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The maximum value of § is around @ = 0.27. The values of §{c) close to @ = (.271 are given
below.

o |0.2700 0.2705 0.2710 0.2715 0.2720

S(a)‘0.9784029 0.9784041 0.9784044 0.9784039 0.9784024

CHAPTER ] 6

The Properties of Gases

PROBLEMS AND SCOLUTIONS

16-1. In an issue of the journal Science a few years ago, a research group discussed experiments in
which they determined the structure of cesium iodide crystals at a pressure of 302 gigapascals
(GPa). How many atmospheres and bars 1s this pressure?

2.98 x 108 atm, 3.02 x 10° bar

16-2. In meteorology, pressures are expressed in units of millibars (mbar). Convert 985 mbar to torr
and to atmospheres.

739 torr, 0.972 atm

16~3. Calculate the value of the pressure (in atm) exerted by a 33.9-foot column of water. Take the
density of water to be 1.00 g-mL™".

We first convert the height of the column to metric units: 33.9 ft = 10.33 m. Now
P = pgh = (1.00 kg-dm™)(98.067 dm-52)(103.3 dm)
= 1.013 x 10* kg.dm".57?
= 1.013 % 10° Pa = 1.00 atm

16-4. At which temperature are the Celsius and Farenheit temperature scales equal?

—40°

16-5. A travel guide says that to convert Celsius temperatures to Farenheit temperatures, double the
Celsius temnperature and add 30. Comment on this recipe,
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A82 Chapter 16

This will provide a rough estimate of the temperature, decreasing in accuracy as temperature
increases. (Of course, it is not valid for Celsius temperatures below zero degrees.) At room
temperatures, it is accurate enough for ordinary purposes.

Actual T (°C) Actual T (°F) Travel T ("F)

0 32 30
10 50 50
20 68 70
30 86 90
40 104 110

16-6. Research in sarface science is carried out using ultra-high vacuum chambers that can sustain
pressures as low as 107' torr. How many molecules are there in a 1.00-cm® volume inside such an
apparatus at 298 K7 What is the corresponding molar volume V at this pressure and temperature?

We will assume ideal gas behavior, so

PV
— = (16.1a)
(1072 torr)(1.00 cm®)
(82.058 cm’ -atm-mol—*-K ) (760 torr-atm~ (298 K)
538 % 107 ¥ mol=n

so there are 3.24 x 10° molecules in the apparatus. The molar volume is

= = 1.86 x 10" cm®-mol™!

V=_=
. 5.38 x 107 mol

14 1.00 em®
n

16-7. Use the following data for an unknown gas at 300 K to determine the molecular mass of the gas.

P/bar |0.1000 0.5000 1.000 1.01325 2.000

p/g-L"|0.l771 0.8909 1.796 1.820 3.652

The line of best fit of a plot of P/p versus p will have an intercept of RT /M. Plotting, we find that
the intercept of this plot is 0.56558 bar-g~'.dm’, and so M = 44.10 g-mol ™.

16-8. Recall from general chemistry that Dalton’s law of partial pressures says that each gas in a
mixture of ideal gases acts as if the other gases were not present. Use this fact to show that the
partial pressure cxerted by each gas is given by

.
P = L ) =¥ P
I (znj total 77 total

where P, is the partial pressure of the jth gas and ¥, is its mole fraction.
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The ideal gas law (Equation 16.1) gives

PV =n,uRT =3 nRT
i

and
PV =nRT
i j

for all component gases j. Solving each expression for RT/ V and equating the results gives

Ptotai — PJ’
rmoom
or
n
P o= =2 v. P

J 7 total

16-9. A mixture of H,(g) and N, (g) has a density of 0.216 g-L™" at 300 K and 500 torr. What is the
mole fraction composition of the mixture?

The density of the mixture is 0.216 g-L™, so there are 216 g of gas present in one m® of gas. Take
the total volume of the mixture to be 1 m®. Then, using the ideal gas law (Equation 16.1), we find

PV =n_RT
101 325 Pa I
ey ) m* mntt(8.3145{-mol L. K1) (300 K)

26.7mol =n,,

500 torr (

There are 26.7 mol of gas per cubic meter. Let x be the number of moles of hydrogen gas.
Then n_, — x is the number of moles of nitrogen gas. Since M, = 2.01588 g-mol™' and
2

M, = 28.01348 g-mol™', we can write

216 g = (28.01348 g-mol ') (26.7 mol — x mol) + (2.01588 g-mol™") (x mol)
26x =532.6¢
x=205¢

The mole fractions of each component of the mixture are therefore

_ iy, _ 20.5 mol -
M T 267 mel

tot

0.77

and

Ry 6.2 mol '
=2 o 22O g3
Ny F 26.7 mol

tot

16-10. One liter of N (g} at 2.1 bar and two liters of Ar(g) at 3.4 bar are mixed in a 4.0-L flask to
form an ideal-gas mixture. Calculate the value of the final pressure of the mixture if the initial and
final temperature cf the gases are the same. Repeat this calculation if the initial temperatures of
the N, (g) and Ar(g) are 304 K and 402 K, respectively, and the final temperature of the mixture is
377 K. (Assume ideal-gas behavior.) :
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a. Initially, we have one liter of N, at 2.1 bar and two liters of Ar at 3.4 bar. We can use the ideal
gas law (Equation 16.1) to find the number of moles of each gas:

PV, PV
™= "R "= TRT
{21 x 10°Pa) {1 x 107 ') {34 x10°Pa) (2 x 107 m’)
B RT h '
_ 210Pam’ _ 680Pa-m’
- RT ~ RT

The total moles of gas in the final mixture is the sum of the moles of each gas in the mixture,
which is (890 Pa.m®)/RT. So (Equation 16.1)

nRT _ 800 Pa-m°
VT 0.0040 m®

b. Here, the initial temperatures of N, and Ar are different from each other and from the
temperature of the final mixture. From above,

p= =22 x%x 10° Pa=2.2bar

e n _21{)Pa-m3+680Pa-m3
ol TN, T UATT R(B0AK)Y  R(402K)

n

Substituting into the ideal gas law (Equation 16.1),

_ [210Pam’ N 680 Pa-m* ][ R(377TK)
T LRG04K) ' R(402X) || 0.0040 m®
=22 x 10° Pa = 2.2 bar

16-11. Ittakes 0.3625 g of nitrogen to fill a glass container at 298.2 K and 0.0100 bar pressure. It takes
0.9175 g of an unknown homonuclear diatomic gas to fill the same bulb under the same conditions.
What is this gas?

The number of moles of each gas must be the same, because P, V, and T are held constant, The
nuember of moles of nitrogen is

0.3625 ¢

Ry = == = 1.294 x 107 mol
N~ 280135 g-mol™! me
The molar mass of the unknown compound must be

B 09175 ¢
"~ 1.294 x 107 mol

The homonuclear diatomic gas must be chlorine (CL,).

= 70.903 g-mol™!

16-12. Calculate the value of the molar gas constant in units of dm®-torr- K- mol ™.

R = 831451 J-mol . X!

1 3
| =(8.31451Pa~m3-m01-1.K*1)( Odm) ( 760 torr
lm 1.01325 x 10° Pa

= 62.3639 dm®-torr- K" -mol ™!
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16-13. Use the van der Waals equation to plot the compressibility factor, Z, against £ for methane
forT = 180_ K, 189K, 190 K, 200 K, and 250 K. Hint; Calculate Z as a functionof ¥V and P as a
function of V¥, and then plot Z versus £,

For methane, ¢ = 2.3026 dm®-bar-mol = and b = 0.043067 dm®-mol™". By definition,

_ PV
"~ RT
and the van der Waals equation of state is (Equation 16.5)
RT
P B —aeli __—_a—z'
V—-b V

We can create a parametric plot of Z versus P for the suggested temperatures, shown below. Note
that the effect of molecular attraction becomes less important at higher temperatures, as observed
in the legend of Figure 16.4.

