CHAPTER 1

The First Law of Thermodynamics

PROBLEMS AND SOLUTIONS

19-1. Suppose that a 10-kg mass of iron at 20°C is dropped from a height of 100 meters. What is the
kinetic energy of the mass just before it hits the ground? What is its speed? What would be the final
temperature of the mass if all its kinetic energy at impact is transformed into internal energy? Take
the molar heat capacity of iron to be C p = 25.1T-mol™"-K " and the gravitational acceleration
constant to be 9.80 m-s~2.

Just before the mass hits the ground, all of the potential energy that the mass originally had will be
converted into kinetic energy. So '

PE = mgh = (10kg)(9.80 m s (100 m) = 9.8 kJ = KE

Since kinetic energy can be expressed as mv? /2, the speed of the mass just before hitting the ground

18
(2KE)”2
7 J—— _—
f m

For a solid, the difference between C, and €, is small, so we can write AU =nC,AT
(Equation 19.39). Then

{2(9.8 kI

12
= 44 m-g”!
10 kg ] s

9.8 k]
AT =

. =22K
( 1x10'g

W) (251 J-lTlOl_] 'K_])

The final temperature of the iron mass is then 22.2°C,

19-2. Consider an ideal gas that occupies 2.50 dm” at a pressure of 3.00 bar. If the gas is compressed
isothermally at a constant external pressure, P_, so that the final volume is 0.500 dm’, calculate
the smallest value P can have. Calculate the work involved using this value of P, .

Since the gas is 1deal, we can write

p _ AY _ (3.00ban)(2.50 dm’)

= 15.0 bar
2Ty, 0.500 dm’®

The smallest possible value of P_ is P,. The work done in this case is {(Equatien 19.1)

w=—P_ AV = (~15.0 bar)(—2.0 dm’)

ext

( 8.3145 F-mol™" - K 3000
0.083145 bar-dm’® mol "K' ]
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19-3. A one-mole sample of CO,(g) occupies 2.00 dm’ at a temperature of 300 K. If the gas is
compressed isothermally at a constant external pressure, P, so that the final volume is 0.750 dm?,
calculate the smallest value £, can have, assuming that CO,(g) satisfies the van der Waals equation
of state under these conditions. Calculate the work involved using this value of P, .

The smallest value P can have is P,, where P, is the final pressure of the gas. We can use the van
der Waals equation (Equation 16.5) and the constants given in Table 16.3 to find F,:

h= VR? b "Va_z

2 2
_ (0.083145 dm’-bar-mol™! -K_l)(300 K) 3.6551 dm® bar-mol™?
~ 0.750 dm’-mol ' — 0.042816 dm® -mol~ (0.750 dm® - mol ™ ")?
= 28.8 bar

The work involved is (Equation 19.1)

w=—PAV = —(28.8 x 10° Pa)(—1.25 x 10 m®) = 3.60 kJ

19-4. Calculate the work invelved when one mole of an ideal gas is compressed reversibly from
1.00 bar to 5.00 bar at a constant temperature of 300 K.

Using the ideal gas equation, we find that

aRT nRT
V= 7 and v, = >

1 2

We can therefore write V,/V, = P,/ P,. Now we substitute into Equation 19.2 to find

RT
szmedV=man dv

] Vz P]
= —nRTIn{—=]=-—nRThi—
i P,

= (—1 mol)(8.315 J-mel™" . K™")(300 K) In0.2 = 4.01 kJ

19-5. Calculate the work involved when one mole of an ideal gas is expanded reversibly from 20.0 dm’
t0 40.0 dm” at a constant temperature of 300 K.

We can integrate Equation 19.2 to find the work involved:

v,
w==—nRTIn| =
Y]

= (—1 mol}8.315 J-mol™" " K™)(300K) In2 = —1.73 kJ

19-6. Calculate the minimum amount of work required to compress 5.00 moles of an ideal gas
isothermally at 300 X from a volume of 100 dm® to 40.0 dm’.

The First Law of Thermodynamics

We note that the minimum amount of work required is the amount of work needed to reversibly
compress the gas, so we can write Equation 19.2 as

v
W, =w =—nRT1n(—2)
Imn rev V

1

= (—5.00 mo)(8.315J. mol - K 300 K) In0.400 = 11.4 kJ

19-7. Consider an ideal gas that occupies 2.25 L at 1.33 bar. Calculate the work required to compress
the gas isothermally to a volume of 1.50 L at a constant pressure of 2.00 bar followed by another
isothermal compression to 0.800 L at a constant pressure of 3.75 bar (Figure 19.4). Compare the
result with the work of compressing the gas isothermally and reversibly from 2.25 L to 0.800 L.

We can use Equation 19.2 to describe the work involved with the compressions under different
circumstances.

a. 'Two-step process, each step at constant external pressure
i.  From (2.251., 1.33 bar) to (1.50 L, 2.00 bar),

W= j P_dV =(-2.00bar)(1.50 L — 2.251)(100 J-bar™-dm™) = 1507

ii. From (1.50 L, 2.00 bar) to {0.800 L, 2.50 bar),

ext

w=— j{ P_dV = (—3.75bar}{0.800 L — 1.50 L)(100 J-bar'-dm™) = 2637

The total work involved in the two-step process is +413 T,
b. Reversible process
Because the gas is ideal, PV = nRT. We can then write

PV = (2.251)(1.33 bar)(100 T-bar~'-dm™>) = 299.25 T = nRT

and use Equation 19.2 to find w:

V. 0.800
=— | PdV=—nRTIn{ 2] =-(299.25D1
w f n (V) { )n(225

1

)=309J

The total work involved in the reversible process is +309 J. Note that the work involved in the
reversible process is less than the work involved at constant external pressure, as is expected.

19-8. Show that for an isothermal reversible expansion from a molar volume 71 to a final molar
volume V ,, the work is given by

V,—~B A V. + BV
w=—RTIn{ =2 — 7 In (_2 + )Ml
V,- B BT (V,+B)V,

for the Redlich-Kwong equation.

For the Redlich-Kwong equation,

RT A

P=— - —
V-8B TYZV({V+B)

(16.7)
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We can then use Equation 19.2 to find w.

2 RT A _
w:f l:-—_ -+ — ]dV
v VB TVV(V+B

v, - A v, v,
=—RTIn] = - - In{ — —Inf =
v,-B] T/B V,+ B V,+B
V,-B A V,+ BV
= '**RT ln —_ 172 1]'1 (WZ + )ﬁ_]
vV, -8 BT (V,+ BV,

19-9. Use the result of Problem 19-8 to calculate the work involved in the 1sothermal reversible
expansion of one mole of CH,(g) from a volume of 1.00 dm’-mol ™' to 5.00 dm’-mol ™ at 300 K.
(See Table 16.4 for the values of A and B.)

