CHAPTER 2 VE

Entropy and the Third Law of Thermodynamics

PROBLEMS AND SOLUTIONS

21-1. Form the total derivative of H as a function of T and P and equate the result to d H in
Equation 21.6 to derive Equations 21.7 and 21.8.

The total derivative of S(T, P) is
a8 a5
dS=1{—1| d7+{-—— | dP
aT /. aPj,
‘We can substitute this in Equation 21.6 to obtain

dH=TdS+ VdP

85
dn=1{25Y ar+7(22) apyvar
‘ T/, aP ),

as as
:T(ﬁ)PdT‘F[V—!—T(ﬁ)T}dP (1)

We now write the total derivative of (T, P) as

dH:(E> ar+ {22 ap
ar /. 3P ),
3H
=C.dT+{>=} dP 2
dH =C, +(8P)T 2)

Set the coefficients of d T in Equations 1 and 2 equal to each other to find Equation 21.7

sy _ C,
aT /), T

and set the coefficients of d P equal to each other to obtain Equation 21.8:
V4T a3 _{dH
arj,] \orP/,
a3 1 dH
— ) ==l -V (21.8)
ar/, TI|\oP/;

21-2. The molarheat capacity of H,O{1) has an approximately constant value of f}, =754FK " mol™
from 0°C to 100°C. Calculate AS if two moles of H,O(l) are heated from 10°C to 90°C at constant
pressure.
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648 Chapter 21

‘We use Equation 21.9 to write

AS = J[Tz nEPdT _ fm k2 mol)(75.4]-K‘1-m01_‘)dT
r T 283 K T

363
= (15087 K Hln=— =3751.K!
( TS

21-3. The molar heat capacity of butane can be expressed by
C,/R =005641+ (0.04631 K™)T — (2392 x 10~° K™ T? + (4.807 x 107 K~ T?

over the temperature range 300 K < 7 < 1500 K. Calculate AS if one mole of butane is heated
from 300 K to 1000 K at constant pressure.

We can use Equation 21.9 to write

.
AS:]Z”C%T
. T

1

1090 K () 05641 ‘
nR f [ —— +0.04631 K™ —(2.392 x 1075 KT
3 .

00 K
+(4.807 x 10 K HT?}aT
(23.16R)(1 mol) = 192.6 J-K™*

21-4 . The molar heat capacity of C,H, (g) can be expressed by

6085.929K 822826 K*

+ 77
over the temperature range 300 K <« T < 1000 K. Calculate AS if one mole of ethene is heated
from 300 K to 600 K at constant volume.

C,(T)/R = 16.4105 —

We can use Equation 21.5 to write

/_\S—[Tzn?"dl"
o

1

60K M16.4105 6085.929K 822826 K2

=unR — > + 7 drT
100 K T T T

= (4.660R)(1 mol) = 38.75 J. X'

21-5. Use the data in Problem 21-4 to calculate AS if one mole of ethene is heated from 300 K to
600 K at constant pressure. Assume ethene behaves ideally.

For an ideal gas, CP - CV = R, s0 we can express CP as

6085920 K n 822826 X*

C,/R=1+4164105— T 72

Entropy and the Third Law of Thermodynamics

Then we can nse Equation 21.9 to calculate AS:

L ngp
AS =j aTr
Tl

T
0K 174105 6085.929K 822826K°
=nR — 5 -+ 3 dr
300 K T T T

= (5.353R)(1 mol) = 44.51 J.X

21-6. We can calculate the difference in the results of Problems 21—4 and 21-5 in the following way.
First, show that because C, — C, = R for an ideal gas,

— — T2
AS, =AS, +Rln—=
Tl
Check to see numerically that your answers to Problems 21-4 and 21-5 differby RIn2 = 0.693R =
5.76 - K~ mol ™!,

For an ideal gas, EP — ﬁv = R. Equations 21.6 and 21.9 state that

AS =fT1 gd? and AEP:f —£4T
v 7 T T T

Subtracting AS, from A"S"V gives

and so AEP can be written as

- - T,
AS, = AS, +RIn 2

1

The answers to Problems 21—4 and 21-5 differ by R In 2, as required.

21-7. The results of Problems 21-4 and 21-5 must be connected in the following way. Show that the
two processes can be represented by the diagram

Vi. P (1/Ty)

Vi, P, 2V (T,/T), P,

v

where paths A and B represent the processes in Problems 21--5 and 214, respectively.
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Now, path A is equivalent to the sum of paths B and C. Show that A, is given by
T, T,
(7))
AS.=nRln—~ =pRin—-% 2
v, P T,

and that the result given in Problem 21-6 follows.

In Problem 214, ethane is heated at constant volume, so (assuming idea) behavior)

TZ
Py= P |2
n

Likewise, in Problem 21-5, the system is kept at constant pressure and so (assuming ideal behavior)

T,
Vz = Vl ?
1

These values correspond to those shown in the diagram. Now, path C represents an isothermal
process. Because we are assuming ideal behavior, U/ = 0, which means that §g_, = —§w =
nRT/VdV. Then we can write AS,, as (Equation 20.22)

3 v, V(T,/T, T
A&:fﬁﬂ:ani=Rm4ﬁiﬁmei
T V, V T

1 i

Note that path A is equivalent to the sums of paths B and C, so AS, = AS, + AS... Because
AS, = AS,and AS; = AS,,, we can write

AS. = AS, — AS,

and the result given in Problem 21-6 follows.

21-8. Use Equations 20.23 and 20.24 to show that § = 0 at 0 K, where every system will be in its
ground state.

We begin with Equations 20.23 and 20.24,
| A

W=—v+ and

S=k 1
ala,l... pln W

Let a, represent the ground state, so all other a, = 0 when the system is in the ground state. Then
A=} a =a, +0=a,and Equation 20. 23 becomes

Substitute this into Equation 20.24 for § to find .

S=lk,Inl=0

21-9. Prove that § == —k Y p;Inp, =0 when p, = 1 and all the other p; = 0. In other words, prove
that x Inx — Qasx — 0.

Entropy and the Third Law of Thermadynamics

Let p, = | and all other p, = 0. Then Equation 20.40 becomes

=—ky ) p;Inp,

conditions given.

=0—ky, » xinx

where x — 0. In Problem J-8, we proved that xInx — O asx — 0,50 8§ =0 — 0 = 0 under the

21-10. Tt has been found experimentaﬂly that A, S~ 88J-K™"-mol™" for many nonassociated liquids.
This rough rule of thumb is called Trouton’s rule. Use the foliowing data to test the validity of

Trouton’s rule.

Substance bl "C L /7C A HI-mol A H /KT -mol™!
Pentane —129.7 36.06 8.42 25.79
Hexane —93.3 68.73 13.08 28.85
Heptane —-90.6 98.5 14.16 31.77
Ethylene oxide —111.7 10.6 517 25.52
Benzene 5.533 80.09 9.95 30.72
Diethyl ether —116.3 34.5 7.27 26.52
Tetrachioromethane —23 76.8 328 29.82
Mercury —38.83  356.7 2.29 59.11
Bromine =72 58.8 10.57 29.96
Use Equation 21.16,
BN
A S = u
vap T
vap
to construct a table of values of A“PE.