16-14. Use the Redlich-Kwong equation to plot the compressibility factor, Z, against P _for methane
for T = 180K, 189 K, 190K, 200 K, and 250 K. Hint: Calculate Z as a functionof V and P as a
function of V, and then plot Z versus P.

For methane, 4 = 32.205 dm® bar-mol=2-K'? and B = 0.029850 dm® - mol~". By definition,

i
T RT
and the Redlich-Kwong equation of state is (Equation 16.7)
RT A

P

“V-B TVV+B

We can create a paramctric plot of Z versus P for the suggested temperatures, shown below. Note
that the effect of molecular attraction becomes less important at higher temperatures, as observed
in the legend of Figure 16.4.

485
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16-15. Use both the van der Waals and the Redlich-Kwong equations to calculate the molar volume
of CO at 200 K and 1000 bar. Compare your result to the result you would get using the ideal-gas
equation. The experimental value is 0.04009 L.-mol ™!,

We can use the Neyg;ton-Raphson method (MathChapter G) to solve these cubic equations of state.
We can express f(V) for the van der Waals equation as (Example 16-2)

— —3 RT\—2 a— ab
WVi=V —|b+— |V + =V - —
fv) (+P) +P P

and f'(V) as
— —z RTN — a
"V)=3V —-2{b+—}V+—
P =372 (54 TT) 7
For CO, a = 1.4734 dm®-bar-mol and b = 0.039523 dm’-mol™" (Table 16.3). Then, using
the Newton-Raphson method, we find that the van der Waals equation gives a result of V =

0.04998 dm’-mol™". Likewise, we can express f(V) for the Redlich-Kwong equation as
(Equation 16.9)

— = RT— , BRT A \— AB
f(")—"—?‘”‘(“T—W) T TR
and f'(V) as
— =2 2RT_ BRT A
V=3V - V[ B+ - ——
) P ( +— TWP)

For CO, A = 17.208 dm®-bar-mol >-K'” and B = 0.027394 dm’ mol ™! (Table 16.4). Applying
the Newton-Raphson method, we find that the Redlich-Kwong equation gives a result of
V = 0.03866 dm*-mol™". Finally, the ideal gas equation gives (Equation 16.1)

v RT  (0.083145 dm?*-bar-mol - K"1{200 K)
P 1000 bar

The experimental value of 0.04009 dm®-mol™ is closest to the result given by the Redlich-Kwong
equation (the two values differ by about 3%).

= (.01663 dm® -mol™

16-16. Compare the pressures given by (a) the ideal-gas equation, (b) the van der Waals equation,
{c) the Redlich-Kwong equation, and (d) the Peng-Robinson equation for propane at 400 K
and p = 10.62 mol-dm™. The experimental value is 400 bar. Take ¢ = 9.6938 L. mol™? and
B = 0.05632 L-mol™" for the Peng-Robinson equation.
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The molar volume corresponding to a density of 10.62 mol-dm™ is 0.09416 dm® -mol™".

a. The ideal gas equation gives a pressure of (Equation 16.1)

P RT  (0.083145 dm®-bar-mol™ -K ") (400 K}

Ep— = 353.2 bar
v 0.09416 dm” -mol

b. The van der Waals equation gives a pressure of (Equation 16.5)

RT a
P==-~—
V—b vV
For propane, a = 9.3919 dm®-bar-mol™? and b = 0.090494 dm’ -mol™ (Table 16.3). Then

_ (0.083145 dm’ -bar-mol ™’ K400 K) ~9.3919 dm®.bar-mol
T 0.09416 dm’ mol™! — 0.090494 dm* mol™"  (0.09416 dm®-mol *)?
= 8008 bar

¢. The Redlich-Kwong equation gives a pressure of (Equation 16.7)

RT A
P== ——
V—-B T*V({V+B)

For propane, A = 183.02 dm®-bar-mol~2-K*? and B = 0.062723 dm>-mol™! (Table 16.4).
Then
(0.083145 dm>-bar-mol ™ -7 )(400 K)
~ 0.09416 dm®-mol ' — 0.062723 dm’-mol ™"
‘ 183.02 dm®-bar-mol - K/
- (400 K)'4(0.09416 dm®-mol™)(0.09416 dm®-mol™ + 0.062723 dm® mol™")
= 438.4 bar

d. The Peng-Robinson equation gives a pressure of (Eqguation 16.8)
p_ _RT o ‘ o _
V-8 VIV+H+BV - B
For propane, @ = 9.6938 dm®-bar-mol™ and 8 = 0.05632 dm®-mol™". Then

(0083145 dm? - bar-mol™-~1) (400 K)
"~ 0.09416 dm® mol ! — 0.05632 dm*-mol™’
9.6938 dm®-bar-mol ™
~(0.09416)(0.09416 + 0.05632) dm®-mol 2 + {£.05632)(0.09416 — 0.05632) dm®-mol 2
= 284.2 bar

The Redlich-Kwong equation of state gives a pressure closest to the experimentally observed
pressure (the two values differ by about 10%).

16-17. Use the van der Waals equation and the Redlich-Kwong equation to caiculate the value of the
pressure of one mole of ethane at 400.0 K confined to a volume of 83.26 cm’. The experimental
value is 400 bar. '

Here, the molar volume of ethane is 0.08326 dm®-mol™".
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a. The van der Waals equation gives a pressure of (Equation 16.5)

RT
P=c—-— :az
V—-b vy
For ethane, ¢ = 5.5818 dm®-bar-mol~% and & = 0.065144 dm® - mol™" (Table 16.3). Then

_ (0.083145 dm’ -bar-mol™" - K~)(400 K)  5.5818 dm®-bar-mol™?
o 0.08326 dm® mol™ — 0.065144 dm®-mol™'  (0.08326 dm® -mol™')?
= 1031 bar

b. The Redlich-Kwong equation gives a pressure of (Equation 16.7)

_RT A
" V-B TYV(V+B)

For ethane, A = 98.831 dm®-bar-mol™-K'/? and B = 0.045153 dm’-mol ! (Table 16.4). Then

(0.083145 dm®-bar-mol ™ - K1) (400 K}
"~ 0.08326 dm® -mol™ — 0.045153 dm* - mol™!
98.831 dm°®-bar-mol™2-K'/2
(400 K)'72(0.08326 dm’-mol )(0.08326 + 0.045153) dm® -mol ™!
= 410.6 bar

The value of P found using the Redlich-Kwong equation of state is the closest to the experimentally
observed value (the two values differ by about 3%).

16-18. Use the van der Waals equation and the Redlich-Kwong equation to calculate the molar density
of one mole of methane at 500 K and 500 bar. The experimental value is 10.06 mol-L™1.

We can use the Newton-Raphson method (MathChapter G) to selve the cubic equations of state
for V, and take the reciprocal to find the molar density. We use the experimentally observed molar
volume of 0.09940 dm*-mol™" as the starting point for the iteration. We can express f(V) for the
van der Waals equation as (Example 16-2)

HOE V3—(b+—P—) vy Lyt

and f'(V) as

7V = 3?2—2(b+-~—~)V+%
For methane, a = 2.3026 dm®-bar-mol™? and b = 0.043067 dm’-mol ! (Table 16.3). Then
{using the Newton-Raphson method) we find that the van der Waals equation gives a result of
V = 0.09993 dm’-mol™', which cotresponds to a molar density of 10.01 mol-dm™*. Likewise, we
can express f(V) for the Redlich-Kwong equation as (Equation 16.9)

— —31 RT_ BRT A — AB

and f'(V) as

o .2 2RT— (. BRT A
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For methane, A = 32.205 dm°®-bar-mol™-K'/? and B = 0.029850 dm*-mol™! (Table 16.4). Then
(using the Newton-Raphson method) we find that the Redlich-Kwong equation gives a result
of V = 0.09729 dm’ -mol™', which corresponds to a molar density of 10.28 mol-dm™. The
molar density of methane found using the van der Waals equation of state is within 0.5% of the
experimentally observed value.