From Table 16.4, A = 32.205 dm®-bar-mol™.X'? and B == 0.029850 dm® mol™". Then, using the
equation for w from the previous problem,

V,-B A (V,+ BV,
w=—RTIn e 7 In|— —
vV,-B) BT (V,+ BV,

A
= —RTIn5.1231 - —=7 In0.97681
BT

= —(39.3 dm*-bar-mol )(100 J-bar™'-dm™) = —3.93 kI-mol™

19-10. Repeat the calculation in Problem 199 for a van der Waals gas.

From Equation 16.5,

Then (Equation 19.2)

— Y, RT _
w:]—PdV:f (—_—+_iz)dv
¥V, vV —b Vv
V.—b alV,—V
_ _rrmazb e, VY
V. —b Vv,V

From Table 16.3, for methane ¢ = 2.3026 dm®-bar-mol=2 and b = 0.043067 dm®-mol™". Then

w = —39.18 dem’ -bar-mol™ = —3.92 kJ-mol™!

19-11. Derive an expression for the reversible isothermal work of an expansion of a gas that obeys the
Peng-Robinson equation of state.

The First Law of Thermodynamics

The Peng-Robinson equation of state is
RT o

P=—— — —— — (16.7)
V-8 VV+B-+8V -8

Substituting into Equation 19.2 gives
2
w_ = f IV [ RT _ o ]
1 V-8 VI+H+BV-p
V,— -
=—RTIn __2 IB —(X’f dVT—é—
Vi—-8 1 Vi o+2ve - g

 RTIn V,=By @ " 2V 428 — (88HV*
- 7 241/2 Evd 23172
(BBHV2 2V + 28+ (881

Vy

V,- 8 o (V — 041428}V, +2414,6)
=—RTIn V)
V,— 8 (88% (v + 2.4148)(V, -~ 0.41428)

19-12. One mole of a monatomic ideal gas initially af a pressure of 2.00 bar and a temperature of 273 K
is taken to a final pressure of 4.00 bar by the reversible path defined by £/V = constant. Calculate
the values of AU, AH, g, and w for this process. Take C', to be equal to 12.5 T-mol . K.

Let P/V = C. Then, since the gas is ideal, we can write

r_bPvi_n
L™ R T CR
_ 4.00bar’
T (73K)R

Since P/V is constant throughout the process, we can also write

r_ BV _ P _16ba’ _ (160bah)Q73K)R

= = = = 1092 K
: R CR CR (4.00 bar’) R

Because the Ev we are given is temperature-independent, we can write (by the definition of molar
heat capacity)

TZ_
AU mnf C,dT
Tl

= (1 mol)(12.5 F-mol " K™H(1092 K — 273 K) = 10.2 kI

Now we can use Equation 19.2 to calculate w, using the equality P/V = C. Note that V =V,
since we are taking one mole of the pas.

¥ Yy C
w = —f PdV = —jf CVdV = —=(VE— V)
2
Y Y

B C(P; Pf)_ 16.0 bar* — 4.00 bar’

c* C? 2C
_ (12.0bar)(1 mol)(273 K)(0.083145 bar-dm’ -mol ' - K™")
- 2(4.00 bar?)

=340k
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Finally, we can find g from Equation 19.16 and A H from Equation 19.35, lelting PV = nRT.

g=AU —w=13.6k]
AH = AU +nRAT = 102KJ + (1 mol)(8.3145 I mol”' K" )}(819 K)
= 17.0kJ

19-13. The isothermal compressibility of a substance is given by

1 /aV
=——|— 1
P vV ( apP ) r S
For an ideal gas, 8 = 1/P, but for a liquid, f is fairly constant over a moderate pressure range. If
B is constant, show that

14

V.

a

= g PP-F) (2)

where ¥, is the volume at a pressure P,. Use this result to show that the reversible isothermal work
of compressing a liquid from a volume V;, (at a pressure F) to a volume V (at a pressure P) is
given by

= —P(V - V)+ 87V, LA AL
Y= 0 ° w i %
_ _PDVO[e—,H(P—Pn) _ 1] + ﬁfl Vo{l _ [1 4 ﬁ(P _ PD)]e—ﬂ(P—PO)} , (3)

(You need to use the fact that f Inxdx = xInx — x.) The fact that liquids are incompressible is
reflected by 8 being small, so that 8(P — P,) < 1 for moderate pressures, Show that

BV,(P — P)*
2
= ﬁ_;ﬂ(PZ - PH+ 0B C]

w = BPV, (P~ P)+ +O(BY

Calculate the work required to compress one mole of toluene reversibly and iscthermally from
10 bar to 100 bar at 20°C. Take the value of 8 to be 8.95 x 107° bar™' and the molar volume to be
0.106 L-mol ™" at 20°C.

We begin with Equation 1 and integrate both sides, letting § be constant with respect to pressure.

f—ﬁdP =fV“1dV

P_py=1 (.‘i)
-_;8( - 0)—D VD
14

V.

0

(Y .
P:—,B ]h'l(v)-l-Po

0

— gBP-FY)
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New we wish to find the reversible isothermal work of compressing a liquid from (P, Vy)to (P,
V). We know that dw = —Pd V (Equation 19.2), so we use the expression we found above for P

o write _
14
dw = — [—,B'l In (—) + PD] dv
Yo

- 14
=-PdV+8"In (7) av

0

Integrating both sides of this equation gives

w=—PAV — v0)+ﬁ‘fln Va’V—ﬁ‘lfln V.dv

= P(V-V)+8'[VInV -V —(VInV,— V)] - g (V-V)InV,
=-P(V-V)+8 (VInV-V-¥hV,+V,— VIV, + VnV)

v, V., V

v v Vv
=—P(V-YV)+8Y, (—m_—u—ﬂ)
0 0 0

Substitution for V then yields the result
w=—FV [e77C 1]+ BTV {1 = [1 + B(P — F)]e "R

which is Equation 3 in the text of the problem. Now let x = — (P — P,). Because —8(P — Py«
1, x « 1. We can now write Equation 3 as

w= P V(e — 1)+ 87V {1~ [1+B(P - P)]e*}
=P V(e — 1)+ BV, - B Ve — V(P — Pe*

Now, recall from MathChapter I that if x is small, we can write ¢* as 1 + x 4 x?/2 + O(x")
(Equation 1.2). Notice that to find w to O (8%), we must expand e* to O(x?), since one of the above
terms multiplies ¢* by 87'. Expanding the above equation gives

