CHAPTER 2

Entropy and the Second Law of Thermodynamics

PROBLEMS AND SOLUTIONS

20-%. Show that

%dY:O

it Y is a state function.

If ¥ is a state function, ¥ must be an exact differential. This means that ff dY =Y, ~ ¥, and
f,dY =Y, — ¥, Then

2 1
fdyzj dY+f dY =Y, — Y, + (¥, = %) =0
1 2

20-2. Let z = z(x, y) and dz = xydx + y*dy. Although dz is not an exact differential (why not?),
what combination of dz and x and/or y is an exact differential?

The quantity dz is not an exact differential because the coefficient of the dx term is not independent
of y. An exact differential would be dz/y, because the coefficient of dx is independent of y and the
coefficient of dy is independent of x in

d
id = xdx + ydy
¥

20-3. Use the criterion developed in MathChapter H to prove that 8g,_ in Equation 20.1 is not an exact
differential (see also Problem H-11).

We can write 8g,,, a8

RT
8q, = C,(T)dT + n—‘}de (20.1)

The cross-derivatives of an exact differential are equal, so we will find the cross derivatives of g _,
to determine its nature. These are the coefficient of d T differentiated with respect to V and the
coefficient of d V differentiated with respectto T, or

a8 C,(T) ~0 J (nRT) _nR

4 = _
3V an aT \ Vv Vv

Because these two quantities are not equal, 8g_ is an inexact differential.

ey
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20-4. Use the criterion developed in MathChapter H to prove that 8¢ /T in Equation 20.1 is an exact
differential. :

We use Equation 20.2 to express g, /T as
8q C,(h nR
== = 47 + —dV
T T * %4

The cross-derivatives of an exact differential are equal, so we will find the cross derivatives of
dq,.,/ T to determine its nature. These are the coefficient of d T differentiated with respect to V and
the coefficient of d V differentiated with respect to T, or

c (T
i v(T) =0 and _8_ ﬁ =0
aVv T ar \ Vv

Because these two quantifies are equal, ¢ /T is an exact differential.

rev

20-5. In this problem, we will prove that Equation 20.5 is valid for an arbitrary system. To do
this, consider an isolated system made up of two equilibrium subsystemns, A and B, which are
in thermal contact with each other; in other words, they can exchange energy as heat between
themselves. Let subsystem A be an ideal gas and let subsystem B be arbitrary. Suppose now that
an infinitesimal reversible process occurs in A accompanied by an exchange of energy as heat
dq,, (ideal). Simultaneously, another infinitesimal reversible process takes place in B accompanied
by an exchange of energy as heat dg_ (arbitrary). Because the composite system is isolated, the
First Law requires that '

8q  (ideal) = —dqg__(arbitrary)

ey ev

Now use Equation 20.4 to prove that

fﬁ dq _ (arbitrary) '0
=

Therefore, we can say that the definition given by Equation 20.4 holds for any system.

We use the First Law as suggested in the problem and substitute Equation 20.1 for dq,_ (ideal} to
write

dq _ (arbitrary} == —8q_ (ideal)

nRT
=—-C (1)dT — v dv
8 bit -C,
q.., (arbitrary) _ CVdT— n__ISdV
T T Vv
—C (T av
=d[f %dTﬁanT—i—constant}

Then dq, (arbitrary)/ T is the derivative of a state function. We know that the cyclic integral of a
state function is equal to 0 (Problem 20--1). Therefore, we can write (as we did in Section 20-2 for
ideal gases)

ﬁ 3q,.,(arbitrary) 0
T =

and Equation 20.4 holds for any system.

Entropy and the Second Law of Thermodynamics 623

20-6. Calculate g and AS for a reversible cooling of one mole of an ideal gas at a constant volume v,
from P, V.7 to P, V|, T, followed by a reversible expansion at constant pressure P, from
P, V,, T, to P, V,, T (the final state for all the processes shown in Figure 20.3). Compare your
result for AS with those for paths A, B + C, and D + E in Figure 20.3.

Step 1. PV, T, — P, V,.T,

177171 174
Because there is no change in the volume of the ideal gas, §w = 0, and we can write

dg

1ev,]

=dU = C,(1dT

T,
qm_lzf C.(DYdT
T

1

L (T
AS1=J[4 v oy
n T

Step 2. P, V,, T, — PV, T
In this case, we write (by the First Law)

8.y, = dU — 8w = C,(T)AT + PV

Tl VZ
Gryz = j C,(T)dT + f PdV
T, ¥,

1

L CAT hP
ASz=j v )dT'+f Cl2gy
T v T

T
_le CV(T)dT+fV2 Edv
T4 T Vl V

For the entire process, P, V,,T, — P,,V,,T,, we have

i | 227201
7 T A
a,, = f C (T)dT +f C,(T)dT +[ PdV = PV, - V)
T, T, v,

L C(T) T CAT) % R v,
AS = Y247 4T f —dV=RIn2
[T T +L T ) 7

1 1

The value of g, differs from those found for paths A, B + C, and D + E (Section 20-3), but the
value of AS is the same (because entropy is a path-independent function).

20-7. Derive Equation 20.8 without referring to Chapter 19.