16-19. Use the Redlich-Kwong equation to calculate the pressure of methane at 200 K and a density
of 27.41 mol-L™". The experimental value is 1600 bar. What does the van der Waals equation give?

The molar volume of the methane is 0.03648 dm” -mol ™.

a. The van der Waals equation gives a pressure of (Equation 16.5)

For methane, @ = 2.3026 dm®-bar-mol™ and b = 0.043067 dm’-mol~" (Table 16.3). Then

_ (0.083145 dm®-bar-mol - K" (200 K) 2.3026 dm®-bar-mol >
T 0.03648 dm® mol™! — 0.043067 dm®-mol™"  (0.03648 dm’ 'rnolf‘)z
= 4256 bar

b. The Redlich-Kwong equation gives a pressure of (Equation 16.7)

RT A

P=—  — —
V-8B TYVV+B)

For ethane, A = 32.205 dm®-bar-mol~2-K'? and B = 0.029850 dm®-mol~' (Table 16.4). Then

(0.083145 dm®-bar-mol™"- 1) (200 K)
= 0.03648 dm’-mol~' — 0.029850 dm’-mol "
32.205 dm®-bar-mol—%-K'/*
(200 K)'72(0.03648 dm®-mol)(0.03648 dm®-mol™ + 0.029850 dm’ -mol™)
== 1566 bar

"The value of P found using the Redlich-Kwong equation of state is within 2% of the experimentally
observed value. The value of P found using the van der Waals equation is obviously incorrect (as it
is negative). This is a good example of the problems associated with the van der Waals equation.

16-20. The pressure of propane versus density at 400 K can be fit by the expression

P /bar = 33.258(p/mol-L™") — 7.5884(p/mol - L™')?
+1.0306(p/mol- L™ — 0.058757(p/mol-L7)*
—0.0033566(0/mol-L™")* -+ 0.00060696(0/mol-1.")¢
for 0 < p/mol-L™! < 12.3. Use the van der Waals equation and the Redlich-Kwong equation to

calculate the pressure for p = 0 mol-L.™" up to 12.3 mol-L™". Plot your results. How do they
compare to the above expression?
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For CO,, A = 64.597 dm®-bar-mol - K'? and B = 0.029677 dm®-mol ™' (Table 16.4). Then

(0.083145 dm’-bar-mol™'- =) (280 K)

= 0.04545 dm’-mol~' — 0.029677 dm’-mol
64.597 dm®-bar-mol . K'7?
029677} dm’ -mol ™
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The van der Waals constants for propane are (Table 16.3) a = 9.3919 dm®-bar-mol™* and
b = 0.090494 dm>-mol ™. From Equation 16.5, we can write the pressure calculated using the van
der Waals equation of siate as
(280 K)'2(0.04545 dm’-mol™")(0.04545 + 0.
= 345 bar
b. The Peng-Robinson equation gives a pressure of (Equation 16.8)
P RT o
Vg VB +BV -8

RT a
- _

P= ——
o —b p
(0.083145 dm>-bar-mol™ . K™H(400K)  9.3919 dm®-bar-mol™>
= - 2
P

For CO,, & = 4.192 dm®-bar-mol ? and 8 = 0.02665 dm’ mol™'. Then

o1 —0.090494 dm* - mol™

Likewise, the Redlich-Kwong constants for propane are (Table 16.4) A = 183.02dm®-bar-mol - X'/

and B = 0.062723 dm®-mol™'. From Equation 16.7, we can write the pressure calculated using the
(0.083145 dm’*-bar-mol ' ") (280 K)

- 0.04545 dm*-mol™ — 0.02665 dm® - mot™"
4.192 dm®-bar-mol 2
1(0.04545)(0.04545 + 0.02665) + (0.02665)(0.04545 — 0.02665)] dm® moi=

Redlich-Kwong equation of state as
p= RT A
- p—l — B T1/2p—l(p—] + B)
_ (0.083145 dm®-bar-mol™" - K ") (400 K)
- ot —0.062723 dm® - mol ™!

= 129 bar
The Peng-Robinson result is much closer to the experimental value than the value predicted by the

Redlich-Kwong equation.

183.02 dm°®-bar-mol *.K'/?
16-22. Show that the van der Waals equation for argon at T = [42.69 Kand P = 35.00 atm can be

400K} (p ' 4 0.062723 dm®-mol )

V' 03664V +0.03802V —0.001210 = 0

We plot these equations expressing pressure as a function of o as shown below.
written as

where, for convenience, we have supressed the units in the coefficients. Use the Newton-Raphson

1200 -
1000 Experimental
————————————— van der Waals
800+ — — — Redlich-Kwong i
H !
2 600
Ay
400 . .
method (MathChapter ) to find the three roots to this equation, and calculate the values of the
200 density of liquid and vapor in equilibrinm with each other under these conditions.
0 For argen, a = 1.3307 dm®-atm-mol ? and = 0.031830 dm*-mol~' (Table 16.3). The van der
p / dm™> mol Waals equation of state can be written as (Example 16-2)
7 (p+ 27 27 2Ly
The Redlich-Kwong equation of state describes the data very well, while the van der Waals equation —let P + PP
— 0.082058)(142.69) | —= 1.3307— (1.3307)(0.031830
7 |0.03183 4 ¢ N Ny ¢ X )
35.00 35.00 35.00
T’ —0.36647" + 0.03802V — 0.001210 = 0
where we have suppressed the units of the coefficients for convenience. (The quantity V is expressed
in dm*-mol™'.) We apply the Newton-Raphson method, using the function

gives a markedly poorer approximation of the observed behavior, especially at high densities.
FON) =V —03664V +0.03802V — 0.001210

F'(V) =3V —0.7328V + 0.03802

16-21. The Peng-Robinson equation is often supertor to the Redlich-Kwong equation for temperatures
and its derivative

near the critical temperature. Use these two equations to calculate the pressure of CO,(g)
at a density of 22.0 mol-L™! at 280 K [the critical temperature of CO,(g) is 304.2 K]. Use
to find the three roots of this equation, 0.07893 dm*-mol™', 0.07073 dm*-mol™", and 0.21674 dm*-mol™!

o = 4.192 bar-L*-mol~2 and 8 = 0.02665 L.-mol " for the Peng-Robinson equation.
The smallest root represents the molar volume of liquid argon, and the largest root represents the

The molar volume of CO, is 0.04545 dm®-mol™".
The Redlich-Kwong equaticn gives a pressure of (Equation 16.7)
A

a.
RT G
P == - — |
V—B T7V({V+B
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molar volume of the vapor. The corresponding densities are 14.14 mol-dm™ and 4.614 mol-dm ™’
respectively.