Substance /_\WE/J-mol_] K

Pentane 83.41

Hexane 84.39

Heptane 855

Ethylene oxide 89.9

Benzene 86.97

Diethyl cther 86.2

Tetrachloromethane 85.2

Mercury 93 .85

Bromine 90.3

21-11. Use the data in Problem 21-10 to calculate the value of Afusff for each substance.
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Use Equation 21.16, 21-14. Use the following data to calculate the standard molar entropy of N, (g} at 298.15 K.
A o A H CLIN,(s)1/R = —-0.03165 + (0.05460 KT + (3.520 x 10° K HT?
fus™ . — (2.064 x 109K )T
to construct a table of values of A S. k=T<3361K
- CoIN,(3)]/R = —0.1696 + (0.2379 K )T~ (4.214 x 107 K )77
-1 _1 P 2372
Substance Ay S/ -mol™ K 4 (3.036 x 1075 KHT?
Pentane ' 58.7 3561 K=< T <63.15K
Hexane 73.5
Heptane 76 C3IN,(D)/R = —18.44 + (1.0S3K™)T — (0.0148 K™ 7>
Ethylene oxide 32,0 +(7.064 x 107 K™HT?
Benzene . 35.7 63.15K < T <7736K
Diethyl ether 46.3
Tetrachloreunethane 13 C3IN,(g)]/R = 3.500 from 77.36 K < T < 1000 K, (,(T =10.0 K) = 6.15 T’ K" ‘mol™",
Mercury 9.77 T,=3561K A H=0.2289 kKI'mol™, T, =63.15K, A, H =071 ki-mol™, T, =7136K,
Bromine 40 and Ampﬁ = 5.57 kJ-mol~'. The correction for nonideality (Problem 22-20) = 0.02 J- K" -mol™".

21-12. Why s AvapS > ApS7? The easiest way to do this series of problems is to input the given data into a program like

Mathematica and use Equation 21.17. For temperatures below the minimum vglue for ivhich the
formulae provided are valid, we can use the expression from Example 21-3, $(T) = C(T)/3.
Here, we solve the formula '

A8 /_\.fuj because gases are essentially completely unordered; the molecules of a gas travel

vap

more or less randomly within the gas’s container. Liquids, however, are much more cohesive and

structured, and solids are very structured. The difference between the entropy of a liquid and that . C,(10K) BECLIN,(s)] A H 15 CLIN, (8]
of a solid is less than the diff iqui S = —”*““JFj AT+ 356 +f 4T
8 less than the difference between the entropy of a liquid and that of a gas. 3 10 T 3561 K 35.61
- Af“sﬁ 4 fﬂ'% "Cmp [Nz(l)] dT + AvapH
21-13. Show thatif C5(T) — T%as T — 0, where & is a positive constant, then S(7) — Oas T — 0. +63-15 K Jeus T 7136 K

dT + correction

N [298,]5_. EP[NZ(g)] -
77.36 T
=2.05T-mol™" K" +25.86J-mol™" ' K' + 6428 J-mol™"- K™

+2341T-mol™ K™ + 11.24 J-mol "K' + 11.78 T-moi™" . K™
47200 T-mol™ K™ +39.26 I-mol™ " K™ 4+ 0.02 J-mol™! - K™!
=192.0571-.X " -mol™!

We assume in the statement of the problem that
;rl_r}'{l) Co(T)y =T

where o is a positive constant. Then express S using Equation 21.10 and take the limit of § as
T — O

. T C T T o o
th(T):S(OK)Himf A )delim] T r—im T —¢
T—0 =0 fq T T=0f, T

0 T The literature value of the standard molar entropy is 191.6 J-X~"-mol™"'. The slight discrepancy

between these two values reflects the use of the ideal expression for C »IN,(g}]. (Using the
C AN, (2)] that is given in the next problem, which is linear in 7', gives a standard molar entropy of

as long as S(0K) = 0 and o > 0 (as stipulated in the statement of the problem).
| 191.04 J-mol ™ K1)

21-15. Use the data in Problem 21-14 and C,[N,(g)l/R = 3.307 + (6.29 x 107 K™)T for
T > 77.36 K to plot the standard molar entropy of nitrogen as a function of temperature from 0 K
to 1000 K.

The function which describes the standard molar entropy of nitrogen must be defined differently
for each phase and phase transition. Notice that the correction factor must be added to all functions
to correct for nonideality.

FromO0Kto 10K,

_ C (10K
S(T) = ——')(3—) + corr
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From 10 K to 35.61 K,

dT + coit

C,(10K) +f C,IN,(s,)]
3

S(T) =
n= o T

At3561 K,

- C.(10K) B C N, (s)] A H
STy = —£— -;—j[ P2l dT s
() 3 i T +35‘6]K+corr

From 35.61 Kt0 63.15K,

- C (10K) BEC N, (s)] A H - 7 C,IN,(,)] '
S T — P +f P 231 dT+ rs f P 2572
S 3 o T B K S T ‘?TH’O”
At63.15K,
- C (10K) 3I6E N, (s,)] A H 815°C [N (s)]
S T — P +[ P 2871 dT trs P 22
D 3 0 T +35.61K+ 2561 T a1
+ AfusH +
63158 o
From 63.15 K to 77.36 K,
_ E 10K SSAGIE N A 7 63.15 1~
5(T) = p( )+j[ ol 2(81)]dT+ ws jf CP[NZ(SZ)]dT
3 o T 3561 K Jusg T
A H T CLIN.(D]
+—--f“s—+f P 20 dT 4 corr
63.15K  Jgaus T
At 77136 K,
— C (10K) BT N, (s)] A H 815 °C [NL(s.)]
S T = P +'[ P 23] dT trs f P 252
(D 3 o T +35‘.61K+ 2561 T ar
A _ﬁ 77.3GWC_ [N (])] A ﬁ
i f PL AT 2P
GB15K o, T T +77.36K +corr

TFrom 77.36 K to 1000 K,

_ C (10K) B6C INL (s A H 8315 ¢ [N, (8]
ST=”—-~+[ P2 U dT + - f PN
(7) 3 10 T 35.61 K Jfisq T a7
. A H N f”ﬁ C LN, AT ALH . fT C,IN,(g)]
63.15K  Jas T 7736 K Jras T
200
7
o N
% 150
L 100 |
=
len 50
0 I I I I I
G 200 400 600 800 1000

T/'K

dT + corr
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ﬁ1—-'§ 6. The molar heat capacities of solid, liquid, and gaseous chlorine can be expressed as

CAICL(s)]/R = —1.545 4+ (0.1502 K )T — (1.179 x 1073 K™% 72
+ (3.441 x 107° K )T

5K=T<=<172.12K

C;[CLDY/R =7.689+ (5.582 x 10 K™)T — (1.954 x 10 K ) T?
172.12K < T < 239.0K

CoICL(2)]/R = 3.8124 (1.220 x 107 KT — (4.856 x 1077 K3 7?
2390K < 7T < 1000K

Use the above molar heat capacitiesand T, = 172.12K, A fus_ff = 6.406 kJ-mol~, 7., =2390K,
Avﬂpﬁ =20.40kJ-mol™', and ®, = 116 K. The correction for nonideality = 0.502 J-K ! .mo}™!
to calculate the standard molar entropy of chlorine at 298.15 K. Compare your result with the value
given in Table 21.2.

_ 15 12 4 T 3 172.12 MCW 1 A E
S(T):j[ 7 R(—) dT+j oL Z(S)]dT+ fus
0 1

ST @D s T 172.12K
290 T, [CL, (1 Al [P T,IC

+j pLCL( )]dT+ p +j[ Mcﬂ"—k correction
172.12 T 239.0K 2360 T

=1.401 I-K™"moI™! + 69.37 J-K"-mol™" + 37.22 J- K" -mol
+21.86J- K" -mol™! + 85.36 J-K~! -mol ! + 7.54 1K~ -mol!
+0.502 J-K~!-mol ™!
=22321-K "-mol !

The result is extremely close to the value of 223.1 T.-K™'-mol™ found in Table 21.2.

2117, Use the data in Problem 21-16 to plot the standard molar entropy of chlorine as a function of
temperature from 0 K to 1000 K.

Do this in the same manner as Problem 21-13, using the appropriate values from Preblem 21-16
and changing the limits of integration as required.

250
200
150

100

S§/T-K Vmot!

50

0 } | | | !
0 200 400 600 800 1000

TIK
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21-18. Use the following data to calculate the standard molar entropy of cyclopropane at 298.1. K.

Co[C,H ()]/R = —1.921 + (0.1508 K™)T — (9.670 x 107 K~*)T*
' 1 (2,694 x 108K HT?