The temperature 7, is the final temperature resulting from the reversible adiabatic expansion of
one mole of an ideal gas. For a reversible expansion, dw = —~PdV = —nRTd V/V, and for an
adiabatic expansion d{/ = dw. Then, becanse U/ = C,dr,

C,dT _ —nRdV
r Vv
TC V.
jfz—"dT:—anzﬁ
r T v V

1

which is Equation 20.8.
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20-8. Calculate the value of AS if one mole of an ideal gas is expanded reversibly and isothermally
from 10.0 dm’ to 20.0 dm’. Explain the sign of AS.

Substituting for T from the cquation of state gives

Ve nP RAV V.- b
AS, o = jf 2 R 2
7. P.(V~b) V,—b

For an isothermal reaction of an ideal gas, Sw = —éqg, so 8¢ = PdV. Then

8 P
AS=[&=jr——dV
T T

Using T from the ideal gas equation gives

The quantity g, differs from those for the two paths in Example 20-2, but AS for all three paths is
the same. '

20-11. Show that AS . is ecjual to AS, and AS,

s+c for the equation of state given in Example 20-2.

R
AS:f%dV:annZ.GO:S.76J-K]

. . . From E le 20--3,
The value of AS is positive because the gas is expanding. rom Example

V, b
AS, = AS, . =nRIn=
. : , . . V. —

209, Calculate the value of AS if one mole of an ideal gas is expanded reversibly and isothermally 1

from 1.00 bar to 0,100 bar. Explain the sign of AS. and the equation of state used is

P RT
As in the previous problem, because the reaction is isothermal, g = Pd V. For an ideal gas, T V—b
4V = nRT Jp— VdP In Example 20~1, we calculated AS,, ;. for an ideal gas. Without using the ideal gas eqﬁation of
=TT - p state, however, we found in Example 20-1 that

s0 we write AS as

T'!C T Vzd
ASsz v )dT+Plf av
r T v T

1 1

nC (T
ASE=f v oy
r T

v R
AS:[Edef——szj—n—dP=fnRIn0.1=19.1]-K”'
T T P

The value of AS is positive because the gas expands. A

AS —vaidv
D+E 1 v T

and
20-10. Calculate the values of g _ and AS along the path D + E in Figure 20.3 for one mole of a

gas whose equation of state is given in Example 20-2. Compare your result with that obtained in
Example 20-2.

We can substitute 7 from the equation of state to write

Vs nRAV Yo dV V,—b
ASD+E=P;f wfw_-—"m-_:an1__—:nfv?ln_2
v, P(V-0) V—b Vv b
Therefore AS,

o.g 18 €qualto AS, and A5y ..

Path D + E is the path described by (P, V,, 7)) — (P, V,.T}} — (£, V,, T}). For the first step,

5q,, = dU — éw = CAT)dT — PdV

and for the second step (because the volume remains constant)

8¢, = dU = C ()T 20-12. Calculate the values of g and AS along the path described in Problem 20-6 for one mole of

a gas whose equation of state is given in Example 20-2. Compare your result with that obtained in

Then
Example 20-2.
T Y T
f 8q oy nig = f C (NdT - j PdV + f C (T)dT
T, v T,
! y ] } For both steps, because the ideal gas equation was not used in calculating g , g, 15 the same as it
=— fv PdV =—P(V,— V) was in Problem 20-6:
1
qrev = _PZ(‘VZ - I/l)

and

Substituting the equation of state from Example 20-2 into the expression for A S from Problem 20-6

gives
Vink, _ V; nR  _ V., b
AS:/ E-z-dV:fz_n—dV:ann 22
v, T v V—b V,—b

i 1
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This is (by no coincidence) the same value as that found for AS,, ASy ., and ASp ..

20-13. Show that

T
AS = C‘,,]n“-2

T

for a constant-pressure process if C,, is independent of temperature. Calculate the change in entropy
of 2.00 moles of H,O(D (ﬁCw}, = 75.2 J-K~'-mol™") if it is heated from 10°C to 90°C.

Because A Sis a state function, we can calculate it using a reversible process. For a constant-pressure
reversible process (Equation 19.37), 8¢, = dH = C,dT, and so

T.
Gy _ [ € el
AS = =[T —;-dencpln(?z)

| 1

For 2.00 mol of 11,0,

363 _
AS = (2.00 moD) (752 F-K '-mol™) In 3 37.4 1K™

20-14. Show that

T v,
AS:CVlnFZ-{-Ran

1 1

if one mole of an ideal gas is taken from 7, V, to T,, V,, assuming that fv is indepe?dent of
temperature. Calculate the value of AS if one mole of N, (g} is expanded from 20.0 dm” at 273 K
to 300 dm® at 400 K. Take C, = 29.4J-K™" -mol ™",

For the path (T, V) = (T, V,),éw = —PdVanddg =dU —dw = C,dT + PdV.Wecanthen

write AS as
([ G [707)
- —dT + | =dV
n(f T T
C, R
= § 4T —dV
[T | +fv
T %

vnT]-I-

AS

V,

1

Because EP - EV = R for an ideal gas, we can write this as

- - T, v,
AS=(C,— Ry + Ring?
1

For N,,

400 _ -
AS = (29.4T-mot™" K — 8.314T-K™'-mol '} In 773+ 8.314 J.K '-mol~ In

=30.67-K'-mol™
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20-15. Inthis problem, we will consider a two-compartment system like that in Figure 20.4, except that
the two subsystems have the same temperature but different pressures and the wall that separates
them is flexible rather than rigid. Show that in this case,

dV, |
dS = —E(Py ~ P,)

Interpret this result with regard to the sign of d V, when Py > P, and when P, < P,.

