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b. A S° = S°[products] — §°[reactants]
= 2(70.0J- X mol™) + 213.8 T K ' mol™ —2(205.2T- K -mol™) — 186.3 - K -mol™
=-2429FK " mol"

c. A5 = §°[products] — §°[reactants]
=21961.K1-mol™" — 130.71.K '-mol™" — 200.97-K~!-mol!
=-—112.0J-K!-mol™!

PROBLEMS AND SOLUTIONS

21-48. Use the data in Table 21.2 to calculate the value of A S° for the following reactions at 25°C
and one bar.

CO(g) + 2 H,(g) — CH,CH(D)
C(s, graphite) + H,0(1) — CO(g) + I, (g)
.+ 2C0(g) + 0,(g) — 2CO,(g)

o

Hel

22-1. The molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is
30.72 kJ-mol™. Assuming that A, H and A S stay constant at their values at 80.09°C, calculate
the value of A G at 75.0°C, 80. 09°C and 85 O°C Interpret these results physically.

o

A8 = §°[products] — S°[reactants]
=12681-K 'mol™' — 197.71- K" -mol™" — 2(130.7 J-K~! :mol™)
= -332.3J.K ¥ .mol™!

b, A_S° = S°[products] — S°{reactants] 1
= 13071 K 'mol ! +197.77-K " mol ' —70.07. X" -mol™! —5.74 3. K~ -mol™"
=25266T-K ' -moi!

A 5° = S°[products] — S°[reactants] .
=2(213.81.X" -mol™ 1) — 20527 K "mol™ —2(197.7T-K " -mol ™)
= —173.0J-K"' mol™

We can write {as in Section 22--2)
ApG=20,H-TA_ S

At the boiling point of benzene, the liquid and vapor phases are in equilibrium, so A G =0
Thus, at 80.09°C,

o

0=30.72kI-mol™' — (353.24 K)A S
A,,.S = 86.97 1-K~'.mol™!

Since Amﬁ and AvaPE are assumed to stay constant at their boiling-point values, we know their
numerical values and can substitute into our first equation:

A, G(75.0°C) = 30.72 kJ-mol™ — (348.15 K)(86.97 J-K " -mol™!) = 441.4 J-mol !

A,,,G(85.0°C) = 30.72kJ-mol™ — (358.15 K)(86.97 T-K ' -mol~!) = —428.3 J.mol ™"

From these values, we can see that at 75.0°C benzene will spontaneously condense, whereas at
85.0°C it will spontaneously evaporate (just as we would expect).

22-2. Redo Problem 22-1 without assuming that A H and A S do not vary with temperature
Take the molar heat capacities of liquid and gaseous benzene to be 136.3 J-K'-mol™! and
82.4 I K" -mol™*, respectively. Compare your results with those you cobtained in Problem 22-1.
Are any of your physical interpretations different?

We wish to consider the temperature variation of AWE, 80 we must use Equation 22.314,

aAvaPE A3
or f apS(T)
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where (as in Example 20-5)

- — T AC
AvaPS(T) = A, 5(80.09° C) +f a7
P 35324 K T
=8697J. X mol™’ — (5391 K " mol ™ HIn ————
353.24K
=403.2J K ' mol " — (53.9J.K' -molml) In(7/K)

Substituting into Equation 22.31a, we can write

_ _ T
A,G(T) — A, G(353.24K) = — j [403.2 7K~ mol™

35324 K
—(53.9 7K' mol ) In(7/K) |4 T
= —({403.23-K"-mol "')(T — 353.24 K)
+(53.9T- K -mol ) [T In(T/K) — T — 1719.3 K]

Letting T = 348.15 K gives
A,,G(T) = 2052 J-mol™" — 1608 J-mol " = +444 J-mol™
and letting T = 358.15 K gives
A, G(T) = —1980 J-mol™" + 1555 J-mol ™" = —425 J-mol™!

Notice that taking the temperature variation of A pﬁ and A pE into account made little difference
over such a small temperature range.

22-3. Substitute (3P /37T )% from the van der Waals equation into Equation 22.19 and integrate from
V" to V to obtain

ST V) - ) = Rin 22
v—b

Now let V' = RT/P® P = pP°=1bar,and V" > b to obtain

ST,V -5 =

Given that Eid = 246.35 J-mol~F-K "7 for ethane at 400 K, show that

N 33.258 L-mol *
S(V)/1-mol™ K = 246,35 — 8.3145Tn =0 Lol
V —0.065144 L.-mol ™

Calculate S as a function of p = 1 /V for ethane at 400 K and compare your results with the
experimental results shown in Figure 22.2. Show that

X -1
S(7)/T-mol 1K' = 246.35 — 8 3145 In o200 L mol
V —0.045153 L-mol !