ISK=T=<1455K

CSICH(D]/R = 5.624 + (4.493 x 1072 K™HT — (1.340 x 10 * K™ T?
455K < T <2403 K

COICH (g)}/ R = —1.793 + (3.277 x 107 KT ~ (1.326 x 10 ° K )7?
2403K < T < 1000K

7,.,=1455K, T, =2403 K, A, H =544 kI-mol™', A H = 20.05 kJ-mol™, and @, =

130 K. The correction for nonideality = 0.54 J-K™'-mol ™.

- 12t TN 1455 € [C,H, (s A H
S(T)zf 127 R(—-*-) dT—!—[ "’[3—'5()]dT_|,WL_
0 1

5T T \9, p T 145.5K
N f3 CICHO] . A H . fm-‘ C,ICH®I
145.5 T 24‘03 K 240.3 T

-+ correction
=0.9951- K -mol™ 4+ 66.1 1. K" -mol ™" +37.4 J.K"'-mol ™
+385)1 K .mol™" + 83.4 5. K" mol ' + 10.8 J-K™"-mol™!
+0.54 J-X"" mol™!
=237.81.K ' mo}l™’

This compares very well with the literature value of 237.5 J-K™'-mol ™.

21-19. Use the data in Problem 21-18 to plot the standard molar entropy of cyclopropane from 0 K
to 1000 K. '

Do this in the same manner as Problem 21-15, using the appropriate values from Problem 21-18
and changing the limits of integration as required.

300

Lomol™!

200 -

S/J.K™

100

0 | ! | ! !
0 200 400 600 800 1000

'K
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21-20. The constant-pressure molar heat capacity of N,O as a function of temperature is tabulated
below. Dinitrogen oxide melts at 182,26 K with Afu;ﬁ = 6.54 kI mol™', and boils at 184.67 K
with A H =16.53kJ -mol ™" at one bar. Assuming the heat capacity of solid dinitrogen oxide can
be described by the Debye theory up to 15 K, calculate the molar entropy of N,O(g) at its boiling

point.

T/K  C,/I-K ' mol T/K  C,/I K mol™
15.17 2.90 120.29 45.10
19.95 6.19 130.44 47.32
25.81 10.89 141.07 48.91
33.38 16.98 154.71 52.17
42.61 23.13 164.82 54.02
52.02 28.56 174.90 56.99
57.35 30.75 180.75 58.83
68.05 34.18 182.26 Melting point
76.67 36.57 183.55 77.70
87.06 38.87 183.71 77.45
98.34 41.13 184.67 Boiling point

109.12 42.84

‘We can do this problem in the same way we did Problems 21-14, 21-16, and 21-18. Because we
are not given equations for the molar heat capacity, we can graph the heat capacity of the solid and
liquid dinitrogen oxide, find a best-fit line, and use this to calculate the molar entropy of N, O at the
boiling peint.

For solid dinitrogen oxide, a best-fit ling gives the equation

CLINO(s)]/T- K" -mol™" = —13.153 + (11556 K™Y T — (8.3372 x 107 K ) T2
+(2.3026 x 105 K ) 1?

B =)
o o
T i

b
<
|

Cp/1.X ' mol™!

0 ! | H ] | |
0 25 50 75 100 125 150 175

T/K

And for liguid dinitrogen oxide (with only two points), a line drawn between those two points has
the equation

C,IN,O()]/3- K" mol™ =364.49 — (1.5625 K™)T

Note that, although we are given only two data points, the temperature varies by only 2° for
dinitrogen oxide. From the Debye theory (Example 21-3) we can write the low temperature entropy
as

CL(15K)

S(I5K) = 0<T=<15K
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Now we can substitute into Equation 21.17, as before.
Fitting the curves to a polynomial, we find the following expressions for € s

— 182.26 ¢~ I
$(T) = C(15K) N f C,IN0M) .. . A H B
3 15 T 182.26K : CplBI/T- K™ -mol™! = —12.432 4 (0.93892K )T — (3.4126 x 1077 K2)T?
N f‘84'67 CP[NZO(})]dT N AH + (4.8562 x 10 ° K )T
18226 T 184.67K 12K < T <2204K
=0.9671- K mol ' +69.34 T-K~"-mol* +35.9J-K"'-mol™* ; : — .
Coly1/3-K ' -mol™" = 78.265 — (8.2955 x 1072 K™ )7 + (4.4885 x 107* K T2

+1.025-X "mol™" +89.5T. K" -mol ™

2204K <= T <264 5K

= 196.7 I-K"-mol™
Colel/J- K™ -mol™' =35.757 + (0.28147 K )T — (3.2362 x 10°* K1?

2645K < T

21-21. Methylammonium chloride occurs as three crystalline forms, called 8, y, and «, between _ Fr
, : om the Debye th E -
0 K and 298.15 K. The constant-pressure molar heat capacity of methylammonium chloride ye theory (Example 21-3),
as a function of temperature is tabulated below. The f — y transition occurs at 220.4 K with _ "C_*P(]z K)
A, H = 1.779kJ-mol™ and the y — o transition occurs at 264.5 K with A, H = 2.818 kI-mol™". S12K)= —— 0<T=12K

Assuming the heat capacity of solid methylammonium chloride can be described by the Debye No ite th . ) .
theory up to 12 K, calculate the molar entropy of methylammonium chloride at 298.15 K. W we can write the molar entropy of methylammonium chloride as

T/K  C,/0-K ' mol™ T/K  C,/3-K " mol™ $(298.15K)

_ C,(12K) +fzzo.4 CP[ﬁ]dT+ AﬁayH N j-zsai.s CP[V]dT
3 12 T 2204 K 2904
12 0.837 180 73.72 - A T pmesw o
15 1.59 200 77.95 i e ] Cplod
20 3.92 210 79.71 : 2645K s T
30 10.53 220.4 B — y transition =02791.K " mol™ +94.17J-K '-mol™ +8.07J.K ' -mol ™
;18 éggg ;ié 2;23; +1542J.K"-mol™ + 10.65T-K™"-mol ™" + 10.69 T-K ' mol™"
60 32.76 240 84.27 = 1393 7K -mol™
70 38.95 260 87.03
80 44.35 264.5 y —> o (ransition
90 49.08 270 88.16 21-22. The constant-pressure molar heat capacity of chloroethane as a function of temperature is
100 53.18 280 89.20 ' tabulatedgleow. Chlorocthane melts at 134.4 K with Amﬁ = 4.45kJ-mol™', and boils at 286.2 K
x wx o omoom -
: _ . a to calculate the molar entropy of
160 69.45 chloroethane at its boiling point.
-1 —1 = -
We can this problem in the same way as Problem 21-20, graphing the molar heat capacities of the e Cp/J R mol T Cp/TK mol”
B, «, and y crystalline forms versus temperature: ' 15 5.65 130 84.60
20 11.42 134.4 90.83 (solid)
25 16.53 97.19 (liquid)
30 21.21 140 96.86
i 35 25.52 150 96.40
'73 40 29.62 160 96.02
: 50 36.53 180 95.65
14 60 42.47 200 95.77
_" 70 47.53 220 96.04
2 80 52.63 240 97.78
% 90 '55.23 260 99.79
! | 1 1 100 59.66 280 102.09
100 150 200 250 300 110 65.48 286.2 102.13

T/K . 120 73.55
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Do this problem in the same way as Problem 21-20, graphing the molar heat capacities of solid
and liquid chloroethane versus temperature:

100 M
Liquid
T, 80k 4
o)
g8 60
0
M B
- 40 Solid
s 20 -
0 l ! ! | \ |
0 50 100 150 200 250 300

TIK

Fitting the curves to a polynomial, we find the following expressions for C -

C ,[solid}/ J-K™"-mol™ = —19.195 4 (1.863 K™DHT - (1.8997 x 102 K™ T?
+(8.3132 x 107 K H7T?