We can use the First Law to write 8¢ for each compartment as
8q, =dU, ~éw, =dU, + P,dV,
8qy, =dU, — w, =dU, + FodVv,

We can write the total entropy of the system as

3q,  8q
dS=dS, +dS, ==~ + =&
A+ B TA + TB
aty F dlu P
=2 L Agy L B4 Bgy
T, 1, AT it

Because the two-compartment system is isolated, dV, = —d Vy and dU, = —dU,. Also, T, =T,
The quantity d5 above then becomes

d VB‘
T
When P, > P,, compartment B will expand, so, because &5 must be greater than zero, d Vy is

positive. Likewise, when P, < P,, compartment A will expand, so (again, because 4.8 must be
greater than zero) 4V is negative.

dS=(P,— P)

20-16. In this problem, we will illustrate the condition d Spm 4 = 0 with a concrete example. Consider
the two-component system shown in Figure 20.8. Each compartment is in equilibrium with a heat
reservoir at different temperatures 7, and 7, and the two compartments are separated by a rigid
heat-conducting wall. The total change of energy as heat of compartment 1 is

dg, =dgq, +dg,

where d,q, is the energy as heat exchanged with the reservoir and d.g, is the energy as heat
exchanged with compartment 2. Similarly,

dg, =d.gq,+dgq,

FIGURE 20.8

A two-compartment system with each
compartment in contact with an (essentially
infinite) heat reservoir, one at temperature
T, and the other at temperature 7,,. The
two compartments are separated by a rigid
heat-conducting wall.

627
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Clearly for an isothermal process. What does this equation say about the sign of AS? Can A S decrease
' in a reversible isothermal process? Calculate the entropy change when one mole of an ideal gas is

dg = —dg, compressed reversibly and isothermally from a volume of 100 dm® to 50.0 dm”® at 300 K.

1

Show that the entropy change for the iwo-compartment sysiem is given by

. g N dg, . ( 11 ) | | ' We defined AS as (Equation 20.22)
= T] T2 id1 Tl T2 AS > [ 5_{]
= dSexchangc + dSlF’mﬂ'i ’
For an isothermal process T is constant, so we can write this expression as
where
da, | 449 AS > 4 f 5q
dSexchnngc = T + T : T

1 2

_ ) . ' and integrate over dg to write
is the entropy exchanged with the reservoirs (surroundings) and g g

1 1 . AS > q
dSprod = diql (? - ?) : T
! 2 We know that ¢ can be positive or negative, while T is always positive; therefore, AS can be
is the entropy produced within the two-compartment system. Now show that the condition 4.5, = 0 positive or negative for an isothermal process. For one mole of an ideal gas compressed reversibly
implies that energy as heat flows spontaneously from a higher tem[')erature to_ a lower temperatuze. 5 _ and isothermally, dU = 0,50 8g_ = —8w = PdV. Then
The value of dS,, .- however, has no restriction and can be positive, negative, or zero. o
| qg_ = PdV = dv
eV V

As stated in the text of the problem, we can write . ;—2

d.q] = —diqz : . 1
' and the change in entropy is given by
The energy as heat exchanged between compartments 1 and 2 is involved in the entropy transferred ”
between the two compartments. We can therefore express dS_ ... as AS = nRln Vz — (1 mol)(8.3145 1. K-'-mol-y 1n0.5 < —5.76 1K~
1

2

d dg -
a8, hange = ;ff] + T 2 - The quantity AS is equal to ¢/ T, rather than greater than it, because this is a reversible process.

Similarly, the energy as heat exchanged between the compartments and the reservoirs is invelved

in the entropy produced within the two-compartment system, so we can write dS , as 203—18. Vaporization at the'normal boiling point -( T ofa substancle (the boiling poipt a_t one atm) can
' be regarded as a reversible process because if the temperature is decreased infinitesimally below
45 = ﬁ n % —d (l _ l) Tvap, all the vapor will condense to liquid, whereas if it is increased infinitesimally above Tvap, all the

prod T T, =44, T, T, liquid will vaporize. Calculate the entropy change when two moles of water vaporize at 100.0°C.

H is 40. -mol . ; .
These are the only two means of changing the entropy of the system, so we can find S to be The value of A H is 40.65 kJ-mol™". Comment on the sign of A S

deql

T

i 1 —
+ Gty +dg, (? - T) , » At constant pressure and temperature, g, = #AH _ (Equation 19.37). We know from the previous
[h 1 2 problem that, for a reversible isothermal process,

ds,, =ds

exchange

+dS

prad =

Now take the conditionds3_, = 0. This is the same as saying that . ¢ (2mol 065 ool

1 1 0 T 373.15K
—_— e = .
4 (T T ) B - As the water becomes more disordered, changing from liquid to gas, the entropy increases.

=217.9J.K'

1 2

Arbitrarily, fet T, > T,. Then 1/T, — 1/T, < 0,s0d,q, < 0andheatis flowing from compartment 1
to compartment 2. If 7, > T,, by the same reasoning, d,q, > 0 and heat is flowing from compartment
2 to compartment 1.