2
w=—FV,[x+ 0GH] + 7V, - 7Y, [1 x4+ ou%] ~ V(P = PY[1+x+ 0]

V(P — P)*
:'BPU%(PO"PO)"FVG(P_PG}"%MQ)__VO(P_PU)+5%(P—P0)2+O(132)
V(P — P)?
R T T e AL C k1

2
Vv
= EEQ(PZ — Py + OB

Now, for one mole of toluene [to O (8%)], we use the parameters given in the problem to find

(8.95 x 1075 bar™)(0.106 mol-L~1)™
w =
2

[(100 bar)* — (10 bar)’] = 418 J

19-14. In the previous problem, you derived an expression for the reversible, isothermal work done
when a liquid is compressed. Given that 8 is typically (10~ bar™!, show that V/ V, =~ 1 for
pressures up to about 100 bar. This result, of course, reflects the fact that liquids are not very
compressible. We can exploit this result by substituting dV = —8Vd P from the defining equation
of B into w = — [ PdV and then treating V as a constant. Show that this approximation gives
Equation 4 of Problem 19-13.
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We are given that 8 ~ O(10 * bar "), and the largest pressure differential that can occur under the
given conditions is on the order of O (10* bar). Then, using Equation 2 of Problem 19.13, we find

1% )
— = PR o om0 oy 990

V

[+
Therefore, V/ V2 1 for pressures ranging from 1 to 100 bar. Now dV = —gVd P, so

BV,

w=~deV=ﬁV0deP=T(P2mP§)

as in Equation 4 of Problem 19.13.

19-15. Show that

I, _ (V)
N4

for a reversible adiabatic expansion of an ideal gas.

For an adiabatic expansion 8¢ = 0, so 4 = $w. By definition, dU/ = n—Cvd T, and for an ideal
gas (Equation 19.2)

Sw=—PdV =—-aRTV 4V
We can then write

nC,dT = —nRTV'dV
C R
f—"drzf—dv
T Vo
— T. v,
In{=2)=—RIn{=2
e/n(7)=-xn(3)
T,\ AN
o(3)" (%
T Y,

Finally, exponentiating both sides gives

19-16. Show that

(TZ)W _V,—b
T,)]  V,-b
for a reversible, adiabatic expansion of a monatomic gas that obeys the equation of state
P(V — b)Y == RT. Extend this result to the case of a diatomic gas.

For an adiabatic expansion dg = 0, so dU = dw. By definition, dU = n'(,_“vd T, and for this gas
Equation 19.2 becomes

RT
Sw =—PdV = —n—= dv
V—b
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Setting 4U and dw equal to one another gives

_ RT
nC,dT = ——
v

For a monatomic gas, _CV = 3R/2, and for a diatomic gas, fv = 5R/2. Thus

372 57
T, v, b

for a monatomic gas, and

for a diatomic gas.

15-17. Show that

R/C,
L_ (54
T P

for a reversible adiabatic expansion of an ideal gas.

For an ideal gas, fv +R= EP and

P] Vl —_ Tl
RY, T

From Problem 19-15, we can write

H(E “E_ Y,
AT,
Then
i_ (5)(EV+R)/R_ (T])EP/R
P, AT, AT

T

I

P[ R/C, B
P, N
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and, finally,

L _(B\"
TP
19-18. Show that
P V,](EV+R)/EV —p VZ(EV+R)/EV

for an adiabatic expansion of an ideal gas. Show that this formula reduces to Equation 19.23 for a
monatomic gas.

For an ideal gas,

AV, _ T

PV, T

2

We can substitute this expression into the equation from Problem 19-15 to write

PIVl — (‘VI)R/EV
PZV.:Z B VZ

Taking the reciprocal gives

and rearranging yields

(1+R/EV) » V(§+REV)

L7 =5
For a monatomic ideal gas, C,, = %R, S0

VR =PV, (19.23)

19-19. Calculate the work involved when one mole of a monatomic ideal gas at 298 K expands
reversibly and adiabatically from a pressure of 10.00 bar to a pressure of 5.00 bar.

Because this process is adiabatic, ¢ = 0. This means that
bw=dU =nC,dT

where Ev is temperature-independent (since the gas is ideal). We can use the equation from

Problem 19-17 to write
P R/CT,
5=1(3)

For an ideal gas, EP =5R/2,s50

5.00 bar \**
=K {—" | =22K
T, =0% )(I0.00bar)

The First Law of Thermodynamics

Substituting into the expression for Sw (fv = 3R/2) gives

— 5 3
W= nCVf d7T = —2-(8.314 J-K™H(226 K — 298 K) = —900)
Tl

19-20. A quantity of N (g) at 298 K is compressed reversibly and adiabatically from a volume of
20.0 dm” to 5.00 dm’. Assuming ideal behavior, calculate the final temperature of the N, (g). Take

C, =5R/2.

Using fv given in the problem, we find that (by definition)

— 5
dU =nC,dT = EanT
and Equation 19.2 gives dw as
RT
bw = —PdV = —"o—dV

For a reversible adiabatic compression, §g = 0, and so a’ I/ = dw. Then

5 RT
2nRdT = - 4y
2 v
54T 4V
27TV
5 T vV
—an-:—ln—g
27 |
5 2 5.00dm®
n2__=z
T, 5 20.0dm’
T =519K

19-21. A quantity of CH,(g) at 298 K is compressed reversibly and adiabatically from 50.0 bar to
200 bar. Assuming ideal behavior, calculate the final temperature of the CH,(g). Take fv =3R.

From Problem 19-17, we have

T, (PN
Tl - Pl

Assuming ideal behavior, EP =R+ Ev = 4R. Then

( 200 bar
T2 =

174
2 =
S0.0bar) (298 K) =421 K

19-22. One mole of ethane at 25°C and one atm is heated to 1200°C at constant pressure. Assuming
ideal behavior, calculate the values of w, g, AU, and AH given that the molar heat capacity of
ethane is given by

C,/R=0.06436+ (2.137 x 102K )T
— (8263 x 10 K™H)T? + (1.024 x 10° K™ 1?
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over the above temperature range. Repeat the calculation for a constani-volume process.

a. For a constant-pressure process, ¢, = AH and dH = Epd T. Then
AH = f C,dr

1 1
=R {0.06436]‘" ot 5(2.137 x 107)77? — —35(8.263 x 107971

1473 K

1
+Z(1'024 x 10‘9)T4]

298 K
AH == 122.9kJ-mol™

We now use Equation 19.36, remembering that the gas is behaving ideally:
AH = AU + PAV = AU + RAT
AU = 122.9%T-mol™" — (8.3145 x 107> kJ-mol™'-K™1}(1473 K — 298 K)
= 113.1 kJ-mol™
Finally, we use the expression AU = g + w to write
w=AU—q=113.1kI-mol™ — 122.9kJ-mol ™' = —9.8 kJ-mol™

b. For a constant-volume process, w = 0, and so AU = gq. AH is the same as in the previous
sitzation, so AH = 122.9 kJ-mol~'. We can use Equation 19.36, remembering that the gas
behaves ideally, to write

AH =AU+ VAP =AU + RAT
AU = 122.9kT-mol™" — (8.3145 x 107 kT-mol™'- K™ (1473 K — 298 K)
=113.1kJ-mol™

Note that the value of AU is the same as in part a, because I/ depends only on temperature for
an ideal gas.