15K<T7T =<1344K

EP[liquid]/ T XK' mol™ = 118.15 — (0.24544 K™)T + (6.675 x 107 K HT?
134K <T <298.15K

From the Debye theory (Example 21-3),

_ T, (15K
S(lSK):C”—(BW—) 0<T=<15K
Now
- C 1344 T [solid A H 262 °C [liquid] A H
S(T) = CP(lSK)+f o[soli ]dT-IHL-i-f #L1q T p
3 ” T 134.4K ' Jigs T 286.2 K

= 1.88 7. K ' mol™! +78.1 7. K" -mol™! +33.1 J. K '-mol™’
+73.47-K ' mol™" + 86.1 - K -mol™
=272.61. X -mol™!

21-23. The constant-pressure molar heat capacity of nitromethane as a function of temperature
is tabulated below. Nitromethane melts at 244.60 K with Aﬁjsﬁ = 9,70 kJ-mol !, and boils at
374.34 K at one bar with Avapﬁ = 38.27 kI-mol™" at 298.15 K. Furthermore, the heat capacity of
solid nitromethane can be described by the Debye theory up to 15 K. Use these data to calculate
the molar entropy of nitromethane at 298.15 K and one bar. The vapor pressure of nitromethane

Entropy and the Third Law of Thermadyramics 661

is 36.66 torr at 298.15 K. (Be sure to take into account AS for the isothermal compression of
nitromethane from its vapor pressure to one bar at 268.15 K.

T/K  C,/T K -mol™ /K  C,/T-K'-mol™

15 3.72 200 71.46

20 8.66 220 75.23

30 19.20 240) 78.99

40 28.87 244.60 melting point

60 40.84 250 104.43

80 47.99 260 104.64
100 52.80 270 104.93
120 56.74 280 105.31
140 60.46 290 105.69
160 64.06 300 106.06
180 67.74

Do this problem in the same way as Problems 21-20, but include AS for the isothermal
compression of nitromethane. Graph the molar heat capacities of solid and liquid chloroethane
versus temperature:

PR e
100
L 80
]
? 60 -
;
bt
)_-, 40 [
A,
o 20
0 ! a ! ! | |-
0 _ 50 100 130 200 250 300

T/K

Fitting the curves to a pelynomial, we find the following expressions for C P

EP[soiid]/J-K’] ‘mol™ = ~11.177 + (11831 K™)T — (6.6826 x 10 K~ 3)T?
+(1.3948 x 107 K3 T?

15K < T <244.60K
C,[liquid]/J- K™ mol™ = 111.6 — (8.0557 x 102 K™)T + (2.0714 x 10 * K T?
244.60K < T < 300K

From the Debye theory (Example 21-3),

C (15K

S(T) =

Assuming that nitromethane behaves ideally,' d U = 0 for the isothermal compression and so
dg = PdV. Then we can express the change in entropy for the isothermal compression as

— — FzR
AS=]P(1V=.[ —dP
n P



662 Chapter 21

We can now write the molar entropy of nitromethane at the given conditions as

Yal 460 : 17 34 T rliquid
5(T) = CP(? X) +_[ Cp[solld]dT+ A f pHlliqui ]dT

s T 244.60K  Jouaso T
A H Lhar  p
+— f —dpr
374.34 K 0.0489 bar P

=1247-K " mol™" + 109.3J- K" mol™! +39.66 . K~!-mol™*
42079 T K mol™ 4+ 1284 T. K~ mol™! ~ 25.1 I-K™' -mol™!
=1274.26 J-K~" mol™’

21-24. Use the following data to calculate the standard molar entropy of CO(g) at its normal boiling
peint. Carbon monoxide undergoes a solid-solid phase transition at 61.6 K. Compare your result
with the calculated value of 160.3J.K~'-mol~'. Why is there a discrepancy between the calculated
value and the experimental value?

T,ICO(s))/R = —2.820 + (0.3317K ™) T ~ (6.408 x 107 K™ T?
+ (6.002 x 107 K473
10K <T<61.6K

C,ICO(s)]/R = 2.436 + (0.05694 K™)T
616K <T <681K

fP[CO(l)]/R = 5.967 + (0.0330 K™)T - (2.088 x 107 K5 T*
68.1K<T <8l6K

and T, (s, > 5,) =616 K, 7, =681K T, =816K, Ay H =0836k mol™', A_H =
0.633 kJ-mol™', A, H = 6.04 kJ-mol™’, B, =79.5 K, and the correction for nonideality
=0.8797.K"-mol~".

_ 10 4 T 3 61.66 CO(s A ‘“H‘
S(T)=jf 127 R(—) dT—l—f L (])]dT+ L
4} 1

5T O, o T 616 K
68.1 7~ IT 816 7= AH
CplCO(s,)] A H f C[COM)] vap .
e I — T + + correction
+-/;1,6 T - 68.1K N 63.1 T 816K

=1291K " "mol™" +40.0J. K" 'mol' + 10.3J. K" mol ' +5.11 I.K™" -mol ™
+12.3 1K " mol™” + 109T-K'-mol™ + 74.0J- K" -mol™" + 0.879 J-K " -mol ™
= 154.7 F-K~'-mol ™! '
We have found an experimental value for § of 154.7 I.K™'-mol™!. The difference between this

and the calculated value is the residual entropy of the crystal, which is approximately R In2, or
5.8 J-K~'-mol™" (in agreement with the difference calculated here of 5.6 J.K~'-mol™!).

Entropy and the Third Law of Thermodynamics

21-25. The molar heat capacities of solid and liquid water can be expressed by

C,IH,0()1/R = —0.2985 + (2.896 x 102K T — (8.6714 x 107 K- T2
+(1.703 x 107" KHT?

IDOK=<T <273.15K

CLH,O0MI/R = 22.447 — (0.11639 K™)T + (3.3312 x 107 K3 T2
—(3.1314 x 1077 K3 1°
273.15K < T <298.15K

and T, =273.15 K, A, _H = 6.007 kI-mol ', AVHPE(T = 298.15 K) = 43.93 kJ-mol™’,

0, = 192 K, the correction for nonideality = 0.32 J-K'-mol™, and the vapor pressurc of
H,0 at 298.15 K = 23.8 torr. Use these data to calculate the standard molar entropy of H,O(g) at
298.15 K. You need the vapor pressure of water at 298.15 K because that is the equilibrium pressure
of H,0(g) when it is vaporized at 298.15 K. You must include the value of AS that results when
you compress the H,O(g) from 23.8 torr to its standard value of one bar. Your answer should come
out to be 185.6 J-K~'-mol™", which does not agree exactly with the value in Table 21.2. There is
a residual entropy associated with ice, which a detailed analysis of the structure of ice gives as

AS g = RIn(3/2) = 3.43-K™-mol™", which is in good agreement with §__— S o

We can do this problem in the same way as Problems 21-14, 21-16, and 2118, taking into account
AS for the isothermal compression of water. For an isothermal reaction, dw = —d8g,808g = PdV
and we assume that the gas is ideal. Then

_ 10 2 4 3 27315 -~ A T
S(T)=f i R(i) dT+f OO 7 AnsH
0 1

5T\ @, . T 273.15K
N [298.15 EP [HZO(D]dT Avnpﬁ
271.15 T 298.15 K

'R
— f —d P 4 correction
0

L0317

= 0.0915 J.K™"-mol™" +37.9J-K "-mol™" +22.0 J- K" -mol ™!
+6.62 1K -mol™ + 147.3 J.K " -mol™ — 28.69 F.-K~" . mol"!
+0.32 J- K ' mol ™}
= 185.6 ]-K™'-mol™

Adding in the residual entropy gives a molar entropy of 189 J. K~ -mol™".

27-26. Use the data in Problem 21-25 and the empirical expression

CIILO(R)]/R = 3.652+ (1.156 x 102 K™)T — (1.424 x 1077 K~} 7?2
300K < 7 < 1000K

to plot the standard molar entropy of water from 0 K to 500 K.

Do this in the same manner as Problem 21-15, using the appropriate values from Problem 21-23
and changing the limits of integration as required.
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21-27. Show that

_ 31
§=rmZ 4 gr {204
N ar J,

We express the partition function of an ideal gas as (Equation 17.38)

g(v, ¥

QN, V., T) = N

InQN, V,T)=Nlng(V.T) —InN!