V' +0.045153 L-mol ™!
Vv

for the Redlich-Kwong equation for ethane at 400 K. Calculate S as a function of p = 1/V and
compare your results with the experimental results shown in Figure 22.2.

+ 13.681n
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From the van der Waals equation,

(ap) R
aT), V-b

We can substitute into Equation 22.19 to find an expression for d5:

a5 - (%)
vy \oT/,
d§=_id7
V—b

Integrating both sides of this equation gives

V-b

ST, V) - 59T = Rin —
v _p

Since V" is quite large compared to b, we can neglect & in 7o, Letting V= RT/PY and
P = P° 2= | bar, we find
—id
= =, i
STV —S(T'=-RIn=
V—b

RT/P°
=-—RlIn _/
vV

RT

STy =5"(") = RIn

where, in the last equality, the pressure units of R are in bars. For ethane, @ == 5.5818 dm®-bar-mol™>

and b = 0.065144 dm*-mol™" (Table 16.3), so

—-— 33.258 L-mol™’
§(V) = 246.35 1-K "-mol™" — (8.3145 J.K"-mol ") In — o
V — 0.065144 L-mol™!

To make graphing entropy vs. density easier, we can break up the logarithmic term and then graph,
as shown:

5/1.K 7 -mol™! = 246.35 — (8.3145) In33.258
(mo]-dm‘3

+(8.3145) In - 0.065144)

260 -
240
220
200

S /1K Ve mol™!

180

0 2 4 6 8 10 12 14

p/mol-dm™?

For a Redlich-Kwong gas,
RT A

P = — —
V—B TYVWWiV+B»
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and

(ap) LR A
aT ), V-B 2V(V+ BT

Using Equation 22.19 and integrating (keeping temperature constant) gives

38y R N A
V) ~V-B 2V(V+ BT

fd?:f[__R n M_A ]dV
V-8B 2V(V4+BT"

— - —id

I -8 A [ 1 (B+V\ 1 (B4V

P SR S RS NY (A FREY
V. _B 27 B vV B v

Since for an ideal gas B is negligible compared to v,

- —id V-8B A v
§-8 =Rlh——+ —In =
v 2BT* V4B

Then, for ethane, since A = 98.831 dm®.bar-mol™*-K'”* and B == 0.045153 dm’-mol™" (Ta-
ble 16.4),
—id

— —id A V+B
S=3 —Rln=— + In —
V_B 2BT" V

S/0K ' imol™! = 246.35 — 8.3145 In —— >0 dm’ mol”
V —0.045153 dm* - mol™!
V 4 0.045153 dm®-mol !
v
To make graphing entropy vs. density easicr, we can break up the logarithmic term and then graph,

as shown. We have divided both numerator and denominator of the logarithmic terms in the previous
expression by dm®-mol ",

+13.681n

— . 1
S/F-K ' -mol™ = 246.35 — 8.3145 [1n33.258 —In (— - 0.045]53)}

P
| 1
+13.68 {In{ — +0.045153 } — In —
e P
~ 260}
=
E 240
n
h¥
220
"2 200

0 2 4 6 8 10 12 14
g /mol-dm™
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22-4, Use the van der Waals equation to derive
a

T V=T =—
vr,vy-u(n =

Use this result along with the van {ti:ier Waals equation to calculate the value of U as a function of V
for ethane at 400 K, given that U = 14.55 kJ-mol . To do this, specify V (from 0.0700 L-mol™*
to 7.00 L-mol~}, see Figure 22.2), calculate both U(V) and P(V), and plot U(V) versus P(V).
Compare your result with the experimental data in Figure 22.3. Use the Redlich-Kwong equation
to derive

3A V+ 8
In

— —. —id
oIrvy-U (T) =~ —
S ) 2BT? v

Repeat the above calculation for ethane at 400 X.

Begin with Equation 22.22,

(BU) __par(?
av/), aT /.,

In Problem 22-3, we found (8 P/9T), for the van der Waals and Redlich-Kwong equations. For
the van der Waals equation, Equation 22.22 becomes

(BU)_ RT a RT _a
vV V-b VvV V-b V

U v
f duﬂf Zdv
Eﬂd Vm V

— —id a
U—U - =
vV

The van der Waals constants for ethane are listed in the previous problem. Substituting, we find that

0.55818 kJ-dm’-mol *
v
p (0.083145 dm®-bar-mol™" - K™)(400 K)  5.5818 dm®-bar-mol™"