19-23. The value of A H® at 25°C and one bar is +290.8 kJ for the reaction
27Zn0(s) + 2 8(8) — 2ZnS(s) +0,(g)

Assuming ideal behavior, calculate the value of A U® for this reaction.

Because hoth reactants are solid, ¥, ~# 0. The final volume will depend only on the amount of
oxygen present; assuming it behaves ideally, we write

Vo~ nRT (1 mol)(0.08314 dm® - bar-mol™! - K~(298 X)

= 2478 dm®
2 P I bar

Then AV ~ 24.78 dm® for the reaction. Using Equation 19.36, we write
AU°=AH — PAV
s 1k¥
=290.8kJ — {! bar)(24.776 dm™) { ————

10 dm’ -bar
== 288.3 kJ

The First Law of Thermodynamics

- 19-24. Liquid sodium is being considered as an engine coolant. How many grams of sodium are

needed to absorb 1.0 MJ of heat if the temperature of the sodium is not to increase by mere than
10°C. Take €, = 30.8 J-K~'-mol™" for Na(l) and 75.2 J. K~ .mol™" for H,O().

We must have a coolant which can absorb 1.0 x 10° J without changing its temperature by more
than 10 K. The smallest amount of sodium required will allow the temperature to change by
exactly 10 K. We can consider this a constant-pressure process, because liquids are relatively
incompressible. Then, substituting AT = 10 X into Equation 19.40, we find

AH =C,AT = 308 J-mol™

We require one mole of soedium to absorb 308 T of heat. Therefore, to absorb 1.0 MJ of heat, we
require

(1.0 10°7) (1 mo!) (22.99g

3087 ) \ T mol ) = 74.6ke

74.6 kg of liquid sodium is needed.

19-25. A 25.0-g sample of copper at 363 K is placed in 100.0 g of water at 293 K. The copper and
water quickly come to the same temperature by the process of heat transfer from copper to water.
Calculate the final temperature of the water. The molar heat capacity of copper is 24.5 J-K~'-mol ™'
and that of water is 75.2 J- K~ mol .

The heat lost by the copper is gained by the water. Since AH = nEPAT {Equation 19.40), we can
let x be the final temperature of the system and write the heat lost by the copper as

( 25.0g

m) (24.57-mol™- K ")(363 K — x)

and the heat gained by the water as

( 100.0 g

———————— | (75.3 J-mol - K™ (x — 293 K)
18.0152 g-mol
Equating these two expressions gives

34957 — (9.628 - K )x = (418.0T- K Hx — 1.224 x 10° ]
1.259 x 10° K = 427 6x
295K =x

The final temperature of the water is 295 K.

19-26. A 10.0-kg sample of lquid water is used to cool an engine. Calculate the heat removed (in
joules) from the engine when the temperature of the water is raised from 293 K to 373 K. Take
C,=7521-K"-mol™" for H,0(l).

We can use Equation 19.40, where AT = 373 K — 293 K = 80 K. This gives

100 x10* g

AH =nC,AT = (——--—_1
18.0152 g-mol

) (75.23-mol™ - K™")(80 K) = 3340 kJ

3340 kT of heat is removed by the water.
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19-27. Inthis problem, we will derive a general relation between C, and C,. Start with U = U(FP, T)

and write
gl al
dU = (--— dP+ 1 — | dT (1)
oP /, aT J,
We could also consider V and T to be the independent variables of I and write
at/ at/
dU=1{-—] dV — |} dT 2
(5), v+ (3), @

Now take V = V(P, T) and substitute its expression for d V into Equation 2 to obtain

0= (32) (2) 01169, (3), () Jr

Compare this result with Equation 1 to obtain

AU\ _ (3N (3V .
(57),= (%) GF), g
BU) INCLAWELS au A
G?P—(EJTG?L+(EJV ®

Last, substitute I/ = H — PV into the left side of Equation (4) and use the definitions of C, and

C,, to obtain
ol av
cC,—C =|P — —
P v [ *(aV>T](aT)p

Show that C, — C, =nRif (3U/8V), =0, as it is for an 1deal gas.

and

We can write the total derivatives of V(P, T) and L/{V, T) as (MathChapter H)
oV av
dV={—1) dP+{—} dT {a)
9P /., aT / ,
av ou
dU=§ — | dV 4|~ | 47T (b)
av /., aT /
Substituting d V from Equation a into Equation b gives
v gV au
dU = oy — dP+(— dT]—F — | dT
av /. L\oP/; 0T / » ar J,
au av 1) 8V aU
e I — | dP + (——w — ] +l=—= dT
aV /. \9P /; av /. \oT /, aT /.,
We can also express I/ as a function of P and T, in which case the total derivative dU is

dU=<g) dP+(&) dT
ar ), aT /),

Because the coefficients of ¢ P and d 7 in both expressions for ¢ U are equal, we can write

(7). (o), (),

The First Law of Thermodynamics

and

(ﬁ_lmf_) _(BU) av alu
o), \av /) \ar ), ﬁ)v ©
Substituting H — PV for U into the left side of Equation ¢ gives
(B[H—PV]) _(BU) v U
arT . \av/ \ar), T ﬁ)v
aH oV ap au v au
— | - Pl—) -V|—=1 = —} — | +{—=
aT /, oT J , 4T/, av /. \eT /, 8T J,
Using the definitions of C, and C,, (Equations 19.39 and 19.40), this expression becomes
av
CP_P(_) — ?"2 8_‘_/_ +C
T/, oV /. \oT/, v
al vV
C.—C,=|P — —
=2 (), )(), @

If (3U/8 V) == 0, then Equation d becomes '