20-19. Melting at the normal melting point (7, ) of a substance (the melting point at one atm) can be
regarded as a reversible process because if the temperature is changed infinitesimally from exactly
T, .. then the substance will either melt or freeze. Calculate the change in entropy when two moles
of water melt at 0°C. The value of Afusﬁ is 6.01 kT-mol~". Compare your answer with the one you
obtained in Problem 20-18, Why is AvapS much larger than A _S§?

20-17. Show that
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At constant pressure, g = n AH {Equation 19.37). For a reversible isothermal process, we can For the case of three states, Equation 20.23 becomes
express AS as (Problem 20.17) ‘ o (@, +a, +ay!
-mol™ T ala)a!
AS = 4 _ (2 mol(6.01 kT-mol™"} - 44.07.K" la,la,
T 273,15 K Leta, = x and a, =y, where x and y are continuous variables, and let a, +a, +a, = A. Then

The quantity A S is much less than A S because the difference in disorder between a solid and a
a hiquid is much less than that between a lignid and a gas. W = '

(A —x— y)lxty!

lnW=InA!—In{A—x— ) —Inx!—Ilny!

20-20. Consider a simple example of Equation 20.23 in which there are only two states, 1 and 2. Show

that W(a,, a,) is a maximum when @, = a,. Hins: Consider In W, use Stirling’s approximation, and We can use Stirling’s approximation for In A! (MathChapter I} to write In W and differentiate to

treat @, and a, as continuous variables. find an expression for d(In W)/dx:

an:AlnA—A—[(A—x—y)ln(A—x—y)——(A_x—y)]—(xlnx—x)—(ylny—y)

A simplified version of Equation 20.23, for two states only, is : ' d(lc?xW) =nA-x—+1—-1-Inx~-T4+1=In(A—x—y)—Inx
W= (a, +a,)! ..
= a, !azl Similarly,
Let a, = x, with x being a continuous variable, and let a, + a, = N. Then we can express Win d(In W) =In(A—x—y)~Iny
terms of N and x: dy
NI As in the previous problem, the values of x and y which give the largest values of W occur where
W= W=l : d(In W)/dx = 0 and d(In W)/dy = 0. Therefore,

o — J — x)1 — ! -
InW=InN!—In(N —x)l — Inx! O=In(A—x_ —y)—Inx_

Using Stirling’s approximation for In N! (MathChapter J), we can find the first derivative of In W . Inx,, =In(A-x_ —v)

with respect to x: Dy = A=Y

— | — — | — ! . . . . . . N
InW=1laNl—In(} - x)! - Inx Because we want the point at which both x and y are at their maxima, we substitute this value into

=NIhN-N—-—[(N-x)Ia(N—x)—(N—x)] - (xInx - x) : the expression for d(In W)/dy to find
d(ln W) N—x x : :
Tx =0+E+IU(N_)C)_1*1“X“;+1 : Oﬂln(A—xmu—ymaX)*]nymax
— ~ A
=In(N—x)—Inx 2ymx:§+%
We are looking for the value of x that produces the maximum value of W, which is where A
dW/dx = 0. Because : Ymax = 7
1dwW d(ln W) Then (substituting back into the first equality) x... = A/3. Thus, the maximum value of W occurs
Wdx  dx when a; = a, = a, = A/3. Problem J.10 generalizes this to any number of states.
the desired value of x will also give [d{in W)}/dx] = 0. Setting this derivative equal to zero, we find '
0=In(N—x_)—Inx__ ' : 20-22. Show that the system partition function can be written as a summation over levels by writing
h'l xmax = ln(N - xma.x) Q(N, V, T) - Z Q(N, V, E)eiE/kBT
2x_ =N 3 E
: Now consider the case of an isolated system, for which there is only one term in G(N, V, T). Now
And clearly x,,, = N/2.Thus, the maximum value of W occurs whena, = a, = N/2. : substitute this special case for O into Equation 20.43 to derive the equation S = k, In €2.
20-21. Extend Problem 20-20 to the case of three states. Do you see how to generalize it to any In Chapter 17, we defined the partition function Q(N, V, T) as (Equation 17.14) -

number of states?

ON, V., T) = Ze‘%/ksf
4
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Here a term representing an energy level of degeneracy 2 is written 2 times. We can write this,
alternatively, as a sum over energy levels, where a term representing an energy level is written once
and multiplied by its degeneracy €:

For an N-particle system, we wish to consider all the N particles in one 3N-dimensional
space, instead of the N particles in &V individual three-dimensional spaces. The equation from
Problem 18-42 then becomes

IN 2
NV, T)= Q(N, V, E)e E/hT _ 8ma’E
O, V. ) = 38 D= = R
=1
These two expressions are equivalent. For an isclated system, there will be only one term in

Q(N, V, 1), s0 As in Problem 1842, (&) oc the volume of the sphere, so

0 =Q(N,V, E)e &%T

mQ=mhe E
ng=n kT

Applying Equation 20.43 allows us to write

$(E) R (SmazE)M/z

hl

Letting c(N) be a proportionality constant allows us to write

D(E) = c(N)EN2YN

olnQ
S=kT ko1
» (aT)MJ%B“Q

E E
:kBT (m) +kB]ﬂQ—?