3

16-23. Use the Redlich-Kwong equation and the Peng-Robinson equation 1o calculate the densities of
the coexisting argon liquid and vapor phases at 142.69 K and 35.00 atm. Use the Redlich-Kwong
constants given in Table 16.4 and take o = 1.4915 atm-L*-mol 2 and 8 = 0.01981 L-mol™" for
the Peng-Robinson equation,

a. Forargon, A = 16.566 dm®-atm-mol 2. K'? and B = 0.022062 dm*-mol~' (Table 16.4). The
Redlich-Kwong equation of state can be written as (Equation 16.9)

1 RT—» , BRT A \— AB
OZV_?V_(BJFT_FE};) T Tp
—1 (0.082058)(142.69)— 0.022062)(0.082058) (142,
0=7v"_¢ ) v _ (0.022062)% + ( ) Y142.69)
35.00 35.00

16.566 ] o (16.566)(0.022062)
(142.69)'%(35.00) (142.69)'7%(35.00)

0=V —03345V° +0.03176V — 0.0008742

where we have suppressed the units of the coefficients for convenience. (The quantity V is
expressed in dm®-mol~'.) We apply the Newton-Raphson method, using the function

f(V) = “173 - 0.3345V2 +0.03176V — 0.0008742
and its derivative
(V) =3V —0.6690V + 0.03176

to find the three roots of this equation to be 0.04961 dm® mol™', 0.09074 dm?-mol™!, and
0.19419 dm*-mol™". The smallest root represents the molar volume of liquid argon, and

~ the largest root represents the molar volume of the vapor. The corresponding densities are
20.16 mol-dm~ and 5.150 mol-dm™, respectively.

b. The Peng-Robinson equation is given as (Equation 16.8)
p_ RT _ o
V-8 VV+B+BV -8

This can be expressed as the cubic equation in V

> _RTN\ 2  (a—=3BP—28RT\_ FP+BRT—ap
OMV+(;B P)v+( 5 )V+ >

Substituting the values given in the text of the problem, we find that the Peng-Robinscen
equation for argon at 142.69 K and 35.00 atm becomes

(0.082058)(142.69)} a

0=V + [(0.01981) -

35.00
li(1.4915) — 3(0.01981)%(35.00) — 2(0.01981)(0.082058)(142.69) ] —
+ 1%
35.00
n (0.01981)°(35.00) + (0.01981)*(0.082058)(142.69) — (1.4915)(0.01981)
35.00

= V' — 03147V +0.02818V — 0.0007051
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where we have suppressed the units of the coefficients for convenience. (The quantity V is
expressed in dm*-mol~'.) We apply the Newton-Raphson method, using the function

F(V) =V — 03147V +0.02818V — 0.0007051
and its derivative
(VY =3V —0.6294V +0.02818

to find the three roots of this equation to be 0.04237 dm’-mol™", 0.09257 dm* mol~', and
0.17979 dm*-mol~'. The smallest roct represents the molar volume of Hquid argon, and
the largest root represents the molar volume of the vapor. The corresponding densities are
23.60 mol-dm~* and 5.562 mol-dm™, respectively.

16-24. Butane liquid and vapor coexist at 370.0 K and 14.35 bar. The densities of the liquid and
vapor phases are 8.128 mol-1."" and 0.6313 mol. L', respectively. Use the van der Waals equation,
the Redlich-Kwong equation, and the Peng-Robinson equation to calculate these densities. Take
o = 16.44 bar-L*-mol ™ and # = 0.07245 L-mol ' for the Peng-Robinson equation.

a. Forbutane, @ = 13.888 dm®-bar-mol ? and » = 0.11641 dm®-mol~' (Table 16.3). The van der
Waals equation of state can be written as (Example 16-2)

— RTY — —
Va—(b+T) V2+—V—@=O

2 P
- (0.083145)(370.0)7—=  13.888_  (13.888)(0.11641)
V- [0'11641 + 14.35 ] Vot aas T 14.35 =0

V' — 226027 +0.9678V — 0.1127 = 0

where we have suppressed the units of the coefficients for convenience. (The quantity V is
expressed in dm®-mol™'.} We apply the Newton-Raphson method, using the function

FV) =V — 22602V +0.9678V — 0.1127
-and its derivative
Ty =3V — 4.52047 + 0.9678

to find the three roots of this equation to be 0.20894 dm*-mol™", 0.30959 dm® mol™, and
1.7417 dm® mol'. The smallest root represents the molar volume of liquid butane, and
the largest root represents the molar volume of the vapor. The corresponding densities. are
4.786 mol-dm™ and 0.5741 mol-dm™, respectively.

b. For butane, A = 290.16 dm®-bar-mol™-K' and B = 0.08068 dm’-mol™' (Table 16.4). The
Redlich-Kwong equation of state can be written as (Equation 16.9)

3 RT_ & BRT A \— AB
0=V -5V ¥+ ~pmp)" “7Ep
_ = (0.083145)(370.0)—2 , . (0.08068)(0.083145)(370.0)
0=V 14.35 4 [(0'08068) + 14.35

290.16 ]Tf“ _ (290.16)(0.08068)
(370.0)'/3(14.35) (370.0)/*(14.35) -

0=T —2.1447 +0.8717V — 0.08481
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where we have suppressed the units of the coefficients for convenience. (The quantity V is
expressed in dm®-mol ') We apply the Newton-Raphson method, using the function

FVy =V — 2144V +0.8717V — 0.08481
and its derivative
FUVy =3V — 4288V + 0.8717

to to find the three roots of this equation to be 0.14640 dm*-mol™!, 0.35209 dm* mol™",
and 1.6453 dm®-mol™". The smallest root represents the molar volume of liquid butane, and
the largest reot represents the molar volume of the vapor. The comresponding densities are
6.831 mol-dm™ and 0.6078 mol-dm ", respectively.

c. The Peng-Robinson equation can be expressed as (Problem 16-23)

= RT\—2 [(a—3B8*P—28RT\— PP+ °RT —ap
0=V +(ﬁ——P—-)V +( 5 )v+ 7

Substituting the values given in the text of the problem, we find that the Peng-Robinson
equation for butane at 370.0 K and 14.35 bar becomes

(0.081345) (370.0)] 7

0=V + [(0.07245) —

14.35
n (16.44) — 3(0.07245)*(14.35) — 2(0.07245)(0.081345)(370.0) v
14.35
N (0.07245)*(14.35) + (0.07245)*(0.081345)(370.0) — (16.44)(0.07245)
14.35

=V —2071V +0.8193V — 0.07137

.where we have suppressed the units of the coefficients for convenience. (The guantity V is
expressed in dm®-mol'.) We apply the Newton-Raphson method, using the function

FM =V — 207117 +0.8193V — 0.07137
and its derivative
F'(Vy =3V —4.142V + 0.8193

to find the three roots of this equation to be 0.12322 dm®-mol™, 0.36613 dm’-mol™", and
1.5820 dm’-mol™'. The smallest root represents the molar volume of liguid butane, and
the largest root represents the molar volume of the vapor. The corresponding densities are
8.116 mol-dm™ and 0.6321 mol-dm °, respectively.

Below is a table which suramarizes the densities of Hiquid and vapor butane observed experimentally
and calculated with the various equations of state above.

Equation used Liquid p/mol-dm™ Gas p/mol-dm™>
Experimental 8.128 0.6313
van der Waals 4.786 0.5741
Redlich-Kwong 6.831 0.6078

Peng-Robinson 8.116 0.6321

The Properties of Gases

16-25. Another way to gbtain exprcssionsﬁfor 5hc van der Waals constants in terms of critical
parameters is to set (d P/d V), and (3*P/aV )y equal to zero at the critical point. Why are these
quantities equal to zero at the critical point? Show that this procedure leads to Equations 16.12
and 16.13. '

- These values are equal to zero at the critical point because the critical point is an inflection point in
a plot of P versus V at constant temperature.

p R _a
V—-b Vv
So
0Py  —RT 2a
(W)T_ (Vﬁb)2+~v_3 M
P _2RT ba
(avz)T_(V_b)s_$ (2)

If (aP/aV), and (3*P/9 Vz)T are zero at the critical point, then Equations 1 and 2 give

RTV, = 2a(V,—b)" (3)
and
2RTV.' = 6a(V, - b)’ 5

Multiplying Equation 3 by ZVC gives
2RTV,' =4aV (V, - b)
and then using Equation 4 yields
3aV (V. ~ b)Y =6a(V. ~ b)’
4V, =6V_—6b
3b =V, (16.13a)
Substituting Equation 16.13a into Equation 3 gives

RT (3p)* = 2a(3b - b)’
8ab’ 8a

T 275°R ~ 27bR (6130
Now substitute Equations 16.13a and 16.13¢ into the van der Waals equation to find P:
RT, a 8aR a a
P == — = (16.13h)

" V.—b V' 2IbRGh—b) (b} 275

[

Equation 16.12 follows naturally from these expressions for Vc, P,and T .