?
c,—c,=p(
T/,

Using the ideal gas equation to find P (3V/87) ,, we find that

PV =nRT

aVv apr oT
PIEEY 1w} —ar{Z
(BT)p+ (aT)p ”R(BT)P

v
Pl—1 =
(BT)P nR

C,—C,=nR

19-28. Following Problem 19-27, show that

co-e,=[v-(2) (2
arP /. 1\aeT/,
We can write the total derivatives of P(V, T) and H(P, T) as (MathChapter H)
arP or
dP = — 1| dV — | dT
(BV)T *"(BT)V @

aH oH
dH —={ — 1 dP — 1 a7
(aP)T +(8T)p ®)

Substituting d P from Equation a into quiation b gives
aH apr ap oH
dH ={ — — | dV 4+ | — | 4T lalel
7)), v (57), o]+ (7). o
aH apP aH ap aH
(57). (), (57), (), + (57) Jor
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We can also express H as a function of V and T, in which case the total derivative d H is

aH oH
dH={—) dv+|[—) 4T
v/, ar J,

Because the coefficients of d V and 47 in both expressions for d H are equal, we can write

).~ (), (),
(). =), (=), + (7). 0

Substituting I/ + PV for H into the left side of Equation ¢ gives
alu+PVIy  [9H apP N aH
aT , N8P j. \aT /), \ar/,
au av ap aH ap dH
—= | +Pi =) + V=1 ={—= - +t{—=
oT /, atT /., aT J, apP j . \oT /, at /.,
Using the definitions of C,, and C,, (Equations 19.39 and 19.40), this expression becomes
c +V(8P) _(8H> (BP) v
v aT /, ap ) \or /), F
dH ar
C,—C,=|V- —) —
aP J,.\aT /),

and

which is the desired result.

19-29. Starting with H = U + PV, show that

au av
e =C,~P|—
aT /, T/,

Interpret this result physically.

Take the partial derivative of both sides of this equation with respect to 7', holding P constant, and
substitute C, for (8H/9T) .

H=U+PV
dH BU) av
— )y = —1 + P! —
a7}, \aT/, ar /,

. p{3V\ _{(3U

P aT ), \aT/,

This expression tells us how the totai energy of a constant-pressure system changes with respect to

temperature. Recall that for a constant pressure process, d H = 8q. Then C, = (d¢/8T). Because
dU = bq + dw, the work involved in the process must be —P(3V/3T) . The equation above is

equivalent to the statement
Y _ (dlg+w]
aT), aT /),
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19-30. Given that (9U/aV), = O for an ideal gas, prove that (d H /3 V), = 0 for an ideal gas.

Begin with Equation 19.35 and use the ideal gas law to write

H=U+PV=U+nRT

Now take the partial derivative of both sides with respect to volume (note that for an ideal gas, U is
dependent only upon temperature) to find

oH au AR aT 0
e = — 7l _— =
av/), \av/, av /.

19-31. Given that (3U//3 V), = 0 for an ideal gas, prove that (8C, /8 V), = 0 for an ideal gas.

We define C,, as (3U/3 V), (Equation 19.39). Therefore,

9C,\ _ U 8 (U
v /. avaT ~ aT \av/,

Since (3U//3V), = 0 for an ideal gas, (8C,, /0 V), = 0.

19-32. Show that C, — C, = nR if (aH/aP)T =0, as is true for an ideal gas.

From Problem 19.28,

e [r- ()16 - (),

where, as stated in the problem, (3H/8 ), = 0. Substituting P =nRT V"' into the above
expression gives

[MRT V™
c;—cV=V(J£3F—J) =nR
v

19-33. Differentiate # = U + PV with respect to V at constant temperature to show that
(8H /0 V), = 0for an ideal gas.

{Notice that this problem has you prove the same thing as Problem 19.30 without assuming that
(8U/aV), = 0 for an ideal gas.) We can use the ideal gas equation to write Equation 19.35 as

H=U+PV=U+nRT

For an ideal gas, U is dependent only on temperature, and the product # RT is also dependent only
on temperature. Therefore, #f is a function only of temperature, and differentiating H at constant
temperature will yield the result

dH ol aT
(—) = +naR{ — =0
av j; av/. aVv /s




602

Chapter 19

19-34. Given the following data for sodium, plot H(T) — H(0) against T for sodium: melt-

ing point, 361 K. boiling point, 1156 K; A, H® =2.60 ki-mol”’; A H® = 97.4 kJ-mol™";

C,(s) =28.2T-mol™" K™, C,(1) = 32.7T-mol™ -K™"; C(g) = 20.8 T-mol - K.

‘We can use an extended form of Equation 19.46:

T{m_ P Tva — R T J—
H(T) - FO) = f C ()dT+ A, H+ f C0dT + AL H + f C (dT
[ T, T

iy vt

Notice the very large jump between the liquid and gaseous phascs.

140+ e

100+

H(T)~H(0) /kJ-mol™}
@)
o
I

)
[=]
]

] ] |
200 600 1000 1400

19-35. The A _H° values for the following equations are
2Fe(s) + 10,(g) — Fe,0,(s) A H° = —206kI-mol "’
3 Fe(s) +2 0,(g) — Fe,0,(s) A H°=—136kJ-mol™’
Use these data to calculate the value of A H for the reaction described by

4 Fe,0,(s) + Fe(s) — 3 Fe,0,(s)

Set up the problem so that the summation of two reactions will give the desired reaction:

4[Fe,0,(s) — 2Fe(s) + 20,(2)] A H = 4(206) kJ
+3[3 Fe(s) + 2 0,(g) — Fe,0,(s)] AH = 3(—136) kJ

4 Fe,0,(s) + Fe(s)—>3 Fe,0,(s) AH=416%]

19-36. Given the following data,
1H,(g) + 1 F,(g) —> HF(g) A H°=—-273.3kJ -mol™
H,(g) + % 0,(g) > H,0() A H°= —285.8kI-mol”’

calculate the value of A_H for the reaction described by

2F,(2) + 2H,0() — 4 HF(g) + O,(g)

The First Law of Thermodynamics

Set up the problem so that the summation of two reactions will give the desired rcaction:

4(3H,(g) + 3E,(g) — HF(g)] AH =4(-2733)k]
+ 2[H,0() - Hy{(g) + 10,(2)] A H =202858)1J

2F, () + 2H,0()—4HF(g) + 0,(g) A H=-5216kJ

19-37. The standard molar heats of combustion of the isomers m-xylene and p-xylene are
—4553.9 kI-mol™" and —4556.8 kJ-mol™}, respectively. Use these data, together with Hess’s
Law, to calculate the valuc of A H? for the reaction described by

m-xylene — p-xylene

Because m-xylene and p-xylene are isomers, their combustion equations are stoichiometrically
equivalent. We can therefore write
m-xylene —» combustion products A H = —4553.9kJ

-+ combustion products — p-xylene A H = -4556.8k]

m-xylene— p-xylene AH=4+29K]

19-38. Given that A H*® = —2826.7 kJ for the combustion of 1.00 mol of fructose at 298.15 K,

CoH,,04(5) +6 0,(8) — 6 CO,(g) + 6 H,0())

1276

and the A, H* data in Table 19.2, calculate the value of A H® for fructose at 298.15 K.