B

=k;InG2

Now, as in Problem 1842, Q@ = ®(E + AE) — &(E), so

Q = c(NWE + AEYYEYN — o(NYEWNIYN
= c(NYVY[(E + AE)M — E*72]

AE N2
= (,'(1\’)‘JNEE’S,N/‘2 I:(l + ?) - 1

- 3N AE AEN?
N ‘fN E3N/2 1 'y
e 2 K E !

3N AE AEN?
= c(NYVVE 2 Lol ==
S o) = [(5)}

= o(N)VYE¥'AE = c(N) f(E)VYAE

which is Boltzmann’s equation.

20-23. In this problem, we will show that = ¢(N) f(E)V* for an ideal gas (Example 20-3). In
Problem 1842 we showed that the number of transiational energy states between e and ¢ + Ae for
a particle in a box can be calculated by censidering a sphere in n_, n,, n,space,

8ma’s
hZ

Show that for an N-particle system, the analogous expression is

2 2 2 _ _. p2
n,+a,+n; = = R

where we have incorporated the factor of 3N /2 into ¢(N) and defined f(F) = E SR

N 2
8ma“E . . .

Z(”if + nf,j + nij) = ma; = R* 2024, Show that if a process involves only an iscthermal transfer of energy as heat (pure heat

= ' h transfer), then
or, in more convenient notation dq

s, = — {(pure heat transfer)
IN BmazE T
2 — o RZ

;

‘ W
Jj=1
The process involves only an isothermal transfer of energy as heat, so dw =0 and dU = égq.

Thus, instead of dealing with a three-dimensional sphere as we did in Problem 18--42, here we must Therefore,

deal with a 3N -dimensional sphere. Whatever the formula for the volume of a 3N-dimensional
sphere is (it is known), we can at least say that it is propottional to R*¥ Show that this proportionality
leads to the following expression for ®(E), the number of states with energy < E,

8g dU dg
dS = —=— = —
sy T T T
where we can write dg instead of 8g because g = dU, and U is a state function.

ama BN\
CD(E)(X( m; ) = o(N)EWRYN

20-25. Calculate the change in entropy of the system and of the surroundings and the total change

in entropy if one mole of an ideal gas is expanded isothermally and reversibly from a pressure of
10.0 bar to 2.00 bar at 300 K.

where ¢(N) is a constant whose value depends upon & and V = &°. Now, following the argument
developed in Problem 18-42, show that the mumber of states between £ and £ + AE (which is
essentialiy £2) is given by

Q=c(Mf(E)YV¥AE

whetc f(E) = E*%.
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Becaunse this is an isothermal reversible expansion, 8¢ = —8w = Pd V. We then use the ideal gas

equation to write
8q P nR v,
A =] == —dV= | —dV=nRIn2
Ssys f T f Td f v nRIn v,

For an isothermal expansion of an ideal gas, £, V, = £, V,. We can then write the change of entropy
of the gas as

AS = (1 mol)(8.3145 Jomol™-K™)In5.00 = +13.4J.K™*

For a reversible expansion, ASM = 0, so ASSurr = —ASWS =—1341.K"

20-26. Redo Problem 20-25 for an expansion into a vacuurm, with an initial pressure of 10.0 bar and
a final pressure of 2.00 bar.

As in Problem 20-25, ASsys = 13.4 J-K~". However, because this is an irreversible expansion into
avacuum, AS =0,s0 A5 =134 K

20-27. The molar heat capacity of 1-butene can be expressed as
C,(T)/R = 0.05641 + (0.04635 K™\ T — (2.392 x 107° K™)T* + (4.80 x 107° K )77

over the temperature range 300 K < T « 1500 K. Calculate the change in entropy when one mole
of 1-butene is heated from 300 K to 1000 K at constant pressure. '

At constant pressure, g = dH = nfpd T. Then Equation 20.22 becomes (assuming a reversible
process)

1000 7
C

AS:n[ —Lar
o T

300

1000
= (1 me)R j [0.0564177" + (0.04635 K™) — (2.392 x 10 KT
300

+(4.80 x 10° K HT?}dT
= 192.78 J.K~

20-28. Plot Amix—g against y, for the mixing of two ideal gases. At what value of y, is Amixg a
maximum? Can you give a physical interpretation of this result? '

We can use Equation 20.30 for two gases:
AmixE =R (yl Iny, — yzlnyz)
Because y, + y, = 1, we can write this as

A_S/R=—y Iny, —(1—y)In(l~y)

Entropy and the Second Law of Thermodynamics
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L | | !
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Y1

The quantity Amg 18 a maximum when y, = 0.5. This means that the gases are most disordercd
when there are equal amounts of both present in a container.

20-29. Calculate the entropy of mixing if two moles of N, (g) arc mixed with one mole O, (g) at the
same temperatare and pressure. Assume ideal behavior.

The mole fractions y are 2/3 for N, (g) and 1/3 for O,(g). Therefore,

Amix§ =—Ry/Iny, — Ry,Iny,

2R 2 R_ 1
=——h——=Iln-=529].K"
3 3 3 3

20-30. Show that A__§ = Rn2 if equal volumes of any two ideal gases under the same conditions
are mixed.

Because there are equal volumes of ideal gases under the same conditions, y, = y, = 0.5
{Problem 20-28). Now Equation 20.30 gives

Amixg = —Ry/Iny, — Ry,Iny,

R 1 R 1
=——Iln———=In-
22 2 2
1
= —RIn=-=RIn2
2

20-31. Derive the equationdlU = TdS — PdV. Show that

- = dT  _dV

for one mole of an ideal gas. Assuming that EV is independent of temperature, show that

T Vel TZ VZ
ASZCV]H?—FRh]?
1

L

for the change from 7], T/‘l to T, 72. Note that this equation is a combination of Equations 20.28
and 20.31.