V — 0.065144 dm?* - mol™ 7

U =14.55kI-mol™ —

We can use a parametric plot to plot U(V) vs. P(V):

14 |

1

o
E

U/lkT-mol”
>
T

L L ! ! !
0 100 200 300 400 500

P [ bar

For the Redlich-Kwong equation, Equation 22.22 becomes

U\ _  RT A RT A
av

=—= + — + = + —
. V—-B TVWV+B V-B 2T'’V(V+B)
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T v
f dU = jf _ ——_3—é;-n~—d"l7
7 7 2TV2V(V + B)
— e 3A (1 F+B 1 7'+ B
BT U A S
— =i 3A V+ B
DT 2 it
2BTY v
The Redlich-Kwong constants for ethane are listed in the previous problem. Substituting, we find
that
— . 3(9.8831 kJ-dm*-mol 2-K'%) V +0.045153 dm® -mol
[/ =14.55k}-mol™ — 3 = 777 In —
2(0.045153 dm” -mol™") (400 K) Vv
_ (0.083145 dm®-bar-mol ™' - K1) (400 K) 98.831 dm®-bar-mol 2. K'/2

V — 0.045153 dm’ -mol ™ (400 K)'*V(V 4+ 0.045153 dm® mol™")

Again, use a parametric plot to plot T(V) vs. P{V):

1

U/ kJ-mol™

| | \ |
o~ 100 200 300 400

P/ bar -

22-5. Show that (8U//3 V), = 0 for.a gas that obeys an equation of state of the form Pf(V) = RT.

Give two examples of such equations of state that appear in the text.

We first take the partial derivative of P with respectto 7', keeping V' constant:

PF(V) = RT

olJ apP RT
WY _ pa7(E) =P+ —=-P+P=0
QVL - QTL G

Two such equations of state are the ideal gas equation and P(V —b) = RT.

22—6. Show that

oy RT*dB,, RT*dB,
av) v dT v 4T
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Begin with Equation 22.22,

au
oy =_p+r(iﬁ)
v/, aT /,

We can use the virial expansion in the volume to express Z as (Equation 16.22)
Z=1+B,V +8,V +0(¥ ")
P=RTV ' +B,RTV "+ B ,RTV + 0V )

(aj) R, R B RT R dByRT o
aT VWV ZVVZ 4T VZ 3VV3 4T T/-El +

Substituting into Equation 22.22 gives
auU RT RT RTY RT —
e 3_"(—“_B;W—z_‘_‘BTW'——-E.)Jr—+O(V4)
vy 14 Voo vV V.

RT dB,, RT? RT dB,, RT?

+BZV? + + O(V%)

a v A
__RT?dB,,  RT’d3,

——4
vo dT + v dTV+O(V )

22-7. Use the result of the previous problem to show that

T7 dBZV
AU =-T T (PZ_ Pl)+

Use Equation 16.41 for the square-well potential to show that

— 2ro®N £
AU = —— AW — )—¢%"(P, - P
3 ( )kBTe (P,— P+
Given that o = 327.7 pm, ¢/k; = 95.2 K, and A = 1.58 for N,(g), calculate the value of AU for a
pressure increase from 1.00 bar to 10.0 bar at 300 K.

We integrate the equation we found in the previous problem (keeping T constant):

(a“ﬁ) _ RT*dB,, | RT*dB,,
T

—q
av v dT v dar + Ol ). :

=Ry g o
V.
AU = —RTP% 2
v dT {;l

Substitute in for V = RT/P to get

— dB
AU = -T(P,— P) dT{V 4.
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Using Equation 16.41,

3 ‘
B, (T) = 2”‘73 Na [1 — (A= 1) (7B 1]
dB,, . 2”03NA 3 sk, T ( E )
=T (A —1)e LT

Substitute into the equation for AT to find

2na’N e
3 A(A-‘—l)ﬁe/“a’"(Pz—Pl)Jr---

B

AU = —

For N,{(g) under the conditions specified,

—_ 2n03NA £
o AGY DR (P, - P+
AU 3 ( )kBTe (P,— P}

- . 23 -1

__2n(327.7x10 12 my3(6.022 % 10% mot ) (158 — 1) (2503) £5529(10.0 — 1.00) bar

3
= —5.13 x 107" bar-m* -mol™
= —51.3J-mol™!

22-8. Determine C P C,, for a gas that obeys the equation of state P(V —b) =RT.