We substitute into Equation 21.19 to write

- 9 In
S=NkIng—k,InN+ Nk, T | 2
aT /,

We use Stirling’s approximation and divide both sides of the equation by n to find
- dlng
S=Nxk,Ing— Nk, InN-+kN, + Nk T

aT
q ding
= Rln-=+ R+ RT
nN+ + (aT )v

ge dlng
=Rln— +RT
"y T (BT )V

21-28. Show that Equations 17.21 and 21.19 are consistent with Equations 21.2 and 21.3.

We begin with Equations 21.19 and 17.21,

dln Q
=k 1 kT
S=lplnOth ( 5T )N,V

We can substitute &, 7(3 Q/aT) from Equation 17.21 into Equation 21.19 to find

(21.19)

(17.21)

Enfropy and the Third Law of Thermodynamics

S=k,1 {£)
=k I+~ (1)

EAY o {dln g 1 {3(E} (E)
Pl e e e Grr o =
aT J ar Jyy T\4T J, T
Because (3(E)/0T), = C,, this becomes
a8 91 C 1 81 C
BN g (2nly & L o (8OY &
oT J, aT T T arT T
which is Equation 21.2. Now differentiate Equation 1 with respect to V:

{E)
S=kInQ+ ==

a8 al 1 /O(E
Y _, (2mQY | LcaE)
av /., av /. T\ av /,
1 a1l gl
Ll r(2Rey (Y
T av /. v/,
For an ideal gas, k, T = PV/N,and (3In Q/3V), = N/ V. Thus we have

(), 77+ ()]

which is Equation 21.3.

21-29. Substitute Equation 21.23 into Equation 21.19 and derive the equation (Problem 20-31)

AS=C,1 T2+R1 4
C vl TRy,

for one mole of a monatomic ideal gas.

We know that @ = g”/N! for an ideal gas (Equation 21.22), so substituting Equation 21.23 into

this equation gives
1 [ (2mmi, TN\ !
C=m|\Tw ) Ve

2amik, T LE
1HQ=N1H T V.gel — Nt

so, if only temperature and volume vary,

Then

3 T V.
'!HQZ_IHQI ZENIH?Q—FlH-{}
1 1

Also, we can find (3 In Q/9T),: _
alnQ 3N
aT Jy, 2T
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Equation 21.19 states that | As in Problem 21-30,
alnQ 3 7 Mk T\ V ®_ /T
S=kIn0+k T(—) : — e — 41 =B — - — e Ow/Ty o v 7
B B aT v | | R 3 + In hl NA +1In U@mt In(l € ) -+ e@yﬁh/.[ 7 +1n g,
Let AS = S, — §,. Then For carbon monoxide, ® , =3103K,®_ ==277K,0 = 1,and g, = 1. Then
—_ 1 dln Q@ dln O ME TN\ -26 —23 ~1 3/2
n 0T Jay 0T /)y 2 (6.626 x 107 J-5)° - "
P S B L LY L V _ R _ 008314dm’barmol KYBL6K) _ | o
—_— = = = 1. =
2T, v, 2t 2T N, NP (6.022 x 10® mol 1)(1 bar) o
3 T V,
In =In|—=————1]=3383

2T Y 6 )~ "leTy

where 3R/2 is equal to C,, for a monatomic ideal gas (Equation 17.26). ' : In{1 — e @a'Ty = —3.057 x 1077
V ®vi /T —
ﬁ =1.162 x 107"
21-30. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar entropy of _
CL(g) at 298.15 K. Compare your answer with the experimental value of 223.1 J-K™' -mol~". The standard molar entropy is then
g —17 -15
o MET T e, T —=354+1235243383+3.057x 107"+ 1.162 x 107° =19.23
7= ( - n? : ) v ® le -8 /T3e1eD“/k“T (21.24) K
-— vib [ - .
T %ot € This is 159.9 J-K™'-mol ™, which is about 4 J.K~!-mol ™ larger than the experimental value.
Equation 21.28 (which is also for a diatomic ideal gas) can be written: as ; The discrepancy is due to residual entropy.
s 7 2r Mk, T\ V o /7 0./T .
R 2 +in |:( h? ) N; +1n a0, —In(d—e™w) + PLENE R | theg, ) 21-32. Use Equation 21.26 and the data in Chapter 18 to calculate the standard molar entropy of

NH, (g) at 298.15 K. Compare your answer with the experimental value of 192.8 T-K™!-mol .
(see also Problem 20—41).

For chlorine, ® ; = 805K, ®  =0351K, 0 =2,and g, = 1. Then

See Problem 20-43. The value calculated is 193.1 T- K ' mal .

(ZanBT>3/2 B [231’(1.]774 x 107 kg)(1.381 x 1072 I.K™1)(298.15 K)

3/2
3 -3
n? (6.626 x 10* J-s)2 i| =5777 x 107 m

27-33. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar entropy of

v 3 -1 11 .
VvV _ RT _ (0.08314dm"-barmol” -K')(298.15K) .- 6 s Br,(g) at 298.15 K. Compare your answer with the experimental value of 245.5 J-K~*-mol~",
N, NP (6.022 > 10 mol™*)(1 bar)
T 298.15K _
In e =In Z(TSIK) = 6.051 Asin Problem 21-30,
Tot '
—o, S 7 2rMk, T\ V T e,./T
In(1 — =®w/Ty = —0.06957 LI P it - S NN T _ O/ T vib
O/ T 2T\ N, |t ee, T e G s
b = 0.1945 _
gl — ] For bromine, ©® , =463 K, 0_ =0.116K,6 =2, and g,, = 1. Then

The standard molar entropy is then

<2anBT)3/2 B [2;1(2.654 x 107 kg)(1.381 x 107 J. K 1)(298.15 K)

372
B (6.626 x 10° J.5)° ] =1.955%x10¥* m™

5
— =35+1698 4+ 6.051 + 0.06954 + 0.1945 = 26 .80 .
R : ) L RT _ (0.08314 dm*-bar-mol™ - K 1)(298.15 K)
This is 222.8 J- X~ mol™", which is very close to the experimental value. N, NP (6.022 x 107 mol™)(1 bar)
: T 298.15 K
In =In & =7.159

ag® 2(0.116 K)

rot

=4.116 x 107% m?

21-31. Use Equation 21.24 and the data in Chapter 18 to calculate the standard molar entropy of
CO(g) at its standard boiling point, 81.6 K. Compare your answer with the experimental value of In(l —e ®/T) = —0.2378
155.6J-K™'-mol™'. Why is there a discrepancy of about 5 J.K™'-mol™'? e/ T

@/ _ 1

= 0.417
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The standard molar entropy is then

% =3.5418.203 + 7158 +0.2383 4 0.417 = 29.52

This is 245.4 J- K" -mol™, almost identical to the experimental value.

21-34. The vibrational and rotational constants for HF(g) within the harmonic oscillator-rigid rotator
model are T, = 3959 cm™" and B, = 20.56 cm™". Calculate the standard molar entropy of HF(g) at
298.15 K. How does this value compare with that in Table 21.37?

We can use the equalities (given in Chapter 18)

hevy
vib - k

B

]

to find ® , = 5696 K and ® = 29.58 K, and then solve for entropy as we did in the previous
problems.
As in Problem 21-30,

3 7 Mk T\ V T & /T
E=§+ln{(TB) N, +1“g@ —fﬂ(l—e"a"ﬁh”)Jr——“—*’/—Jrlngel

Q. /T
A rot £ 1

Substitute in to find the values of the various components of entropy. Note thate =l and g, = 1.

2w Mk, T\ [2m(3.322 x 107 kg)(1.381 x 107 J.K )(298.15 K)
h? - (6.626 x 10°* I.5)

3/2
] = 8.658 x 10 m~*

V _ RT _ (0.08314 dm’-bar-mol'-K™)(298.15 K)
N, NP (6.022 x 10 mol™)(1 bar)

T
= 2731
In (U@)mt) 310

In(l — e /Ty = —5.046 x 107

e /T
Y = 9.639 x 1073

eevih/T — 1

=4.116 x 107 m’

S
= =35+15.09+2.310+5.046 107" +9.639 x 107% =20.90

The standard molar entropy is 173.7 J-K~!-mol™!, which is very close to the value in Table 21.3.