635
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20-33. Calculate the change in entropy if one mole of 8O,(g) at 300 K and 1.00 bar is heated to

From the definition of entropy, dgq,., = TdS§, and by definition 8w, = —PdV. The first law then
1000 X and its pressure is decreased to 0.010 bar. Take the molar heat capacity of SO,(g) to be

givesdU =8g_ +dw_ = TdS — PdV. We divide through by T to obtain
dU P

ds="2_ L
T T

14546 K 4 160351 K*

C(T)/R =7871 — 7

Using the relation I/ = nfvd T and the ideal gas law, we find

We can use the result of the previous problem,

— dT
C.dT
or JS — ] ; _ nR;iP
d5=TC, _dTT _ g%V Then
. v _aR ?PdT R {2
If C, is temperature-independent, integrating gives S =n T " P
1000 X 2
— 7871 1454.6K 160351 K 0.010
= = dr dV = (1. . . -l - d7 —1
de:Cv - +R[ = (1.00 mol){8.314 } . mol™-K )[jamK ( T T2 + 7 ) n 1.00}
_ w1

20-34. In the derivation of Equation 20.32, argue that AS_ > 0 and AS, < 0. Now show that

20-32. Derive the equation d H = TdS + Vd P. Show that '

-~ = T, P
AS=C,In2—Rin2

1 1

by showing that

for the change of one mole of an ideal gas from 7,, PtoT, 5. dssuming that C » 18 independent AS A5, | >0

of temperature.

The two quantities AS, > 0 and AS, < 0 because the colder piece will become hotter and the

We derived the equation dU = Td S — PV in Problem 20-31. Now add d(P V) to both sides of hotter piece will become colder. Using the expressions for AS, and AS, in Section 20--6,

this equation to obtain
<0

_ T, +T, T 4T
dU+d(PV) =dH = TdS + Vd P AS.=Cyln=gr= >0 and A5 =Cyln—or

Now divide both sides by T to write Now, because AS, < 0, |AS,| = —AS,, and

T T

2T,
A5, = Cyln =2 >0

h [

and use the relation dH = nC,d T and the ideal gas law to obtain The total change in entropy is given by

dS:ng"dT—%dP AS = AS, + AS, = AS, — |AS,]
‘ T.+T)
or =Cvlnu>0
4T T,

d5=Seqr _Byp
P

7 where we proved that (7, + 7.)* > 4T, T in Section 20-6.

Assuming that C p 18 temperature-independent, integrati "
, integrating gives
20-35. We can use the equation § = k; In W to derive Equation 20.28. First, argue that the probability

that an ideal-gas molecule is found in a subvolume V. of some larger volume V is V / V. Because

= = . T
AS=C,ln-2 -~ Rlni
T the molecules of an ideal gas are independent, the probability that N ideal-gas molecules are found

1 1
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inV is(V/ V). Now show that the change in entropy when the volume of one mole of an ideal
gas changes isothermally from V, to V, is

4
AS=RIn--2
VI

The probability that the molecule is in subvolume V_ is V,/ V, because the numerator represents the
situations where the molecule is in V, and the denominator represents all positions available to the
molecule. Now we can write {using Boltzmann’s equation)

' A% v,

S=k;InW=4in v = Rlnv

Now take V= V| and an arbitrary V, and V. The change in entropy when an ideal gas goes from
V, to V, isothermally is then

1% 1% V.
AS:R(ln—ﬁwln—l) =RIn2

VoY V,

20-36. The relation n, o ¢ /' can be derived by starting with § =k, In W. Consider a gas with r,
molecules in the ground state and #; in the j th state. Now add an energy ¢, — &, to this system so
that a molecule is promoted from the ground state to the jth state. If the volume of the gas is kept
constant, then no work is done, so dU/ = dg, :

as= 4 _ 4V _ 5%
T T T

Now, assuming that ny and n; are large, show that

] N! e N
45 =k In (ng— Dlnt-- (o, + DU | ot nolmyteeonle.

n! n! B
= kg1 ! o =kln—=2
Bn{(nj—l-l)!(nowl)!} T

!

Equating the two expressions for 4.5, show that

n,
L o —e)/ kg T

From the problem,

Recall that (Equation 20.24) § = k; In W. For the initial state,

N1
Siuitial = kBInW—k In ”olnl'-"'”j!"'

and for the final state

1
Sy =hkyIn W =k, In ok
n (ny— Dim Lo (o, + DI
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Then

ﬁnal mma]

N N1
=k, 1 R —
“[(n TP (nj+1)t.--] B n[nolnil---nj!---:|

! k1 n,
(n+1)'(n—1)' B

4

=k ln——
B n_,'

where the last equality holds because n, > 1. Equating the two expressions for 4.5, we find that

n E.—¢€
0 __ 0
kyln — =
n, T
lnfi = ——Ej — %
"y kT
n,
A= e—(s}.—e“)/kBT
R

0

20-37. We can use Equation 20.24 to calculate the probability of observing fluctuations from the
equilibrium state. Show that '

14
W

€q

— A8k

where W represents the nonequilibrium state and AS is the entropy difference between the two
states. We can interpret the ratio W/ W_ as the probability of observmg the nonequilibrium state.
Given that the entropy of one mole of oxygen is 205.0 J.-K~'-mol~" at 25°C and one bar, calculate
the probability of observing a decrease in entropy that is one millionth of a percent of this amount.