We can write, from the equation of state,

P(V - b)=RT

aPry R
ar), V-—b
av
aT Jp

Now we substitute into Equation 22.23:

s ¢ _r[°F dv\y _ RT (5)—}2
T v T \ary, \oT ), Vb \P

22-9. The coefficient of thermal expansion of water at 25°C is 2.572 x 107" K, and its thermal
compressibility is 4.525 x 107 bar . Calculate the value of C,, — C,, for one mole of water at
25°C. The density of water at 25°C is 0.99705 g-mL™".

ol <

The molar volume of water is

3
V= ! 18.015 g) ( L dm ) = 0.018068 dm*-mol !
0.99705 g-mL™" 1 mol 1000 mL

We can now substitute into Equaﬁon 22.27to find C,, — C,,. For one mole,

Ty
c,-C, ==

P 14

Le
(2.572 x 107 K')?(298.15 K)(0.018068 dm")
N 4.525 x 1075 bar™!
= 7.875 % 10~ dm®-bar - K™

Helmholtz and Gibbs Energies

22-10. Use Equation 22.22 to show that

%), (%)
av j,  \ar*/,

Show that (3C,/8 V), = 0 for an ideal gas and a van der Waals gas, and that

(2 J—"
3V Jp ATV(V+B)
for a Redlich-Kwong gas.

Recall that, by definition, C,, = (3U/8T),, so
ac,\ _ U U 3 [aUu
av ), avaT — aTav ~ ar\av/,
Express (aU/oV) usiﬁg Equation 22.22 and write
gl
PN _ _pr(PR
av/, aT J
g (ol aF ap 2P
a7 = l=) tl=) tT{ =
ar \av /., aT /. T /., ar* /.,
acy =T BZ_P
av J. arT*/,

For an ideal gas and for a van der Waals gas,

s RT
X , V-5
P
272/ ar?/,
atp ac atp ac
(7)o, (Gm)o- ()
aT=/J av /. arTr /), v /J,

For a Redlich-Kwong gas,

RT A

P=— - —
V—B TVV(V+B)

(ap) __R A
8T /), V-—B 2V(V+ BT
(azP) 3 A
aT> ), AT V(V + B)
aT? / ATPV(V + B) ARGy
22-11. In this problem you will derive the equation (Equation 22.24)

av\> (3P
CP_CV=_T — —
ar ), \av )/,

To start, consider V to be a function of T and P and write out d V. Now divide throngh by 4T at

constant volume (¢ V = 0} and then substitute the expression for (3 £/87T),, that you obtain into
Equation 22.23 to get the above expression.
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The total derivative of V(T, P) is

AV av
dav(T, Py ==} aT+{55) 4P
F T

Dividing through by 4T at constant volume gives
0= av i BV) BP)
“N\ar /), \8P/,\03T/y
arPy (BV) (BP)
8T/, \aT/p,\8V/;
Now substitute for (3 P/37),, into Equation 22.23:

apP\ [aV aVN® [OP
—_ _ —_— —_— :-—T - P
e,-c,=1(2) (57),=7(57), (%),

which is Equation 22.24.

22-12. The quantity (30//8 V), has units of pressure and is calied the internal pressure, which is a
measure of the intermolecular forces within the body of a substance. It is equal to zero for an ideal
gas, is nonzero but relatively small for dense gases, and is relatively large for liquids, particularly
those whose molecular interactions are strong. Use the following data to calculate the internal
pressure of ethane as a function of pressure at 280 K. Compare yout values with the values you
obtain from the van der Waals equation and the Redlich-Kwong equation.

P/bar  (dP/dT)/bar-K™ Vp/ch'rf-rnol_l P/oar (dP/dT)/bar XK' V/dnrf-mol'1

4.458 0.01740 5.000 307.14 6.9933 0.06410
47.343 4.1673 0.07526 437.40 7.9029 0.06173
98.790 4.9840 0.07143 545.33 8.5653 0.06024

157.45 5.6736 0.06849 672.92 9.2770 0.05882

Use Equation 22.22 to write

3 P
BUN Pyt _)
av ), aT /,

To find the experimental values of internal pressure, we can substitute the data given into the above
equation. We expressed (dU/2V), for the van der Waals equation in Problem 22-4 as

vy _ a
V)i VvV
and (3U/3 V), for the Redlich-Kwong equation as
(BU) _ 3A
av ), 2TY"V(V + B)

We can use the molar volumes given in the statement of the problem and the constants
from Tables 16.3 and 16.4 (a = 5.5818 dm®-bar-mol~?, b = 0.065144 dm’-mol™', A =

Helmholtz and Gibbs Energies

98.831 dm®-bar-mol™2-K'?, B = 0.045153 dm*-mol™
, B=0. -mol™) to create a table of i
pressures for each experimental pressare, velues of intermel

(8U/aV), /bar
P/bar  Experimental vander Waals Redlich-Kwong
4,458 0.4140 0.2233 0.3512