We are given A _H° for the combustion of fructose in the statement of the problem. We use the
values given in Table 19.2 for CO,(g), H,0(1), and O, (g):

A H°[CO,(g)] = —393.509 kJ-mol ' A H[H,0()] = —285.83 kJ-mol '
AHTO ()] =0
Now, by Hess’s law, we write
AH = Z A H°[products] — Z A H°[reactants] ‘
—2826.7kJ-mol™! = 6(—393.509 ki.-mol™") + 6(—285.83 kI-mol™") — A _H°[ituctose]
A H°[fructose] = 1249.3 kJ-mol !

19-39. Use the A H* data in Table 19.2 to calculate the value of A, H° for the combustion reactions
described by the equations:

a. CH,CHQ) + 2 0,(g) — CO,(g) + 2 H,0(])
b. N,H, (D 4+ 0,(g) — N,(g) +2H,0(1)
Compare the heat of combustion per gram of the foels CH,OH(I) and N, H, (1).
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We will need the following values from Table 19.2:

A H[CO,(g)] = —393.509 kJ-mol™! AH°[H,O(I)] = —285.83 kJ-mol ™
A HINH, D] =+50.6 kI-mol™ A H°[CH,OH(1)] = ~-239.1 kI-mol™!
AHIN,(g)] =0

a. Using Hess’s law,

AH = Z A H*[products] — Z A H*[reactants]
= 2(—285.83kT) + (-—393.5kly — (—239.1 k)

—726. 1
_ 726.1 k3 1 mo - 227k g
mol methanol / \ 32.042 g

b.  Again, by Hess’s law,

AH = Z A H*[products] — Z A, H°[reactants]
= 2(—285.83 k]) — (+50.6 kD

—6223k I mol
_ 622.3kJ mo — _194K].g"
mol N,H, 32.046 g

More energy per gram is produced by combusting methanol.

19-40. Using Table 19.2, calculate the heat required to vaporize 1.00 mol of CCl, (1) at 298 K.

CCl, (1) — CCl,(g)

We can subtract A, H°[CCl, (D] from A H* [CCl,(g)] to find the heat required to vaporize CCl,:

A H = —102.9 k] + 135,44 kT = 32.5kJ

19-41. Using the A, H® data in Table 19.2, calcuiate the values of A_H* for the following:
a. C,H,(g)+ HO() — C,H,0H()
b. CH,(g)+4Cl(g) — CClL,(1) -+ 4 HCl(g)

In each case, state whether the reaction is endothermic or exothermic.

a. Using Hess’s law,
A H*=—277.69 k] — (—285.83 kI + 52.28 kJ) = —44.14 k]

This reaction is exothermic.

b. Again, by Hess’s law,
AIH" =4(—9231kN) — 13544 kT — (—74.81kJ) = —429.87KJ

This reaction is also exothermic.

19-42. Use the following data to calculate the value of A #H° of water at 298 K and compare
your answer to the one you obtain from Table 19.2: A H® at 373 K=40.7 kJ -mol™";
C,()=752Tmol™"-K"; C,(g) =33.6 J-mol™" - K.

The First Law of Thermodynamics

We can create a figure similar to Figure 19.10 to illustrate this reaction:

IBK

H,0(1) it H,0(2)
1+ AH, | AH,

298 K

AvupHo'
H,0(0) —> H,O(g)
Now we use Hess’s Law to determine the enthalpy of vaporization.

Avptlipg g = A, + Al + A Hiy i

= (715K)(75.2T-mol™- K™ + (=75 K)(33.6 J-mol™" - K1) + 40.7 kJ mol~!
= 43.8 kJ-mol™

Using Table 19.2, we find
A GH = A HTHO(g)] — A H°[H,0(0)]
= —241.8 kJ-mol™" 4 285.83 kI -mol™! = 44.0 kJ-mol ™"

These values are fairly close. (Using values of C p Which include temperature-dependent terms may
further improve the agreement.)

19-43. Use the following data and the data in Table 19.2 to calculate the standard reaction enthalpy of
the water-gas reaction at 1273 K. Assume that the gases behave ideally under these conditions.

C(s) + H,0(g) — CO(g) +H,(g)

Co[CO/R =3.231+ (8379 x 107 K™1)T — (9.86 x 107 K~ H) T
C3IL(2)]/R = 3.496 + (1.006 x 107" K™)T + (242 x 1077 K™ T?
ColH,O@1/R =3.652+ (1.156 x 10 K™HT + (142 x 107 K )12

CAlC()]/R = ~0.6366 + (7.049 x 107 K™DT — (5.20 x 105 K )12
+(1.38 x 107 K HT?

We can create a figure similar to Figure 19.10 to illustrate this reaction.

A H 1

CE®+H0@E =5 COg)+H,(g)
| AH, 4+ AH,

A H"298 K
C(s)+H,0(g) "— CO(g) + H,(g)

Now use Hess’s Law to calculate the standard reaction enthalpy at 1273 K. To do the integrals, it
is helptul to use a program like Excel or Mathematica (1 used Mathematica), so that the tedivm of

adding and multiplying can be avoided.
A Hppy = A Hy + AH + AH,
= (—=110.5kT-mol " + 241.8 kJ-mol™)

1273
+R f [T, [CO®)] + T, IH,(®] - C,[H,0(0)] — C,[C)]} 4T

98

= 131.3kJ-mol™" + R[3725.01 K 4 3649.92 K — 4542.43 K — 2151.29 X]
= 131.3 kI-mot™" + 5.664 kJ-mol™" = 136.964 kJ-mol~}
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19-44. The standard molar enthalpy of formation of CO,(g) at 298 K is —393.509 kJ .mol . Use the

following data to calculate the value of A H® at 1000 K. Assume the gases behave ideally under
these conditions. :

CLICO,(g)}]/R = 2.593 + (7.661 x 107K HT - 478 x 10° K HT?
+ (116 x 107° KT

Co0,(2)]/R = 3.094 4 (1.561 x 10 K™)T — (4.65 x 107 K™)T?

Co[C(s)]/R = —0.6366 + (7.049 x 107° K™)T — (5.20 x 107 K /77
+(1.38 x 107 K 1?