We can use Equation 20.24 to write
S,=kgln W, and S=kyInW
Then AS is

AS=8—8, =k(nW—InW)

=kyIn —
eq
AS W
—— = —
kB Weq
e—AS/IcB - _V‘_/__
W

The probability of observing a AS which is one millionth of one percent of 205 J-K ™" -mol ™ is

' [ (1 mob)(1.00 x 107%)(205.0 1. K" -mol™)
exp| —

— exp[—1.485 x 107] & 0
1381 x 10 P 1K ! } expl ]
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20-38. Consider one mole of an ideal gas confined to a volume V. Calculate the probability that all the
N, molecules of this ideal gas will be found to occupy one half of this volume, leaving the other
half empty. :

From Problem 20-35, we can write the probability as

N
L V A 1 NA
Vv 2
20-39. Show that § y

e 2iven by Equation 20.40 is a maximum when all the p, are equal. Remember
that 3 p, = 1, so that

ijlnpi =pnp +phnp,+---+p_lnp,

S
+(l—=p—py——p )W —-p —p,—-—p, )

See also Problem J-10.

Begin with Equation 20.40,
Ssystcm = ka Z pj In pj
i
Substituting the expression givenfor 3, p, In p;, we find

Seysem = ~Hp [pl Inp +p,lop,+--+p, ;Inp,,

+(d=p —p——p, ) —p —p,—-—p, )]
%mw—:lnpﬁrlwln(l—p]—---~pj_!—pi+1m---wpn“])—l
i
0=lnpj—1n(1—pl—---—pjilfpﬂ_lu—---—pﬂ_])r
pj=l_pl_-"“pji‘lipj*»l_".—pn_]

Because p, can be any of p, to p, ,, and the above equality holds for all P all the p, must be
equal.

20-40. Use Equation 20.45 to calculate the molar entropy of krypton at 298.2 K and one bar, and
compare your result with the experimental value of 164.1J-K™'-mol ™.

This problem is like Example 20-6. We use Equation 20.45,

S rs rin| (kT 2y
= — n _ —_—
2 K N,

Assuming ideal behavior, ai 298.2 XK and one bar
_ NP
RT

<||,=

_ (6.022 x 10 mol™")(1 bar)
T (0.08314 dm’-bar-mol™ -K)(298.2 K)
=2429 x 107 dm ™ = 2.429 x 10¥ m™

Entropy and the Second Law of Thermodynamics

and
(2erkBT)3/2 3 [zmo.osaso kg-mol™')(1.3806 x 107 1. K)(298 2 K) ™"
h? - (6.022 x 10™ mol~')(6.626 x 107> J-5)*
= (8.199 x 10¥ m H¥? = 7.424 x 10¥ m™?
Then

- 5
S = ER + 17.235R
= 164.1 K" -mot™!

This value is the same as the experimental value.

20-41. Use Equation 18.39 and the data in Table 18.2 to calculate the entropy of nitrogen at 298.2 K
and one bar. Compare your result with the experimental value of 191.6 J-K~'-mol™'.

Recall from Chapter 18 that

Substituting intc Equation 20.43 gives

| 3l
S =Nk, Ing—k, InN1+ Nk, T { 222
oT J,

31
= Nk, Ing — Nk, In N + Nk, +NkBT( al;q)
¥

q dlng
=N Nk, In =+ Nk, T
kB+ B nN+ B ( aT )v (1‘)

For a diatomic ideal gas,

WMITN? T e w7
=\ —= v D ik, T
! ( B? ) G@)rot 1 — e /T Baf N (1839)
Then
q Mk, T\* V T
=1 — N I —In(l — e ®w/T
N n l:( 2 N, + In 6, n( e }
®vib +1 + De
a1 BT T
and

(alnq _3 1 8, ©0,/The ™ D,
oT ) 21 " T 21 1P/ pT?

Substituting into Equation 1 above, we find that

5 7 2eMk T\ V T
=41 B N BT
==+t [(—hz ) | o (- e )

A ot
e /T
5 v1b/

e vib/T—l

+Ing,
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=954 K, ©

ForN,, ® , = 3374K, @mt =288K, o =2 and g, = 1. The various factors are as follows: vib 4

For CQ,, ®vib,] = 3360 K, ®vib,2 wb 3
g, = t. The various factors are as follows:

= 1890K, ©,_ = 0.561 K, ¢ = 2, and

(2anBT)W B [27:(4.653 x 107% kg)(1.381 x 1072 I.K~")(298.2 Ky 1*
e - (6.626 x 10 J.5)?