47.343 1119.5 972.5 967.1

98.790 1296.7 1094 1064
15745 = 1431.2 1190 1138
307.14 1651.0 1359 1265
437.40 17754 1465 1343
545.33 1853.0 1538 1395
672.92 1924.6 1613 1449

22-13. Show that

aH 'dB., dB
— | =-RT* 2+ 2Ep4...
(&), = (G )

dB
=B,,(T) - Td_;V + O(P)

Use Equation 16.41 for the square-well potential to obtain

8H 2no’N
(ap) 3 [l (A —1) (1+—-—k T)e/kBT:l
T B

Given that o = 327.7 pm, £/k, =95.2 K, and A = 1.58 for N,(g), calculate the value of
(B_H/a P); at 300 K. Evaluate AH = H(P =10.0 bar) — H{P=1.0bar). Compare your result
with 8.724 kJ-mol~*, the value of H(T') — H(0) for nitrogen at 300 K.

Use the virial expansion in the pressure (Equation 16.23):

Z=1+B,,P+ B, P"+ 0P

7 BT
=T RTB,,+ PRTB,, + O(P?)

ﬂ _R + RB RTdBZP ——dBSP
5T P— 7 4p T ar + PRB,, + PRT 0T +0(P?
Substitute into Equation 22.34:
9H v
(57), -7 (%)
7 or P
RT

o\ _[&n
ar ; P + RTBZP + PRTBBP} - [? + RT B,,

I
<

aB ‘ 4B
2
+RT*—2E + PRTB,, + PRTZ—d—%’—} + 0(PY)

dB dB '
=_RT2 P 3P 2
[dT o PO )] (M)
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Since B,, = RT B, (Equation 16.24),

4By _ rB
dT
dB,, 1 By, 2p

dT RT ~ RT®* 4T
dBZP Ld‘BZV _

AT ~ RT dT

dB,,
2t RT—=

dT
dB

BZV
RT?

Then Equation 1 becomes
aH

2P
—_— —== 4+ O(P)
opP

,[dB
= RT
T

daT

)

dB
T—2 + 0(P
o7 T (P}

(

Start with Equation 16.41 and {ind —TdBZV/dT:
[1-(F = 1){e7™" —1)] -
2mo’N, &

31 _ 1k, T
3 (JL ]) e. (_kB Tz)

20Ny 1.5 e/ky T L)
_ (37— 1)e (kBT

3
Substituting this value into Equation 2 and ignoring terms of P or higher, we find

-]

=8

v

2ro’N,
B, (1) = T2
dB,, _
d7
dB

2V

ar

T

oH [

aH _ 2::1'.:)‘31\1A
opP

) -
T
_ 2w’ N,
3

_ 20’ N,
3

_ 27[0’3NA
3

. £
1— (.13 _ I) (es/kBT _ I) _Lj/kBT (E

(

L

[ 3 efk, T 3 etk T
1— (el 41— 2% — ™) T

B

)

k, T

B

)\'3 _ es/kBT (

i

3 £

&
I _ = Iy
A -1 RT

ky T

£
S ) (1 + —v«—) eS”‘BT]
L kBT

Using the parameters provided for nitrogen, this expression becomes

(7).

Then
AH = (—6.138 x 10~° m* mol™)A P = —5.52 x 10~ m*-bar-mol™’

o

21(327.7 x 1072 m)*(6.022 x 10 mol ™)
ar;

3
—6.138 % 107° m?-mol™

[1.583 —(1.58 - 1) (1 +

DI S
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oH
ap

BV
ar

(22.34)

()7 |

For a gas obeying the equation of state P(V — T} = RT,

)

7=2L i ur
P
v "R
1 =Z 4
(87‘) P +
P
Substituting into Equation 22.34, we find
9H RT R
e = —-+bT -T|— =
(57) = 5Fwor-r(Eve)=0

and so enthalpy does not depend on pressure for a gas with this equation of state.

15. Use your results for the van der Waals equation and the Redlich-Kwong equation in Problem 22—
4_t0 caleulate H(T, V) as a function of volume for ethane at 400 K. In each case, use the equation
H = U + PV. Compare your results with the experimental data shown in Figure 22.5.