We can create a figure similar to Figure 19.10 to illustrate this reaction.

' A_H"1000 K
L AH, t AH,
A H 298 K

CH+0,8 " CO®

Now use Hess’s Law to calculate the standard reaction enthalpy at 1000 K:

A Hiyyy = A Hy + AH + AH,
1000

= —393.509 kI-mol~* + R f {C,ICO,(&)1— C,I0(2]— CIC)} 4T

298

= —393.509 kJ-mol~" + R[4047.167 K — 2732.278 K — 1419.433 K]
= —393.509kJ-mol™" — 0.869 kJ-mol™! = —394.378 kJ-mol !

19—45. The value of the standard molar reaction enthalpy for °
CH,(g) +20,(g) — CO,(g) +2H,0(g)
is —802.2 kJ at 298 K. Using the heat-capacity data in Problems 19-43 and 19-44 in addition to

C3[CH, ()}/R = 2.099 + (7.272 x 10 P K™)T 4 (1.34 x 107" K™ T?
— (8.66 x 107K HT?

to derive a general equation for the value of A_H° at any temperature between 300 K and 1500 K.
Plot A_H* versns T. Assume that the gases behave ideally under these conditions.

We can create a figure similar to Figure 19.10 to illustrate this reaction.

A H?
CH,(s) +20,(g ——  CO,(2 +2H,0(g)
} AH, + AH,

A HU 2B K
CH,(5) +20,() '—>  CO,(@ +2H,0(g)
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Now use Hess’s Law:

AH =AH,, +AH +AH, ’
= —802.2 k] -mol™
T
+R f {C,IC0,(@] + 2C,H,0(2)] - C,ICH,(s)] — 2C, (0,1} 4T
8

29
T

= —802.2kI-mol”" + R § [1.610— (421 x 10*K™")T]dT
298

T
+Rf [-(3.70 x 107 K 7% + (2.03 x 10 K T3] dT
2

98

= —805.8kJ-mol™" + (1.339 x 107 kJ-mol~" - K™)7T
—(1.750 x 107 kF-mol ™ K72 — (1.625 x 1078 kJ-mol . K~) 73
+(4.211 x 1072 kI mol " K~H 714

~  -800
=
&
= -801
=
s -802
B
p

-803

600 1000 1400
T/K

19-46. In all the calculations thus far, we have assumed the reaction takes place at constant temperature,
so that any energy evolved as heat is absorbed by the surroundings. Suppose, however, that the
reaction takes place under adiabatic conditions, so that all the energy released as heat stays within
the system. In this case, the temperature of the system will increase, and the final temperature is
called the adiabatic flame temperature. One relatively simple way to estimate this temperature
1s to suppose the reaction occurs at the initial temperature of the reactants and then determine to
what temperature the products can be raised by the quantity A_H°. Calculate the adiabatic flame
temperature if one mole of CH,(g) is burned in two moles of O,(g) at an initial temperature of
298 K. Use the results of the previous problem.

We know from Problem 19-45 that 802.2 kT-moi~' of energy is produced when one mole of
methane is burned in two moles of oxygen at 298 K. Now we determine how much the temperature
of the products, one mole of CO, and two moles of H,O, can be raised by this energy:

T

A H (products) == R f {EP[COZ(g)] + ZFP[HZO(%’)]} ar
298
7

802.2 kI-mol™" = R f {€,[CO,(@]+2C,H,0(e)1}dT

208

:
- Rf [9.897 4+ (9.97 x 10 K™) T — (4.496 x 1075 K~%)T?
208

+(1.160 x 107 K 1] 4T
= —27.89kT-mol™ + (8.23 x 102 kI-mol™ - K™)T + (4.15 x 1075 kJ-mol~ - K3 T2
—(1.25 x 107 kI-mol ™" K™ T + (2.41 x 107" kJ-mol™" . K™HT*
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We can solve this polynomial using Simpson’s rule or a numerical software package. Working in
Mathematica, we find that the final temperature will be 4040 K.

19—47. Explain why the adiabatic flame temperature defined in the previous problem is also called the

maximum flame temperature.

The adiabatic flame temperature is the temperature of the system if all the energy released as
heat stays within the system. Since we are considering an isolated system, the adiabatic flame
temperature is also the maximum temperature which the system can achieve.

19-48. How much energy as heat is required to raise the temperature of 2.00 moles of Oz.(g) from
298 X to 1273 K at 1.00 bar? Take

CI0,()]/R = 3.094 + (1.561 x 107 K'Y —@65%x107KHT?

We can use Equation 19.44:

7, - -
AH = j[ nC dT
Tl i

1273

= (2.00 mol)Rj{ [3.094 + (1.561 x 1077 K™)T — (4.65 x 107 K71*]4T

298
= 64.795 ki-mol !

19-49. When one mole of an ideal gas is compressed adiabatically to one-half of its original volume,
the temperature of the gas increases from 273 K to 433 K. Assuming that C,, is independent of
temperature, calculate the value of C,, for this gas.

Equation 19.20 gives an expression for the reversible adiabatic expansion of an ideal gas:
. RT
Cvd Ir=— Td 1%

Integrating both sides and substituting the temperatures given, we find that

fCVdT— fRdV
T v

. T v,
C,In-2=-Rln—*

T, 1
— . 433
C,ln—=—RIn2

273

[

~£ =150

R

19-50. Use the van der Waals equation to calculate the minimum work required to expand one mole
of CO,(g) isothermally from a volume of 0.100 dm® to a volume of 100 dm® at 273 K. Compare
your result with that which you calculate assuming ideal behavior.

The First Law of Thermadynamics

In Problem 19-10, we found that the work done by a van der Waals gas was

w=—RTIn= =
V,—b V.V,

V,-b N a(V,—V)

Substituting a = 3.6551 dm®-bar-mol~* and & = 0.042816 dm’ -mol™' from Table 16.3 and using
the parameters in the statement of the problem gives

3 -l 3 -1
w = — (0.083145 dm’bar-mol~ . K~1)(273 K) In 20 dm -mol™ — 0.042816 dm"mol
0.100 dm® mol™ — 0.042816 dm’ . mol™!

+36551 dmﬁ'ba[‘-mol_z [ 100 dma.m()}_] _ 0100 dm3_m0]—1
(100 dm®-mol")(0.100 dm*-mol )

= (—169.5 dm*-bar-mol ' + 36.5 dm’-bar-mol ") (0.1 kJ-dm™>-bar™"}(1 mol)
= —133KkJ

For an ideal gas,

V.
w= deV: ~nRT In (72)

1

= (~156.80 dm®-bar)(0.1 kJ-bar™") = —15.7 kJ

The work needed to expand the van der Waals gas is greater than that needed for the ideal gas.