(ZanBT>3/2 B [231(7_308 x 1072 kg)(1.381 x 1072 T.K~1)(298.2 K)Tf2

= 1.435 x 10¥ m~? " (6.626 x 10*' I-s5)*
— - 32 —3
V. RT _ (0.08314dm’-bar-mol *-K '}(298.2K) =2.825x 10" m
N, NP (6.022 x 10% mol™)(1 bar) YV RT _ (0.08314dm’ bar-mol™' -K™")(298.2 K)
=4117x 102 dm® =4.117 x 10 ¥ m® N, NP (6.022 x 10 mol™)(1 bar)
T 2982 K =4117 x 107% dm® =4.117 x 107 m?
1 =1 = 3.947
" o8, "2 88 %) T n[ 298 2K } s 583
n = = 2.
In(l — e @™y = —1.22 % 107 a® 2(0.561 K)
©.,/T 11.31 _
T = gt = 1380 x 107

4
> In(l — "%n/T) = --0.08508
The standard molar entropy is then -

_("Jvih ,'/T

1.0

> S (o

=35+1559+3.9474+1.22 % 107° + 1.380 x 107* ]
j=1 —_— e v'lhj

=23.04

5 | tal

,T) = 0.2835

The standard molar entropy is then
This is 191.6 J-K~'-mol™!, which is also the experimental value.

= 3.5+ 16.269 4 5.583 3- 0.08508 + 0.2835
=12572

=a| Tl

20-42. Use Equation 18.57 and the data in Table 18.4 to calculate the entropy of CO,(g) at 298.2 K

and one bar. Compare your result with the experimental value of 213.8 J-K~' .mol ™.
This is 213.8 J.-K~!-mol™', which is also the experimental value.

For a linear polyatomic ideal gas having three atoms,
20—43. Use Equation 18.60 and the data in Table 18.4 to caiculate the entropy of NH,(g) at 298.2 K

.= 2m Mk, T\ v T ﬁ ™ Pun T o oPT (18.57) and one bar. Compare your result with the experimental value of 192.8 J. K~ -mol ™.
h* U®r0t j=1 1 —e Pun/T el '
Then For a nonlinear polyatomic ideal gas having four atoms,
v 1/2
q 27erBT)3"2 1% T 4 o 1 o ME T\Y /2 T 6, u.n,m"
In==In|§{———"—0 — | +In — In(1 — n s/ w [ BT e D,y T
N |:( hz NA O_@ﬂﬁ ; Il( e 4 ) q = ( hz ) 14 o @rmA®mtB®mtc 1] & 17 € (1860)
4 g/ . .
— z vibJj +Ing, + ¢ Then
=1 2T kBT 32 17 172 3
me 2r Mk, T 1% ‘+lnx/ +I] T
2 n| {2 — R - -
and " N hz NA o 2 ®mt A®ml B ®mt c
glng wa bj/Tz)e o/ T D D
. _ Vi e an /Ty Vlbj ¢
( a7 ) +Z 27° ; 1= e 0wl kBT2 —Zln(l*e ) Z +1n gu_l_kBT
Substituting into Equation 1 from Problem 20-41, we find and

(©,,,/ T ®n/™

dng 3 6 wb} 6
(BT) 2T 2T Z; LD e e k, T

=1

_(.:)vih‘j/T)

S _7 | (FMKT 3”?-“
R-277 2 Y

L [(©,,,/T)e
+Z[ . 7T +lng,
=1

1—8 v:hj

Substituting into Equation 1 from Problem 20--41, we find

S 44 (2;erBT)3/2 v . a2 ‘1 L T
= = n|] ——EB— n-— n———
R hz NA g ®mlAOmLB®|0lC
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J s [(©,, ./Tye ®wmidT . . . )
_ Z (i — e~®n ;./T) 1 Z I: vlahi —eT ] +Ing, L At one atmosphere, using Equation 20.35 gives an efficiency of
J=t Jj=1 : . 293
For NH,, ©,,, =4800K, 8,,, = 1360K, ©,,, = O, , =4880 K, ©,, , = O, = 2330K, officiency =1 = 355 =21%
Ba=8,p=136K e - =892K o=3andg, = 1. The various factors are as follows: At 25 atm, the same engine will give an efficiency of
(2nffBT)3/2 _ |:2n(2.828 x 10_26(16(%6)2(;?110?4 1;);3' T-K ')}298.2 1()]3’2 efficiency = 1 — %3_2_ 1%
= 6.801 x 10" m~?
RT _ (0.08314 dm’-bar-mol™! . K™')(298.2 K)

V
N, NP (6.022 x 10% mol~)(1 bar)
=4117x 1072 dm’ = 4.117 x 107% m’

T3
et 44D
2"8_®©

ot A " rot,B 7 rot,C

6
Zlnu — e %’y 2 —0.01132
j=1

i(a“ib'f e_@w:”/,, = 0.05451
o T

1 pa— ei vib, f
The standard molar entropy is then
=44 14.845 — 0.5262 + 4.842 + 0.01132 4 0.05451
=123.23

This is 193.1 J-K™"-mol™*. The slight disagreement with the experimental value is due to our use
of the rigid rotator-harmonic oscillator model.

20-44. Derive Equation 20.35.

The maximum efficiency is defined as

. . —w 9evn +q q
maxmimum efficiency = = = Ve — ] e

qrev.h qrev‘h qrev,h

Because the process is cyclic and reversible, AS

engine

= (}, and so (as inr Equation 20.34)

qrcv,c -

—g . ==
rev,h Th
The efficiency becomes

maximum efficiency = | — = (20.35)

20-45, The boiling point of water at a pressure of 25 atm is 223°C. Compare the theoretical efficiencies
of a steam engine operating between 20°C and the boiling point of water at 1 atm and at 25 atm.