H=T(T,V)y+ PV
From Problem 224, for a van der Waals gas

0.55818 kJ-dm®-mol?
Vv _
b (0.083145 dm*-bar-mol ™ - K™)(400 K)  5.5818 dm°®-bar-mol™'

V — 0.065144 dm*-mol™' v

U =1455kT-mol™! —

o T

}

and for a Redlich-Kwong gas

3(9.8831 kJ-dm’-mol 2. K'/%)
2(0.045153 di®-mol Y200 K) 72
p _ (0:083145 dm’ -bar-mol ™ - K™)(400K)

V — 0.045153 dm®-mol ™

V +0.045153 dm®-mol
v
98.831 dm® bar-mel2.K'/?
(400 K)'?V(V 4 0.045153 dm® -mol ™"y

U =14.55%] -mol™" —

Note that in using these values, we find U in terms of kJ-mol™' and PV in terms of dm’®-bar-mol™".
Dividing PV by 10 will result in values of enthalpy given in kJ-mol™". Using these values, we can
95.2 produce plots of f vs. P.

300

) 695.2/300]

22-14. Show that the enthalpy is a function of only the temperature for a gas that obeys the equation

of state P(V — bT) = RT.

-~ 18
E 18-
j B van der Waals 16 Redlich-Kwong
o 16 -
55.2 J-mol™ —_
o | »
=) -
g - n
I y2 | \ | | | t
0 100 200 300 400 0 100 200 300 400
£ 1 bar £/ bar
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22-16. Use Equation 22.34 to show that
a*v
), -1 (5)
arP J; aTe/,
Use a virial expansion in P to show that

< d*B
(BBC;) =T dT22V+0(P)

Use the square-well second virial coefficient (Equation 16.41) and the parameters given in
Problem 22~13 to calculatc the value of (BC /8 P), for N,(g) at 0°C. Now calculate C at 100 atm

and 0°C, using CP =5R/2

We define C,, as (3H/38T), (Equation 19.40). Starting with Equation 22.34,

v
) --r(3)
aP ), T/,
8 (0H av (BV) Ta(ﬂ)
ﬁ(a?)r_ aT ), \aT), " aT\ar%/,

i,C_P) __T(?ﬂ) (1)
(BP ;o aT* ) 5.

Using a virial expansionin P, we find

V= R_PZ + RTB,, + PRTB,, + O(P"

Vv dB
(Z_V) z§+RBZP+RT—ﬁ+O(P)
P
v dB,, =~ dB,
— | =R-2 RT O(P
(a Z)P 7 TRt de+ Py
dB d*B
=2R d;” + RT de;’ + O(P)

Now, since B,, = RT B, , (Equation 16.24),

B
B,, = ﬁ
dB,, _1_dBw _ By

dT = RT dT  RT?
d’B,, 1 4B, 1 dB, 1 dB, 2B,
4T RT dT* RT* dT  RT? 4T RT?
1 4’8, 2 dB, 2B,
T RT d1?  RT? dT RT?
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 Now we solve Equation 1 for (BEP /aP), interms of B,

BEP = -7 ﬁ
aoP - aT?

dB d’B,,
-T [25{ 2 RT—22 4+ O(P)]

aT de

1 dB B 1 d°B 2 dB 2B
=T IR e v A4 RT I e A 2V v O p
[ (RT ar  wrr) RT arr  mRr2ar T wrrej|T (P

2dB,, 2B,, d’B,, 2dB,, 2B,

= - -T - = 4 OP
ar T At | ar T+()
d*B,,

=T <7 L1+ 0(P)

Using Equation 16.41,

B (1) = ZZ M [1 o3 1) e — 1]

dB,, 2ma’N, ., £
_ 33— 1) etkT
T 7 (e kT’
d*B 2o’ N
22v=_ o A()LS_l)eslicHT 33 £ )
dT 3 ky T° \ e T

ac, d’B,, 2mo’N £ £
— —T 2V — A A‘B _ 1 s/kBT 2
(8P>T ar 7 (- )e kTZ(kTJ“)

For nitrogen at 298.15 K,

9C,\ _ 2w(327.7 x 1077 m)*(6.022 x 10% mol™") (Lss? 1) 52 95.2 952 )
8P | 3 ‘ (298.15)* K \298.15

= 4,467 x 107 m’>-mol™ - K™! = 447 x 107* dm® mol - K!
Finally, |
C,— ‘Ciﬁ = (4.467 % 107 dm* mol™" - K1) (P — P¥)

C,= % + (4467 x 10~ dm®-mol™* . K~")(99 atm)

= (2.5)(8.3145 I.mol™". K™") + 4.42 T.mol . K
=2521T-mol1.K!