21-35. Calculate the standard molar entropy of IL,(g) and D,(g) at 298.15 K given that the bond
length of both diatomic molecules is 74.16 pm and the vibrational temperatures of I1,(g) and I3, (g)
are 6215 K and 4394 K, respectively. Calculate the standard molar entropy of HD(g} at 298.15 K
(R,=74.13pmand O, = 5496 K).

(ZanBT)3/2 [27:(3.348 x 1072 kg)(1.381 x 1077 J.K™")(298.15K)
R? h

Entropy and the Third Law of Thermodynamics

We can use the relation ® | = R/21 ky (Equation 13.32) to find @ for HD, H,, and D,,. Then we
can solve for molar entropy as in Problem 21-30. For both H, and D,, 0 = 2 and g, = 1; for HD,
o=1andg A =1 ForH,

R B
ot 2,LLR3kB 2(8.368 x 107 kg)(74.16 x 1077 m)sz
and
s 7 2 Mk TNV T 6 1 0,/ T
— = P A P — — _va/‘r L
7 5 + In l:( o ) N + In B In{l—e )+ T 1 +hng,

Substitute in to find the values of the various components of entropy.

(6.626 x 10* I.5)?
V  RT _ (0.08314 dm’-bar-mol ™' - K"')(298.15K)
N, NP (6.022 % 10% mol™")(1 bar)

T
i = 0.533
"(75:)

In(l — e %'y = —8.852 x 1071
®vib/T

egvih/T —_ 1

=4.116 x 1072 m°

= 1.845 x 107?

S
5= 35+11.6440533+8.852 1079+ 1.845 x 10~% = 15.68

The standard molar eniropy of H,(g) at 298.15 K is 130.3 J.K~ . mol~".
ForD,,

Bt n*
@ = =
o 2uR, 201672 % 1077 kg)(74.16 x 107" m)’k,

=43.79K

and

5 7 WMk, T\ V T e /T
E:'z'““[(““““;“fg_) T e (1 i) § g,

e_/T
A rot g 1

- Substitute in to find the values of the various components of entropy.

2 Mk, T\ [27(6.689 x 1077 kg)(1.381 x 1072 - K)(298.15K)
( h* ) N [ (6.626 x 10™ J.g)?

V. RT _ (0.08314 dm’ bar-mol™.K~')(298.15 K)
N, NP (6.022 x 107 mol )(1 bar)

T
I = 1.225
" (U@)rot)

In(l — e ®w'™)y = —3.977 x 1077
®vib/T

e/ T _

=4.116 x 107% m?

=5.861x107°

S
2= 3.5+ 12,682 +1.226+3.977 x 1077 +5.861 x 107°° = 17.41

The standard molar entropy of D,(g) at 298.15 K is 144.7 I.K™' -mol™".

3z
i| =2.769 x 10*° m?

/2
} =7.822 x 10* m~?
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For HD,

hl hZ
B = =
T 2uR%,  2(1.115 x 1077 kg)(74.13 x 1077 m)’k,

=65.71K

A 1Ot

s 7 2 Mk, T\** V T _ O/ T
ra““[(T) W, | *oe,, N0 e e s

Substitute in to find the values of the various components of entropy.

2r Mk, TN [27(5.018 x 1077 kg)(1.381 x 1072 J.K~1)(298.15 K)
( K ) - [ (6.626 x 107 J.5)°

RT  (0.08314 dm’-bar-mol™-K™')(298.15 K)
P (6.022 % 10% mol™)(1 bar)

A
T
I = 1.512
; (U®mt)

In(l — e /Ty = —0.871 x 107°
®vib/T
-1

32
} = 5.082 x 10°° m~?

=4.116 x 107% m?

V—
- =

=1.820x 1077

5
== 354+122514+ 151249871 x I0° + 1.820 x 1077 = 17.26

The standard molar entropy of HD{(g) at 298.15 K is 143.5J-K~!-mol .

36, Caiculate the standard molar entropy of HCN(g} at 1000 K given that T = 1.8816 x
107* kg-m?, b, = 2096.70 cm™, T, = 713.46 cm ™', and ¥, = 3311.47 cm™". Recall that HCN(g)
is a linear tnatormc molecule and therefore the bending mode, v,, is doubly degenerate.

In Problem 18-24, we found ®vib,j and ®  of HCN to be

=3016K O . =4764K

®vih,1 vib,4

© 020 =1026 K ®, =2135K

For a linear polyatomic ideal gas having three atoms,

wME TN T (& e mm
= ( th ) VJ@ H 1 =B /T 321€D’/k"T : (21.25)
Tot i "

j=1 1 ¢

Substituting into Equation 21,27, we find

S 7 2 Mk, T\? V
—_— = = + ln —_— —_
R 2 h N

A

@mﬂk%ﬂ

10t

Because HCN is asymimetrical, its symmetry number is unity. Then

2 Mk T\ [2m(4.488 x 107 kg)(1.381 x 1072 J-K~1)(1000 K)
( R? ) - [ (6.626 x 10%* J.5)?

RT  (0.08314 dm’-bar-mol™"-K™")(1000 K)
NP (6.022 x 10% mol™)(1 bar)

32
] = 8.350 x 10¥ m™

=1381x10% m’

-V—-
v =

vmj/T) + Z |: Vlbj/T } + In gel:

Entropy and the Third Law of Thermodynamics 571

T 1000 K
1 =ln| ——— | = 6.14
B (a@m) o [(2.135 K}] o

4
Z In(1 — e %7y = 0.9465

LLe

-e_ T
vib, j £ _
> - ( = /T) =1.343

= I—e

The standard molar entropy is then

23| Tt

= 3.5+ 18.563 + 6.146 + 0.9465 + 1.343 = 30.5

The standard molar entropy of HCN(g) at 1000 K is 253.6 J-K™'-mol™. The experimentally
observed value is 253.7 - K~!-mol .

21-37. Given that b, = 1321.3 cmfl, 7, = 750.8 cm™, vy == 1620.3 cm™ A =7.9971 cm™,

Eo =0.4339 cm !, and C = 0.4103 cm_1 calculate the standard molar entropy of NO,(g) at

298.15 K. (Note that NO (g) is a bent triatomic molecule.) How does your value compare with that
in Table 21.27

In Problem 18-29, we found that

@, = 1898.7K ®,,=11512K
®,,, = 1078.8K ®, , = 0.62304K
©,, = 2327.6 K O, o = 0.59047 K

For a nonlinear polyatomic ideal gas having three atoms,

2e Mk T\ g2 T3 EN vm,/ZT
q=(—B) vV (————— g /T (21.26)
» o \ PP E a7 ) 8o

Tot, A " rot,B

Substituting into Equation 21.27, we find

§_4+1 Mk, T\ V o 7'’ e (s
rR-"TT n? N TN )T2"e_e_.6

ret, A ~rot,B T rot,C

(O, Te™ ™
—ZMIe%M+Z[ L

lﬁﬁe vlhj

From Table 18.4, 0 =2, and g,, = 1.Then

2rME, T\ [27(7.639 x 1072 kg)(1.381 x 1073 J.K~")(298.15 K) " v s
— o = 3 = 3.019 x 107 m
h (6.626 x 107 1:5)7 |
V. RT _ (0.08314dm’ bar-mol ' -K')(298.15 K)
N

=== = 4116 x 107
. NP (6.022 5 107 mol ")(1 bar) "
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ot, A " rot,B

1 T
-In{ ———— {1 =7.825
2 0, a®rsOroic

3
3 Ia(l— e ®ni’Ty = —0.0293

=1

7®vih.

#T
S /T) =0.114

o

= 1—e”
The standard molar entropy is then

% — 44 16.335 — 0.121 -+ 7.825 + 0.0293 + 0.114 = 28.18

This is 234.3 1. K" mol .

