X ∗ X T = I and X T ∗ X = I.

The Frobenius norm can be generalized from matrices to tensors
(Kilmer & Martin 2011). It is defined as the square root of the sum
of the absolute values of the entries squared,

||X ||F =
√∑

i, j,k

|Xi, j,k |2. (A1)

The Frobenius norm is used when comparing the relative error in
reconstruction and for the regularization terms in the TNN-ADMM
equations presented in the TNN-ADMM subsection.
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