22-17. Show that the molar enthalpy of a substance at pressure P relative to its value at one bar is
given by

- — g v ,
H(T,P):H(T,P:lbar)—;—f V-T = [P
1
P

Calculate the value of H(T, P) — H(T, P=1 bar) at 0°C and 100 bar for mercury given that the
molar volume of mercury varies with temperature according to

V() = (14.75 mL-mol (1 4+ 0.182 x 107 4+ 2.95 x 1072 + 1.15 x 107%%)

where ¢ is the Celsius temperature. Assume that V(O) does not vary with pressure over this range
and express your answer in units of kJ-mol .
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Begin with Equation 22.34:

P
_ —_ Pl v )
1 bar P

where we have begun using P’ as the quantity integrated over in order to distinguish it from P, the
final pressure of the substance.
Using the values given for mercury,

(ﬂ> = (14.75 mL-mol™)(0.182 x 107 +5.90 x 107°1 4 3.45 x 107%)
aT
P

Then at 0° C and 100 bar,
100 bar

H(T, 100 bar) — H(T, 1 bar) = (14.75 mL-mol™) f [1—T(0.182x 107)]d P’
i

bar
= (1475 mL-mol'])(99 bar)[1 — (298.15)(0.182 x 1073)]

— 1381 mL-bar-mol ' = 138.1 F-mol™

22-18. Show that
oV i
= —T|-— dP+C.dT
an [V (aT)P] ’

What does this equation tell you about the natural variables of H?

Write the total derivative of H(P, T):

aH aH)
={—= ) dP+|=] 4T

We can now use Equation 22-34 and the definition of C, to write this as

ai=|v-1(2) lap+coar
aT ],

Since the coefficients of d P and d T are not simple, this tells us that the natural variables of H

arenot Pand T.

22-19. What are the natural variables of the entropy?

1
dS=PdV + —T:dU (22.39)
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Because the coefficients of d V and U are simple thermodynamic quantities, we say that V.and U
are the natural variables of entropy.

22-20. Experifncntally determined entropies are commonly adjusted for nonideality by using an
equation of state called the (modified) Berthelot equation:

PV_H_ 9 PT(, 6T3
RT 128 PT T?

Show that this equaticn leads to the correction

- 27 RT?
S°(at bar) = S(atone b —
{at one bar) (at one bar) + 3 PCT3( bar)

This resnit needs only the critical data for the substance. Use this equation along with the critical
data in Table 16.5 to calculate the nonideality correction for N,(g) at 298.15 K. Compare your
result with the value used in Table 21.1. :

_ 1 bar 8V R
S°(1 bar) — S(1 bar) = — — —|dP 22.54
(1 bar} — $(1 bar) [pm KBT>;= P} ( )

We find (§V/3T) from the modified Bethelot equation:
PV _ 1= PL 6T°2
RT ~~ 128PT T
RT 9RT 9.6 RT]

V=

P 128P 128P717
vy R L 262 RT?
8T ) P 128 PT’

Now substitute into Equation 22.54 to find $°(1 bar) — S(1 bar), neglecting P* with respect to 1
bar: '

= tbarrR 27 RT* R
$°(1 bar) — S¢1 bar) = —p Ll P
(1 bar) = 31 ban J[ [P *3 PT? P]

Pld
27 RT?
=5y 57 bao

For N, at 298.15 K, 7. = 126.2 K and P, == 34.00 bar. Then the nonideality correction (the
difference between the two values of 8) is

27 (8.3145 J-mol ' K™)(126.2 K)*

32 (34.00 bar)(298.15 K)*
= 0.0156 J-molt. K !

$°(1 bar) — §(1 bar) = (1 bar)

This is essentially the value used in Table 21.1 (0.02 J-K~'-mol™").

22-21. Use the result of Problem 22-20 along with the critical data in Table 16.5 to determine the
nonideality correction for CO(g) at its normal boiling point, 81.6 X. Compare your result with the
value used in Problem 21-24.
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— 27 RT?
° - — = (1bar
5°(1 bar) — S{1 bar) D) PCT3( )
© 27(8.3145 F-mol™-K1)(132.85 K)?
Y (34.935 bar)(81.6 K)’

= 0.867 J-mol™'-X™!

{1 bar)

This is comparable to the value used in Problem 21-24 (0.879 ] K mol™).

22-22. Use the result of Problem 22-20 along with the critical data in Table 16.5 to determinle the
nonideality correction for Cl,(g) at its normal boiling peint, 239 K. Compare your result with the

value used in Problem 21-16.

_ 27 RT?
5°(1 bar) — S(1 bar) = HFT (1 bar)
27 (8.3145 J-mol™ K7} (416.9K)’
Y (79.91 bar) (239 K)*

= 0.466 T-mot™ - K™

(1 bar)

This is comparable to the value of 0.502 J.K~'.mol™! used in Problem 21-16.

22-23. Derive the equation

amm) __u
( or )y T

which is a Gibbs-Helmholtz equation for A.