16-26. Show that the Redlich-Kwong equation can be written in'the form

BRT A . AB
P - P72 V*PTUZ

—  RT—
vV - TV2 _ (32 +

=0
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Now compare this equation with (V — V)* = 0 to get

3V, = RPE (1
v, = % E%E - B @
and
v, }f—i‘?ﬁ (3)
Note that Equation 1 gives

Now solve Equation 3 for A and substitute the result and Equation 4 into Eguation 2 to obtain
B +3VE +3V.B-V. =0 (5)
Divide this equation by Vj and let B /Vc = x to get
P43 +3x-1=0

Solve this cubic equation by the Newton-Raphson method (MathChapter G) to obtain x = 0.25992,
or

B = 0.25992V, (6)

Now substitute this result and Equation 4 into Equation 3 to obtain

252
A =042748 <
P

[4

‘We start with the Redlich-Kwong equation of state,
RT A

P== - — (16.7)
VB TYV{V+B)
‘We can rewrite the above equation as
P(V-B)(V+B)T”V=RT"’V(V+B)-A(V-B)
PTV (V' B') = RT*?V + RT*’VE — AV + AB
We express this equation as a cubic equation in V:
—  RT— , BRT A \—= AB
V—?V—(B +T—W)V_W:0 (a)
Expanding the equation (V — V:) = 0 gives
(V-V) =V -V +3VV-3V'V =0 (b)

The Properties of Gases

. . =3 2 = =9 . .
Setting the coefficientsof V', V', V, and V" in Equations a and b equal to one another at the critical
point gives

— RT
v, = P 1
— BRT, A
W, =8 -— + 5 2
- 3 AB
VC = P TI/Z . (3)
PV, 1
RT, ~ 3 @
We can solve Equation 3 for A to find
V. P10
A= —c 't
B
Substituting this result into Equation 2 gives
— 3
— BRTV vV pTH
3V imop e e °T,°2
¢ PV BPT
3V, =—B —38V + BV
B 387 3B
C VC VC

O0=x*43x>+3x—1

where we set x = B/V_. We solved this cubic equation using the Newton-Raphson method in
Example G-1 and found that x = 0.25992. Then B = 0.25992V _, and substituting into Equation 3

gives
FV. T 1/2? 2 _ AB
RT’; -G c R];

riryt_ 3AB
c c RT’;
. T)PV'R  TYVR
3B 3(0.25992)
PV_(RT\ TR
AR, (“P—)m
2 572
A =042748— (7)

c

16-27. Use the results of the previous problem to derive Equations 16.14.

Equation 6 of Problem 16.26 gives B = 0.2599270 and so

V. =3.84738 (16.14a)
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Now we can use Equation 7 of Problem 16-26 to write

RT \
= 0.42748RT"* (P—_°> v

[

4 _ 042748RTP
= et

[

<

Substituting Equation 4 from Preblem 16-26 and Equation 16.14a into the above expression gives

A = 3(0.42748)RT*(3.8473 B)

3/2 . A
© 7 3(0.42748)(3.8473)RB

A\
T =0.34504 | —
.= 0.3450 (BR)

which is Equation 16;14c. Substitute this last result into the final equation of Problem 16-26 to find

p _ DA274BROTI
© A

572
0.42748 AN
= R10.34504 [ —
A BR

ARV
= 0.029894W

which is Equation 16.145b.

16-28. YVrite the Peng-Robinson equation as a cubic polynomial equation in V (with the coefficient
of V' equal to one), and compare it with V- “70)3 = 0 at the critical point to obtain

s B =3V (1)
R S ’
% _ap gpRL _ g 2)
F P
and ‘ .
af  LRT .,
¢ e =V
P B P B . 3

[ c

(We write ¢, because « depends upon the temperature.) Now eliminate « / P, between Equations 2
and 3, and then use Equation 1 for V_ to obtain

648° +6,62R:jz +128 (Rn)z (RT“Y =0
£ E B)

C

Let 8/(RT /P} = x and get
645 +6x2+12x—1=0

Solve this equation using the Newton-Raphson method to obtain

RT
B = 0077796

c
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Substitute this result and Equation 1 into Equation 2 to obtain

(RT)*
o = 0.45724—=
) L
Last, use Equation 1 to show that
PCV“ = 0.30740
RT

First, we write the Peng-Robinson equation as a cubic polynomial in V, as we did in Problem 16-23.

— RT\ — —38*P —-2BRT\ . PB'P+pRT -
0= 4 g KT 74 B £ V-l—'B + 8 af @)
P P P
Expanding the equation (V — 73) =0 gives
(V-V) =V -V 437 V-37V =0 (b)

. ] = =2 = w0, . >
Setting the coefficientsof V', V', V, and V' in Equations a and b equal to one another at the critical
point gives

Rle . _3v 1
B P = ¢ (1
% 3p opRl gy 2
PC ‘ PC B ¢ ( )
Ctﬁ 3 RT 2 3
< —Ept =V 3
P, 2 P, B . (3)
Solving Equation 2 for e/ P, givés
% _ 37 p3p 4 opike
PC B ¢ PC
We substitute this last result into Equation 3 to find
7 v 2 RT, 2 RT, 1
0= Vc—ﬁ 3VC + 38 +2ﬁ“§*‘ + “""ﬁ""l’ﬁ
— L, RT —
=V, - 28" - f—= - 347,
PC
1 (RT ’ RT B {RT 2
—_ € ) 3_p2 e F c
n (5 ) w5 ()
RT\’ RT\? RT, RT, RT\? RT
==} -3 S} 437 - 7 54 - 27p—2 - 9| = 1885 — 9p°
B PC PC - PC N ﬁ

Set x = B/ (RT,/ P,) and the above equation becomes

64x° +6x° +12x — 1 =0
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Using the Newton-Raphson method (MathChapter ), we find x = (.077796 and so

RT,
P

[+

8 = 0.077796

We now substitute Equation 1 into Equation 2 and use the expression for 8 given above to write

[

— .., . RT
o, = P {3V, +3f + 26—

c

P (R "ap 4 apRE
cg(Pc—ﬁ)+,8+ﬁP

[+

RTN\’T1
=F ( P ) [5(1 — 0.77796)* + 3(0.077796) + 2(0.077796)]

[

(RT,)"
— 045724/
P

c

Finaliy, substitute the expression of 8 given above into Equation 1 to write

RT —_

(1-0.077796) == =3V,
0.92220RT, =3PV,
PV

0.30740 = ==
RT

[

16~29. Look up the boiling points of the gases listed in Table 16.5 and plot these values versus the
critical temperatures T . Is there any correlation? Propose a reason to justify your conclusions from
the plot. :

A graph of boiling points versus critical temperatures of the gases listed in Table 16.5 is shown
below. There appears to be a direct correlation between the boiling point of a gas and its critical

temperature.
300 °
2 ®
% 200}
B -
100 |
0 H | | ! |
0 100 200 300 400 500
T IK

[+

This is another iltustration of the law of corresponding states: if we compare the boiling points
of different gases relative to their critical temperatures, we find that all behaviors can be similarly
explained (hence, the constant slope in the figure).

_The Properties of Gases

16-30. Show that the compressibility factor Z for the Redlich-Kwong equation can be written as in
Equation 16.21.

The Redlich-Kwong equation of state is given by Equation 16.7. Thus

14 V\ RT A
= P={ — = —
(RT) (RT) V-B RT*(V+B)

V. o A
V—-B RT"(V+B)

or

Z =

We know from Equation 16.18 that

RETS? R
A = 0.42748 P° and B = 0.086640 > e

We can then write Z as

YA RT -1 R2T5/2 _ -1
7= V(V — 0.086640 P‘-‘) - (0.42743-P°—) [RT”2 (V +0.086640 If})]

C

¢ c

In the solution to Problem 16.26, we showed that 3-I7c P = RT,so0

7 - v 0.42748T7 (3V))
© V-0.086640(3V,) TY[V +0.086640 (37 )]
Y 1.28244

TV, -025992 T (V, +0.25992)

16-31. Use the following data for ethane and argon at 7, = 1.64 to illustrate the law of corresponding

states by plotting Z against VR.