21-38. In Problem 2148, you are asked to calculate the value of A 5° at 298.15 K using the data in
Table 21.2 for the reaction described by

2C0(g) + 0,(g) — 2 CO,(g)

Use the data in Table 18.2 to calculate the standard molar entropy of each of the substances in this

- reaction [see Example 21--5 for the calculation of the standard molar entropy of CO,(g)]. Then use
these results to calculate the standard entropy change for the above reaction. How does your answer
compare with what you obtained in Problem 21487

From Example 21-5, $°[CO,(g)] = 213.8 J-K™'-mol™". Because both CO and O, are diatomic
molecules, we can write (as in Problem 21-30)

s 7 M, TNV T ‘ oy, Ouw/T
§=§+1D|:(—7I-2——) N— +lna® *hl(l*e_ vib )“}‘W-Fh'lge]

A Tok

Because CO is a heteronuclear diatomic molecule, o = 1; because O, is homonuclear, o = 2. For
COo®e, =3103Kand © , =2.77 K. Then

2 M, T\ [2m(4.651 x 10° kg)(1.381 x 107" J-K"')(298.15K)
h - (6.626 x 10* J-5)*

V. _ RT _ (0.08314dm’ -bar-mol'-K™)(298.15K)
N, NP (6.022 x 10” mol™")(1 bar)

T
1 =4.679
(752)

In(l — e /Ty = —3.02 x 107°

=4.116 x 107 m’

Ou/T

/T ]

=3.14 x 107"

K
R
The standard molar entropy of CO(g) at 298.15 K is 197.6 J-K~-mol ™.

=35415.591 +4.679+3.02 x 107° 4+ 3.14 x 107 =23.77

372
] = 1.434 x 10% m~?

Entropy and the Third Law of Thermodynamics

We follow the same procedure for O,, with © = 2256 K and 8, = 2.07 K. Note that g , = 3 for
0,, so we cannot neglect the In g, term!

2 Mk TN T27(5.313 x 10 kg)(1.381 x 107 J.K™')(298.15 ) ] S
n N (6.626 x 107 I-s)? = L5110 m ™
RT _ (0.08314dm’-bar-mol™-K™')(298.15 K)

v
N, NP (6.022 x 102 mol=1(1 bar)

=4.116 x 1072 m’

In(l — e ®/Ty = —5.18 x 10~
®vib/T
e®vih/T — 1

Ing, =1In3 =1.099

=392 %1073

S
R = 3541579+4277+5.18 x 107 +3.92 x 1077 + 1.099 = 24.67
The standard molar entropy of O,(g) at 298.15 K is 205.1 J-K™'-mol "

We can calculate the entropy change for the above reaction easily using the method described in
Section 21-9: :

A$° = 28°[CO,] — §°[0,] — 28°[CO]
=2(213.8T-K " -mol™) — (205.1 J-K"-mol™") — 2(197.6 J-K~"-mol™")
= ~172.7J-K™" -mol ™!

This value is very close to that found in Problem 21-48.

39. Calculate the value of A §° for the reaction described by

H,(8) + 5 0,(8) — H,0(2)
at 500 K using the data in Tables 18.2 and 18 4.

Because both H, and O, are diatomic molecules, we can write (as in the previous problem)

S 7 2rME TNV T & /T
ra““{(h—zﬁ) T B L

e _/T
A ot v - 1

Because both are homonuclear, o = 2 for both H,and O, ForH, ® , = 6215Kand ®_ =853K
Then

(ZanBT)3/2 B [27:(3.347 x 1074 kg)(1.381 x 1072 J.K™)(500 K)
h B (6.626 x 10* J-5)?

372
} =6.014 x 10 m™

V. RT _ (0.08314dm’-bar-mol'-K')(500 K)
N, NP (6.022 x 10% mol™")(1 bar)

In 1.08
n = 1.
U®ret

In(t — e ®'Ty = —4.00 x 10°°
®vib/T

Bvih/ T —

= 6.903 x 1072 m’

=497 x 107
4

=35+129441.08+4.00 x 104+ 4.97 x 107° = 17.51

ol tal -
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The standard molar entropy of H, at S00 K is 145.6 J- X' -mol . . Finally, we can calculate the value of A S° for the reaction above, as we did in the previous problem.
We can do the same for O, (with @, = 2256 K and ©,, = 2.07 K), keeping in mind that g,, = 3: : A 5° = $°[H,0] - 15°[0,] — §°[H,]
= (2063 1. K" .mol™") — 1 K mol™) — K mol™!
ME,T\Y  [27(5.313 x 107% kg)(1.381 x 102 1.K')(500 K) 1" 3803 x 16 -3 ¢ 1 mol™) — 7(220.6 1-R™-mol™) — (145.6 J- K™ -moi™)
—_— = = 3. > m _ - —1
h* (6.626 x 10% I-5)? = —49.6 1. K~ -mol
V _ RT _ (0.08314dm’ -bar-mol ' -K)(500K)
LA LI m”bar-mol B JOOR) _ ¢ 943 » 1072 m?
N, NP (6.022 x 10~ mol™")(1 bar) ‘
- ; 21-40. In each case below, predict which molecule of the pair has the greater molar entropy under the
In ( ) =479 same conditions (assume gaseous species).
o rot
— _E)vih/T —_— H —
In(1 _(; . ) =—0.0110 . a CO co, b. CH;CH,CH, 2C\ /CHZ
i/ = 0.0501 : CH,

e/’ — 1

Ing, =In3=1099 CH,

5 _ L
= =3.5+17.08+4.79+0.0110 + 0.0501 + 1.099 = 26.54 € CHCHCHCHCH; - H;C—C—CHy

CH
The standard molar entropy of O, at 500 K is 220.6 J-K™' -mol~'. ’

Because H,O is a bent polyatomic molecule, we treat it as we did NO, in Problem 21-37.
From Table 184, 0 =2, 0, ,=401K, ©_,=209K ©_ =134K, 0, , = 5360 K,
)]

a. CO, (more atoms)

— 5160 K, and ®,, , = 2290 K. Then b. CH,CH,CH, (more flexibility)
¢. CH,CH,CH,CH,CH, (more flexibility)

vib,2

(erMkBT)3’2 3 [2n(2_991 x 107 kg)(1.381 x 1072 J.K7")(500 K)

3/2 .
— 12 -3
n (6.626 x 10** J-5)* ] = 1.607 x 107" m

21-41. In each case below, predict which molecule of the pair has the greater molar entropy under the

3 har. -1 -1
RT - (0.08314 dm’-bar-mol™ -K™)(500 X) =6.903 x 1078 m3 . _ same conditions (assume gaseous species).

v
N, N, (6.022 x 10% mol })(1 bar)

H —_—
a O DO b CHCHOH 2N /2

1 T? 5

-n§f ————— | =4.66

2 ®mt.A®mt,B ®mt,C Iil

: &, /T N
Z In(1 — e @ws/T) = —0.0104 ¢ CHCH,CH,CH,NH:  H,e” ci,
=
LS ib,j e_®vih.1‘/T H,C CH,
- ={.048 :
; T 1 — g Quns/T :
The standard molar entropy is then a. D,0 (larger mass)
. B b. CH,CIH,OH (more flexibility)
S g | (EMETNT V) (2 b T | CH.CH.CH.CHN yﬂ ibil
S =4+hn|{—5—} — |[+I|{— )+ c.
R h'2 NA g 2 @)ml‘A@mt,B ®rnt,C ? 2 z 2 H?_ (more exibt lty)
3 1 [(@,, / The O | . . -
_ Z n(l —e /Ty 4+ Z vib.j +1lng, 21-42. Arrange the following reactions according to increasing values of A_S§° (do not consult any
= = 1 — e OunslT ‘ references).
=44+1622—0.121 4+ 4.66 + 0.0104 + 0.048 = 24 .82 a. 5(s) +0,(g) — SO,(g) b. H,(g) + 0,(2) — H,0,(1)

which gives a value of S = 206.3 J. K- mol™. . CO(g) +3H,(g) — CH,(g) +H,0() d. C(s) + H,0(g) — CO(g) + H, ()
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Recall that molar entropies of solids and liquids are much smaller than those of gases, so we can

ignore the contribution of the solids and liquids to A 5° when we order these reactions. Considering

only the gaseous products and reactants, we can find An for each reaction to be _ : E;’gs [CH,0H(g)] = §;93[CH3OH(1}} + AE[ A+ A§2 + A§3
a. An=0 b. An=-2 ¢ An=-3 d. An=+1 2395 K- mol-!