19-51. Show that the work involved in a reversible, adiabatic pressure change of one mole of an ideal
gas is given by

where 7 is the initial temperature and P, and P, are the initial and final pressures, respectively.

For a reversible, adiabatic pressure change of an ideal gas, 8¢ = 0, so dU = dw. Since dU is
defined as C,dT,

dw=C,dT

for one mole of an ideal gas. Integrating, we find

— — _ — T
w:CVECVT}mCV(Tz_T}):CV?}(Tz_ )

1
From Problem 19. 17, we know that

and so substituting gives
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19-52. In this problem, we will discuss a famous experiment called the Joule-Thomson experiment.
In the first half of the 19th century, Joule tried to measure the temperature change when a gas
is expanded into a vacuum. The experimental setup was not sensitive enough, however, and he
found that there was no temperature change, within the limits of his error. Soon afterward, Joule
and Thomson devised a much more sensitive method for measuring the temperature change upon
expansion. In their experiments (see Figure 19.11), a constant applied pressure P, causes a quaniity
of gas to flow slowly from one chamber to another through a porous plug of silk or cotton. If
a volume, V,, of gas is pushed through the porous plug, the work done on the gas is P, V. The
pressure on the other side of the plug is maintained at P,, so if a volume V¥, enters the right-side
chamber, then the net work is given by

w=PV,-BY,

The apparatus is constructed so that the entire process is adiabatic, so g = 0. Use the First Law of
Thermodynamics to show that

U+ AV, =U+ PV

or that A H = 0 for a Joule-Thomson expansion. Starting with

HY
dH = —> apy (2 ar
ar/, aT /,
aTy 1(8H
8P}, C,\8P/,

Interpret physically the derivative on the left side of this equation. This quantity is called the
Joule-Thomson coefficient and is denoted by ... In Problem 19-54 you will show that it equals
zero for an ideal gas. Nonzero values of (87 /8 P), directly reflect intermolecular interactions.
Most gases cool upon expansion [a positive value of (87/d P) ] and a Joule-Thomson expansion
is used to liquefy gases.

show that

Initial state

— P

g
> Porous plug

[
n moles %; P,

at V,,T,

o

Final state

FIGURE 19,11
A schematic description of the Joule-Thomson experiment.

The net workis w = PV, — P,V,. Since g =0, U = w, 50
U,=U =PV - hYV,
U+ AV, =U+ AV

- .

The First Law of Thermodynamics

Since AH =U, + PV, — (U, + AV,), AH = 0. Now we write the total derivative of # as a

functionof P and T
oH H
dH = (— dP + 8_ 4T
P j, oT /

Using the definition of C,, we write this as

ai = (22 ap<car
T\aP )/, o

aH
—CdT=1— | dP -4
’ (BP)T H

1 (aH 1
AT = —— (—m) dP+ —dH
T

c,\ap C,

Keep H constant and divide through by d P to obtain

(ﬂ) 1 (3H ‘o
P/, C.\8P/,

The Joule-Thomson coefficient is a measure of the change of temperature of a gas with respect to
the change in pressure in a Joule-Thomson expansion (or compression).

19-53. The Joule-Thomson coefficient (Problem 19-52) depends upon the temperamre and pressure,
but assuming an average constant value of 0.15 K-bar™" for N, (g), calculate the drop in temperature
if N,{(g) undergoes a drop in pressure of 200 bar.

(0.15 K-bar') (200 bar) = —30 K

19-54. Show that the Joule-Thomson coefficient (Problem 19-52) can be written as

_(g) _ML[(8U> av B(PV)
tn=\3r),~ c, [\iv T(ﬁ)ﬁ( 5P )]

Show that (9T /a P),, = 0 for an ideal gas. |

From Problem 19-52,

Since H=U+ PV,

1 [(au B(PV)
=g |(G7), ()

1 [[aUN [av a(PV)

-5 (), ), (57).]

For an ideal gas, U and PV depend only on temperature, so ¢, = 0.

19-55. Use the rigid rotator-harmonic oscillator model and the data in Table 18.2 to plot C p(T) for
CO(g) from 300 K to 1000 K. Compare your result with the expression given in Problem 19—43.
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From Example 19-8, we know that for an ideal gas
C,=C,+R (19.43)

And from Chapter 18, we know that for a linear polyatomic ideal gas
S 3 (8a) <™ 18.41
R 2 T ] (1—e®/T)? (18.41)

Therefore, since ©_, (CO) = 3103 K, we wish to graph

C, T, (3103K\* 0OK/7T
R " 2 T (1 — 23 K/Ty2
— — — Experimental curve P

4.2 Rigid rotator -
4.0

[

a,
L 3.8

] ] ] | I |
400 600 800 1000 1200 1400

TIK

19-56. Use the rigid rotator-harmonic oscillator model and the data in Table 18.4 to plot C »(T) for
CH,(g) from 300 K 1o 1000 K. Compare your result with the expression given in Problem 19—45.

Again, for an ideal gas
C,=C,+R (19.43)

And from Chapter 18, we know that for a nonlinear polyatomic ideal gas

fv 3 3 It @vﬁw 2 o Funs/T
?—5““5*;( ) e (1862

Using the values given in the problem, we wish to graph
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The First Law of Thermodynamics
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19-57. Why do you think the equations for the dependence of temperature on volume for a reversible
adiabatic process (see Equation 19.22 and Example 1%.6) depend upon whether the gas is a
monatomic gas or a polyatomic gas?

For an adiabatic process, no energy is transferred as heat, so the change in internal energy is equal
to the change in work. The internal energy of a monatomic gas (in the electronic ground state} is
entirely in the translational degrees of freedom, which is directly related to the temperature of the
gas. If the velume of the system increases, work is done by the system, and so the internal energy of
the system must decrease. The only way for it to do so is by decreasing the amount of energy in the
translational degrees of freedom, which decreases the observed temperature of the gas. The internal
energy of a polvatomic gas (in the electronic ground state) is in the rotational, vibrational, and
translational degrees of freedom. These vibrational, rotational, and translational energy levels are
not necessarily in equilibrium (see Problem 18-37). If the volume of a polyatomic gas is increased,
work is done hy the system, as before, and the internal energy of the gas must again decrease.
However, the gas can lose energy in the rotational or vibrational levels, which will not decrease
the observed temperature of the gas. It can also lose energy in the translational levels, which will
decrease the observed temperature of the gas, but the other available methods of decreasing the
energy of the system will change the dependence of temperature on volume for a polyatomic gas
from that observed for a monatomic gas.
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