Ethane (T = 500 K)

Argon (T =247 K)

Plbar V/L-mol~! Platm V/L-mel™!
0.500 83.076 0.500 40.506
2.00 20.723 2.00 10.106

10.00 4.105 10.00 1.999

20.00 2.028 20.00 0.9857

40.00 0.9%07 40.00 0.4795

60.00 0.646! 60,00 03114

80.00 0.4750 20.00 0.2279

100.0 0.3734 100.0 0.1785

120.0 0.3068 120.0 0.1462

160.0 0.2265 160.0 0.1076

200.0 0.1819 200.0 0.08630
240.0 0.1548 240.0 0.07348
300.0 0.1303 300.0 0.06208
350.0 0.1175 350.0 0.05626
400.0 0.1085 400.0 0.05219
450.0 0.1019 450.0 0.04919
500.0 0.09676 500.0 0.04687
600.0 - 0.08937 600.0 0.04348
700.0 0.08421 700.0 0.04108
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We can use Table 16.5 to find the critical molar volumes of ethane and argon (0.1480 dm?3-mol ™!
and 0.07530 dm’-mol ™", tespectively) and use the data given in the problem text in the equations
PV

7F=_"—
RT

and ?R =

S| =

to plot Z versus VR. Note that the pressures for ethane are given in units of bar, while the pressures
for argon are given in units of atm.

1.5
| o
» Ethane
1.3 o o Argon
Z .
1.1 @
&
- @
(())e @ o® o *®
0.9 gooo. S P©
1 I ! i | ] |
0 1 2 3 4 5 6 7

16-32. Use the data in Problem 16-31 to illustrate the law of corresponding states by plotting Z
against F,.

We can use Table 16.5 to find the critical pressures of ethane and argon (48.714 bar and 48.643 atm
respectively) and use the data given in Problem 16-31 in the equations

>

rv P
L= — and P =—
RT A 4
to plot Z versus F,.
1.5
» Ethane o
B o Argon
1.3 o
Z B [&]
1.1} s}
3
#5% 3
0.9+ 883 8 g 8
L ! i L 1 ! 1

0 2 4 6 8 10 12 14
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16-33. Use the data in Problem 16.31 to test the quantitative relizbility of the van der Waals equation
by comparing a plot of Z versus V|, from Equation 16.20 to a similar plot of the data.

We can nse Equation 16.20 to express Z as 2 function of VR:

Y, 9
C Ve-1/3 8V,.T,

We can substitute the appropriate values of T, = T/ 7, (Problem 16-31) and plot Z versus VR for
both argon and ethane. The plot below shows the lines generated by applying the van der Waals
equation and the actual data from Problem 16-31.

1.5
| o 2 Ethane
o Argon
1.3F o —— van der Waals ethane
7 o ===~ van der Waals argon
1.1
0.9
0

16-34. Use the data in Problem 1 6.31 to test the quantitative reliability of the Redlich-Kwong equation
by comparing a plot of Z versus V from Equation 16.21 to a similar plot of the data.

We can use Equation 16.21 to express Z as a function of VR:

_ Ve 1.2824
C Ve —025992  TA(V, +0.25992)

We can substitute the appropriate values of 7, = T/T, (Problem 16-31) and plot Z versus VR for
both argon and ethane. The plot below shows the lines generated by applying the Redlich-Kwong
equation and the actual data from Problem 16-31.

1.5¢
L e Ethane
o Argon
1.3r — Redlich-Kwong ethane
7 B ---- Redlich-Kwong argon
1.1}
i 2
0.9 i
i 1 1 |
0 6 8
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16-35. Use Figure 16.10 to estimate the molar volume of CO at 200 K and 180 bar. An accurate
experimental vahe is 78.3 cm® -mol ™.

We use the critical values in Table 16.5 to write

T 200K
T,= == =151
T~ 13285K

and

P 180b
P = ar

— = ————— =515
R P 34935 bar

From Figure 16.10,

:u'”ts
| =g
&
[
B0
N

We can now find V:

0.85 {0.083145 dm’ -bar-mol ™' -K™') (200 K)

180 bar
78.5 cm® mol ™!

V &
V=

in excellent agreement with the experimental value.

16-36. Show that B, (T) = RT B,,(T) (see Equation 16.24).

We begin with Equations 16.22 and 16.23,

PV _ ., By By (D)

—3
RT = = = + O(V)

and

PV )
w7 =1+ B (D P+ 0P,

We now solve Equation 16.23 for P:

RT PRT _
P=—0t— B, (D+ o)

Substinating this expression for P into Equation 16.22 gives

By, (1) RT PRT

1+ +0(V)=1+B,,(T) ~ + By (M + 0"

and equating the coefficients of ¥~ on both sides of the equation gives

B,, (I') = RTB,, (T)

16-37. Use the following data for NH,(g) at 273 K to determine B, ,(T) at 273 K.

P/bar | 0.10 020 030 04¢ 050 060 070

(Z—I)/10'4t1.519 3.038 4557 6.071 7583 9002 10.551

The Properties of Gases
Ignoring terms of O (P?), we can write Equation 16.23 as
Z—1=8,,(1P

A plot of (Z — 1) versus pressure for the data given for NH, at 273 K is shown below.

0 0.2 0.4 0.6 0.8
P/ bar

The slope of the best-fit linc to the datais B,, and is equal to 15.0 x 107 bar™.

16-38. The density of oxygen as a function of pressure at 273.15 K is listed below.

Platm | 0.2500 0.5000 6.7500 1.0000

p/g-dm—3[0.356985 0.714154 1.071485 1.428962

Use the data to determine B,,(T) of oxygen. Take the atomic mass of oxygen to be 15.9994 and
the value of the molar gas constant to be 8.31451 J-K~'-mol™! = 0.0820578 dm’-atm-K~'-mol~".

We can express the molar volume of oxygen as

(15.9994 g-mol™"}

V=
Jol
where p has units of g-dm™. Using Equation 16.22 to express Z and neglecting terms of 0(7_2),
we find
Z-1=V BT
or

P(15.994 g-mol™)
poRT

- 1=V "B (D

A plot of (Z — 1} versus V' for the data given for oxygen at 273.15 K is shown below.

—-0.5001

-0.5002

-0.5003

(Z-1)

-0.5004

! b | | 1

I
3 4 5 6 7 8 9
v'/10? dm® mol™!

=0.50035
2
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The slope of the best-fit line to the data is B,,, and is equal to —5.33 x 107 dm®-mol ™.

16-39. Show that the Lennard-Jones potential can be written as

#* 12 r [
u(r} =& (—) -2 (—)
r r

where r* is the value of r at which u{r} is a minimum.

The Lennard-Jones potential is (Equation 16.29)

o=w[(®)" ()]

From Example 16.9, we know o = 2718 so
o\ 2 - \©
u(r)=4e |:(21/6r) - (Zl/ﬁr) }

_45(1’*)’2 45(1’*)6_ r*\ 2 5 F\°
I PO _EW;‘ _8?

16-40. Using the Lennard-Tones parameters given in Table 16.7, compare the depth of a typical
Lennard-Jones potential to the strength of a covalent bond.

The parameter £ is the depth of a Lennard-Jones potential. From Table 16.7, an average value of
&/k,; ~ 139 K for one molecule. So, for one mole,

£~ (139K, N, ~ T~ 1kJ

In comparison, the strength of a covalent bond is on the order of 100 k¥ per mole (Table 13.2),

16~41. Compare the Lennard-Jones potentials of H {g) and O, (g} by plotting both on the same graph.