The correct ordering of the reactions is therefored > a > b > ¢. '

The sum of these three steps plus S, [CH,OH(D] = 126.8 I.K~' mol ™" will be the desired value:

which is within 0.1% of the experimental value,

21-43. Arrange the following reactions according to increasing values of A §° (do not consult any

references). _ 21-46. Given the following data, 7, =373.15K, AH (7, ) = 40.65 ki-mol™', T ,[H,0()] =
a. 2H,(g) + 0,(g) — 2H,0(D b. NH, (g} + HCl(g) — NH,CI(s) 75.3J-K™"-mol™!, and C,[H,0(g)] = 33.8 J.K™"-mol™, show that the values of §"[H,0(1)] and
c. K(s)+0,(g) — KO,(s) d. N,(2) +3H,(g) — 2NH,(2) S {H,0(g)] in Table 21.2 are consistent.
Again, calculating An for each reaction for the gaseous products and reactants gives This is done in the same way as Problem 21-45. First, we heat the water to its boiling point:
2. An=-3 b. An=-2 c. An=-1 d An=-2 o - T
The correct ordering of the reactions is therefore ¢ > b ~ d > a. ' AS, =85@3T73.15K) -8 (298.15K)=C,In Tz
1
373.15
) N . = (75.3J-K"'-mol™) In =16.90J-K™" -mol™’
21-44. In Problem 21-40, you are asked to predict which molecule, CO(g) or CO, (g}, has the greater 298.15
melar entropy. Use the data in Tables 18.2 and 18.4 to calculate the standard molar eniropy of Then vaporize the water at its normal boiling point:
CO(g) and CO,(g) at 298.15 K. Does this calculation confirm your intuition? Which degree of .
freedom makes the dominant contribution to the molar entropy of CO? Of CO,? A _H

AS, =F'(373.15K) — S (3T3.15K) = —*—

vap

In Problem 21-38 and Example 21-5, we used the data in Tables 18.2 and 18.4 to find that the ' - 40 650 J-mol ™
standard molar entropy of CO(g) is 197.6 J- K™ -mol™ and that of CO,(g) is 213.8 J-K~'-mol™. : 373.15K

In both cases, the translational degrees of frecdom make the dominant contribution to the molar
entropy.

=108.97-K"-mol™

Finally, cool the gas back down to 298.15 K:

- - — . T
_ AS, = 5°(298.15K) — §°(373.15K) = C; In ?2
_— 1
21-45. Table 21.2 gives § [CH,OH(1)] = 126.8 T-K™"-mol ™ at 298.15 K. Given that T, =3377K, 1 29815
A, H(T) =365 kJ-mol™, CP[CHZ'OH_(ID)] = 81.12 I.K""mol™, and C,[CH,OH(g)] = = (33.8J-K7 -mol™) In
43.8 J. K '-mol ™!, calculate the value of S [CH,OH(g)] at 298.15 K and compare your answer
with the experimental value of 239.8 J. K™ -mol ™.

— 7584 K" .mol"
373.15 8 ol

The sum of these three steps plus S5, [H,O(1)] = 70.0 J-K'-mol™" will be the desired value:
S0 H,0@)] = Sy [H,0()] + AT, + AS, + AS,

This is done in the same way as EG[BrZ(g)] was found in Section 21-7. First, we heat the methanol ! = 1882 7-K'-mol!
to its boiling point:

which is within 0.4% of the value in Table 21.2.

o - T
AS, =5 (337.7K) — 5 (298.15K) = C In 7
1

. . 337.7 . . 21-47. Use the data in Table 21.2 to calculate the value of A $° for the following reactions at 25°C
=(81.12J. K" -mol "} In =10.10J-K™" -mol™

298.15 and one bar.
Then vaporize the methanol at its normal boiling point: a. C(s, graphite) + O,(g) — CO(g)
AH b. CH,(g) +20,(g) — CO,(g) + 2H,0()
AT, = $*(331.7K) - S (331.7K) = == ¢. CH(g)+He) — CH,(®
vap
36 500 J-mol™
T~ T 317K 108.13-K™"-mol™ - a. AS° = S°[products] — S°[reactants]

=213.8T-K '-mol™ —205.2T-K"-mol™ — 5.74J-X ' -mot™

Finally, cool the gas back down to 298.15 K: — 861K~ -mol-!

T —=e —=E —z T
AS, =5'(298.15K) - §°(337.7K) = Cpln -2
1

298.15

- — - _1- _1
37T = 5.456]-K7 -mol

= (438 . K 1.mol™H1n
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b. A S° = §°[products] — 5°[reactants]
=2(70.0T.K ' mol™) +213.8T- K" -mol™! — 2(205.27-K~ - mol™") — 186.3 J. K™ -mol ™!
= —242.91-X"" - mol™

c. A S = §°[products] — S°[reactants]

=21961. Kt mol™ — 1307 1. K mol™ —200.9 1. X~ mol™!
= —112.0J-K " mo!l!

21-48. Use the data in Table 21.2 to calculate the value of A_S° for the following reactions at 25°C
and one bar.

a. CO(g) +2H,(g) — CH,0H(l)
b. C(s, graphite) + H;O() — CO(g) + H,(g)
c. 2CO0(g) +0,(g) — 2C0,(g)

¥

A §° = §°[products] — 5°[reactants]
=126.8T-K ' mol™ —-197.7 1K ' mol™ — 2(130.7 J. K~ mol ™)
=—33231.K "-mol™!

b. A _S° = S°[products] — S°{reactants]
= 13077 K ' mol™ +197.7 3. K mol™! —70.0 T K~ mol™? — 5.74 1. K mol™!
=252.66T.K'-mol™
A_5° = $°[products] — §°[reactants]
=2213.87-K ' mol™) — 2052 - K -mol™" — 2(197.7 7. K" -mol™)
= —173.0J-K ' -mol™! :

x

CHAPTER'Z 2

Helmholtz and Gibbs Energies

PROBLEMS AND SOLUTIONS

22-1. The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is
30.72 kJ-mol ™. Assuming that A _ H and A .S stay constant at their velues at 80.09°C, calculate
the value of Avapﬁ at 75.0°C, 80.09°C, and 85.0°C. Interpret these results physically.

We can write {as in Section 22-2)
AWPG = AvapH — TAWPS

At the boiling point of benzene, the liquid and vapor phases are in equilibrium, so AWE =0
Thus, at §¢.09°C,

0=30.72kI-mol™" — (353.24K)A , §
A8 =86.971.K'mol™

Since Avapﬁ and AWE are assumed to stay constant at their boiling-point values, we know their
numerical values and can substitute into our first equation:

A, G(75.0°Cy = 30.72kJ-mol ™ — (348.15 K)(86.97 J-K " mol ') = 441.4 J-mol™*

A, G(85.0°C) = 30.72 kJ-mol™ — (358.15 K}(86.97 ].K " -mol ') = —428.3 J-mol

From these values, we can see that at 75.0°C benzene will spontaneously condense, whereas at
85.0°C it will spontaneousiy evaporate (just as we would expect).

22-2, Redo Problem 22-1 without assuming that Avapﬁ and ij do not vary with temperature.
Take the molar heat capacities of liquid and gaseous benzene to be 136.3 J-K™'-mol™' and
82.4 J-K~'-mol™, respectively. Compare your results with those you obtained in Problem 22-1.
Are any of your physical interpretations different?

‘We wish to consider the temperature variation of AWE, so we must use Equation 22.31«,

3A,,,G AT
aT P__ v (1)
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