Shown below are plots of 4(r} versus r for both H,(g) and O,(g). Oxygen has a deeper potential
well than hydrogen and the minimum of its potential curve occurs at a higher value of  than the
minimum of the potential curve of hydrogen.

1501
= 100F
<
=
- L
g
=~ 50
o
= -

0.0

| | | |

200 400 600 800
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16-42. Use the data in Tables 16.5 and 16.7 to show that roughly e/k; = 0.75 T and b, = 0.7 Vc.
Thus, critical constants can be used as rough, first estimates of € and b, (= 2;r1r1\’Acr3 /3).

Let us select argon as a representative molecule. For Ar, e/k, = 120 K, b, = 50.0 cm’ -mol ™,
T =15095K,and V_= 75.3 cm’-mol™".

0757 =113K comparedto &/k; =120K
0.7V_=53cm’mol™ comparedtc  &,=50.0cm®-mol™’

The equivalencies stated in the problem text hold for argon.

16-43. Prove that the second virial coefficient calculated from a general intermolecular potential of
the form

’
u(r) = (energy parameter) x f ( distance parametel')

rigorously obeys the law of corresponding states. Does the Lennard-Jones potential satisfy this
condition?

Begin with Equation 16.25,
B, (TY=-272N, j;w[e‘“(’)“‘nl" — 1}rdr

Letu(r) = Ef (r/rn) and T™ = k, T, so that we can write B,, (T} as

B, (T*) = —2nN, '/;m{e—’f'f(’/’u)”* — 1rdr
Now let r/r, = r,, where r, is the reduced distance variable. Then dr = r dr,, so we can write

B, (T*) = —2nr, N, j.m[e'E‘f(’n)/T’ —1ldr,

]
We can divide both sides by —2mrr,>N, to obtain B, as a function of only reduced variables:
BZV*(T*) _ [)m[e-s-f(rk)/i"* — 11dr,

Therefore, the functional form of u(r) given in the problem text rigorously obeys the law of
corresponding states. The Lennard-Jones potential can be written as (Equation 16.29)

vo=4](2)"- ()] =mm-n

where E is an energy parameter and x is a distance parameter (x ~ r~'). So the Lennard-Jones
potential can be written as Ef (r} and so satisfies the conditions of the above general intermolecular
potential.
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16—44. Use the following data for argon at 300.0 K to determine the value of B,,,. The accepted value
is —15.05 em®-mol ™",

Platm o/mol-L7"  Pfatm  p/mol. L™

0.01000 0.000406200 0.4000 0.0162535
0.02000 0.000812500 0.6000 0.0243833
0.04000 0.00162500  0.8000 0.0325150
0.06000 0.00243750  1.000  0.0406487
0.08000 0.00325000  1.500  0.0609916
0.1000  0.00406260  2.000  0.0813469
0.2000 0.00812580 3.000  0.122094

We can use Equation 16.22 to express Z — 1 (neglecting terms of 0(7—2)) as
—-1
Z—-1=V B (T)=pB, (T

A plotof (£ — 1) versus V! for the data given for oxygen at 273.15 K is shown below.

0.0¢

-10.0

(Z-1)710™*

~20.0 1 | 1 1 1 )
0.02 0.06 0.10 0.14

p / mol-dm™?

The slope of the best-fit line to the data is B,, and is equal to —15.13 cm® - mol .

16-45. Using Figure 16.15 and the Lennard-Jones parameters given in Table 16.7, estimate B, (T)
for CH, (g) at 0°C.

For methane, €/k, = 149 K and 2ra’N, /3 = 68.1 cm® mol™' (Table 16.7). Then (by definition
of T%)
kT 273.15K

"= *2—= =1.83
€ 149 K

From Figure 16.15, we estimate B3, (T™) = —{.9. Then (also by definition)
2RG3NAB§V(T*)
3

B,,(273.15K) = a7 —60 cm’mol

16—46. Show that B,,(T) obeys the law of corresponding states for a square-well potential with a fixed
value of A (in other words, if all moelecuales had the same value of A).

We use Equation 16.25 to express 8, (T):

B, (T) = —ZIrNAf {87“{’)/"37‘ — 1] rdr
0
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where, since we have a square-well potential of fixed value A,

w(r) = oo if r<o
= —¢ if o<r<io
= 0 if do<r

We can now integrate B, (T) over the three intervals 0 < r < 0,0 <r < Ao, and o < 7 < 00

o ha
B, (T)= —ZTrNAj (0 — 1) r’dr - ZnNAf [e/%T — 1] r*dr +0
] o

3 Mot — o?

=27N, (%)~ 27N, (e6” — 1) L
3 3
_ ZJINAJ3 '

=— = - -1) (s -1)]

If we divide B, (T) by ¢* and let this quantity be a reduced value of B, (7T), this reduced second
virial coefficient will be molecule-independent and therefore satisfy the law of corresponding states.

16-47. Using the Lennard-JTones parameters in Table 16.7, show that the following second virial

cofficient data satisfy the law of corresponding states.

Argon Nitrogen Ethane
T/K B, (T) T/K B, (T) T/K. B, (T)
/1073 dm’ - mol ™! /1077 dm’ - mol ™! /1073 dm* - mol™!

173 -~64.3 143 —79.8 311 —164.9
223 —37.8 173 -51.9 344 —1325
273 =221 223 ~264 378 ~110.0
323 —11.0 273 —10.3 411 -90.4
423 ++1.2 323 —03 444 —74.2
473 4.7 373 +6.1 478 -~59.9
573 11.2 423 11.5 511 ~47.4
673 15.3 473 15.3

573 20.6

673 235

Find the reduced parameters of each gas by dividing T by £/k, and B, by 2no’N /3 (Table 16.7).
Below, we plot B;, (T) versus T* for each gas.

# o @ O B
0.0 |- g @ "
m
- n )
& &AA m Argon
£ —1.0 1 AA i o Nitrogen
[} d‘;l& & Ethane
A
-2.0F
] ! ] ] 1 !
2 3 4 5 6 7
T*
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The data points for all three gases fall on the same curve, consistent with the law of corresponding
states.

16-48. In Section 16-4, we expressed the van der Waals equation in reduced units by dividing P,
V, and T by their critical values. This suggests we can write the second virial coefficient in
reduced form by dividing B, (T) by Vc and T by T (instead of 2 NAU3 /3 and e/k as we did in
Section 16-5). Reduce the second virial coefficient data given in the previous problem by using the
values of Vc and T in Table 16.5 and show that the reduced data satisty the law of corresponding
states.

We find the redmgd parameters of each gas by dividing T by 7, and B, by VC (Table 16.5). Below,
we plot 8,,(T)/V_vs. T/T_for each gas.

0.4
ja]
0Om H Fu i
I 0.0 o A
=S g
o~ AR
S —o4f e = Argon
\é 7" o Nitrogen
) o8l 4 Ethane
e
] | | ]
1 2 3 4 5
T/Tc

The data points for ali three gases fall on the same curve, consistent with the law of corresponding
states.

16-49. Listed below are experimental second virial coefficient data for argon, krypton, and xenon.

B, (T)/10%dm*-mol ™!

/K Argon  Krypton Xenon

173.16 —63.82
223.16 -—36.79
273.16 =2210 -62.70 -154.75
298.16 —16.06 . —130.12
323.16 —-11.17 —4278 -110.62
34816 —7.37 —95.04
373.16 —4.14 -29.28 —82.13
398.16 096

42316 +146 -—18.13 —62.10
473.16 49% 1075 —46.74
573.16 1077 4042 -25.06
673.16 15.72 742 —9.56
773.16 17.76 12.70 —0.13
873.16 19.48 17.19 +7.95
973.16 14.22

Use the Lennard-Jones parameters in Table 16.7 to plot Bj,(T™), the reduced second virial
coefficient, versus T, the reduced temperature, to illustrate the law of corresponding states.
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Find the reduced parameters of each gas by dividing 7 by £/ k, and B, by 2no’N /3 (Table 16.7).
Below, we plot By, (T) versus 7' for each gas.

states.

0.5 s
B
a m oFf
0.0 gu® fan
o o
~ =0.5 1 ® Argon
*DQN 1ok . o Krypton
’ 2 A& Xenon
~1.5a
4 | | \ | !
3 4 5 6 7

The data points for all three gases fall on the same curve, consistent with the law of corresponding

16-50. Use the critical temperatures and the critical molar volumes of argon, krypten, and xenon to
illustrate the law of corresponding states with the data given in Problem 16-49.

‘We find the reduced parameters of each gas by dividing T by T_ and B,,, by VC (Table 16.5). Below,
we plot B, (T)/V_vs. T/ T, for each gas.

stafes.

A Dm 0O 8 ° =
0.00 |- o A
I>° w5
w =050 ® Argon
~ ilﬂ o Krypton
QQN _1o00l AA 4 Xenon
A
! | i
3 4 3
T/T

The data points for all three gases fall on the same curve, consistent with the law of corresponding

16-51. Evaluate B, (T™) in Equation 16.31 numerically from T* = 1.00 to 10.0 using a packaged
numerical integration program such as MarhCad or Mathematica. Compare the reduced second
virial coefficient data from Problem 1649 and B, (T™) by plotting them all on the same graph.
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Below is a table with some representative values of B3, (T”) calculated using the numerical
integration package in Mathematica.

T* B, (T

1.00 —2.538081336
2.00 —0.6276252881
3.00 —0.1152339638
4.00 0.1154169217
5.00 0.2433435028
6.00 (.3229043727
7.00 0.3760884671
8.00 0.4134339539
9.00 0.4405978376
10.00 0.4608752841

The plot below shows both the curve obtained from numerically integrating B3, (T™) and
the reduced second virial coefficient data from Problem 16-49. The numerical integration is an
excellent fit to the data.

0.0
*/—\ |
]
;:: —— Numerical integration
~ 1.0
a #  Bxperimental data
9oL \ E ] : | \
2 3 4 3 6 7
T*

16-52. Show that the units of the right side of Equation 16.35 are energy.

P
induced (4:,1, 80)2?"6 (431"80)2?"6

1

We know that a/4m g, has units of m, dm g, has units of C-V~'.m™, 1 has units of C-m, and r has

units of m. Thus
(C-m)*m’

units[uinduaed(r)] = m =C.V=]

16-53. Show that the sum of Equations 16.33, 16.35, and 16.36 gives Equation 16.37.

The sum of these three equations is

_ pyo, -+ n““%al T 13 11, o, oy _1_
2 (dlrr.so)2 r®

(e ’r®  (dme P (GkyT) r° L+ 1,
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For identical atoms or molecules, { = 12 =1, @, = =, and ty =ty = (i, and so the sum

becomes
2t Io?
(2‘“2& + Rl + 3_0!)

T() = —
w0 T 4

(431 80)2 rS
The cocfficient of the r® term, Cs, 1s therefore

2t T 3. Ia?
Cs = Mz + & iy - 3
3dme)k, T (4me)* 4 (dmey)

as in Equation 16.37.

16-54. Compare the values of the coefficient of r~° for N,(g) using Equation 16.37 and the
Lennard-Jones parameters given in Table 16.7.

Using Equation 16.37, we find that
2t 20 3 Ia?
Co= - Z + - Fianiy )
3dme) kT = (dme,)® 4 (dme,)
=0+ 0+0.75(2.496 x 1072 1) (1.77 x 107 w’)*
=586%x 107" J.m®

Using the Lennard-Jones parameters,

C, = 4e0® = 4—k 0"
B

=4(95.1K)(1.381 x 107# J.K™ (370 % 10712 m)ﬁ
=135x 107" Jm®

The coefficient of r ¢ obtained using the Lennard-Jones parameters is about twice that obtained
using Eguation 16.37.

16-55. Show that

B, (T) =B — ﬁ

and
By (1) = B4 o
3 RT /2

for the Redlich-Kwong equation.

Begin with the Redlich-Kwong equation (Equation 16.7):

__RT A
V-B TAV(V+B)

P




514 Chapter 16

Expanding the fractions 1/(1 — B/V) and 1 /(1-+ B/V) (Equation 1.3) gives
B B? —3
Tﬂ_z —:—?—O(V )
E _ A " RT —3
v 1/272 T lez =0
We then use the definition of Z to find that

ZPV - A'+]+A B B o
RT =~ Ry v ) v ﬂ

We compare this with Equation 16.22,
Bzv(T) w( }
v v

RT B
P=- {142 +——+0(V b
v v

=1+

+O(V)

Setting the coefficients of 1/V and 1 /—172 equal to one another gives

A
BEV =B - RT2
and
AB
—_ 2
B3V = B"+ RT3/2

16-56. Show that the second and third virial coefficients of the Peng-Robinson equation are
B, (T -
gv( ) )8 RT
and

20

By (D)= F +

Begin with the Peng-Robinson equation (Equation 16.8):

P:_RT B o

V-8 V{V+8)+8(V-8)
__RT =« 1
V(- V7 - (%-2)

Expanding the fractions 1/(1 — 8/V) and 1/(1 — ﬁz/vz —28/V) {Equation 1.3) gives

RT g g ] (ﬁ2 25) (;sﬂ 28\
P = 14 = +——|—OV I —_— — — — = =
V[ vV (V) Vz{mi- =) = V)+0(V)

Vv

__RT g £ 28 =
1 L il

V[+V+ + OV )} V2[1+V+O(V )]

We then use the definition of Z to find that
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We compare this with Bquation 16.22,

z:1+B”’_(T) 3"( )+O(V)
v v

Setting the coefficients of 1/V and 1 /V° equal to one another gives

o
Bzv =6- RT
and
2a
+
=# RT

16-57. The square-well parameters for krypton are £/k; = 136.5 K, o = 327.8 pm, and A = 1.68.
Plot B,,(T) against T and compare your results with the data given in Problem 16-49.

From Problem 16.46, we know that, for a square-well potential,

B, (T) = [l - ()L3 - 1) (/5" — 1)]

_ 2m(6.022 x 10” mol™"}(327.8 pm)’
B ' 3
x {1 —[(1.68)* — 1] (¢ /" — 1]}

2N, o’

The plot below shows both the square-well potential curve and the experimental data from
Problem 1649 for krypton. The square-well potential is a very good fit to the data.

T

5 O

S
& -20F

2 — Square-well potential
b —-40F ¢ Experimental data
nr?
-60 5
1 I L | 1 |

300 500 700 500
T/K

16-58. The coefficient of thermal expansion « is defined as

1 {aV
=T \eT
,

Show that

for an ideal gas.
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For an ideal gas, PV = RT. Taking the partial derivative of both sides of this equation with respect
to T gives

and so

16-59. The isothermal compressibility « is defined as

1 {av
K=—=1—
ViaP

T

Show that

for an ideal gas.

For an ideal gas, P = RT/V. Taking the partial derivative of both sides of this equation with

respect to P gives
—RT {0V
"= \ep
4 T

and so

MATHCHAPTER

Partial Derivatives

PROBLEMS AND SOLUTIONS

H-1. The isothermal compressibility, &, of a substance is defined as

1/3V
Kp=——{—
T TV A\sP/,

(Obtain an expression for the isothermal compressibility of an ideal gas.

For an ideal gas, PV == nRT. Taking the partial derivative of both sides of this equation with

respect to P gives
apP av aT
Vi— 1| +P{—1 =nR[—
dP /, ar/, aP/,
‘ av
V+Pi—1 =0
o (&),

Then

I
<~
T
@@
E
—
-
I
| = =

H-2. The coefficient of thermal expansion, «, of a substance is defined as

1 /aV
o=—1\—=
VAT /,

Obtain an expression for the coefficient of thermal expansion of an ideal gas.