Begin with the definition of A (Equation 22.4)
A=U-TS

: (ﬁ)wi[ﬁ_s}
oT \ T aT | T
aA/ T _ g+1(ﬂ) _(ﬁ)
[ aT ]v__TZ T\ar /), \a7/,

Now, by the definition of C,,
au
aT /v

CV_(BS)
T T \aT/,

(B(A/T)) v.¢ 6 _ U
aT v

Cy
T

1
T

From Equation 21.2, we also know that

Therefore,
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22-24. We can derive the Gibbs-Helmholtz equation directly from Equation 22.31« in the following
way. Start with (6G/8T), = — 5 and substitute for S from G = H — 7§ to obtain

1 (3G G H
TA\3T /), T* T

Now show that the left side is equal to (3[G/T]/8T), to get the Gibbs-Helmholtz equation.

Begin with the equality in the statement of the problem and substitute for § as suggested (from

Equation 22.13):
oGy g G H
8T/}, T T T

A ()
T\aT /), 1> T

Taking the partial derivative of G/ T with respect to T gives

a(G_laG G
aT\T/) T\a8T7}, 1°

3 (G _H
aT\T/) T2

which is the Gibbs-Helmholtz equation.

s0 we can write Equation 1 as

22-25. Use the following data for benzene to plot G(T) — H(0) versus 7. [In this case we will ignore °

the (usually small) corrections due to nonideality of the gas phase.]

2t TN
iy g ©,=1305K O0K<T <I13K
5 \o,
TH(T)/R = —0.6077 -+ (0.1088 K™)T — (5.345 x 107 K™)T2 + (1.275 x 1076 KT

I3K<T «<27186K

C,(T)/R =

CTL(T)/R =12.713 + (1.974 x 107 K™)T — (4.766 x 105K T?
786K < T < 353.2K
CETY/R = —4.077 + (0.056T6 K™)T — (3.588 x 107 K"H)T? + (8.520 x 10~ K- T

3I532K <7 < 1000K

T

e == 278.68 K Ay H = 9.95kI-mol™

T, =35324K A, H =30.72kJ-mol "’

vap

Use the Equation G(7) — H(O) =_“ﬁ(T) — H(0) — TS(T) (as in Section 22-7) and Equa-
tions 22.62 and 22.63 for H(T) — H(0) and §(7T) to plot. (See Problem 21.15 for an explanation
of how to assign the values of entropy and enthalpy as functions of temperature.)
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b
b2
]

G(T)-H(0) /kJ-mol™!
&
(=]

i
Ea
=

The discontinuities in the slope at the melting and boiling points are difficult to see and so are
highlighted with arrows.

22-26. Use the following data for propene to plot G(T) — H(0) versus T. [In this case we will ignore
the (usually small} corrections due to nonideality of the gas phase.]

s 27t TN
C:(TY/R = 5”(@—) ®,=100K O0K<T <I5K

D

C(T)/R = —1.616+ (0.08677 K™)T — (9.791 x 10°* K ) T? 4 (2.611 x 107° K-3)7?

ISK<T < 87.90K

E;(T) /R =15935—(0.08677 K™ HT + (4.294 x 10" K" HT? — (6.276 x 1077 K HT?

87T90K <« T « 22546 K
Ei(T)/R = 1.4970 4+ (2.266 x 1072 K™ HT — (5.725 x 107  KH)T?
22546 K < T < 1000 K

T..=87.90K Ay H =3.00kI-mol™’

vap

T, =22546K A o H = 18.42kJ-mol ™

This is done in the same way as Problem 22-25.

0

!
—
o

G(Ty~H{0) /kl-mol!

|
2
<o

I
0
=]
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22-27. Use a virial expansicn for Z to prove (a) that the integrand in Equation 22.74 is finite as
P — 0, and (b) that (Z — 1)/ P =0 for an ideal gas.

a. Use the virial expansion Z = 1 + B,, P + B, P> + O(P?). Then

Z—1 148, P+B Pt OF) 1
P P
=B,,+ B,,P+ O(PY)

As P — 0, then, the integrand approaches B, ,, wich is finite.

P

b. Foranideal gas, Z = PV/RT and P_V = RT, s0
Z-1_1-1

e

P P

22-28. Derive a virial expansion in the pressure for Iny .

Begin with Eqguation 22.74 and expand Z as in Problem 22;27(a):
Pz—-1 .
Iny = f —dP
s P

P ) i
= f (B, + By P+ O(PH) AP |
¢

2

B, P
=8P+ 3; + O(PY

22-29. The compressibility factor for ethane at 500 K can be fit to the expression

Z = 1.0000 — 0.000612( P /bar) + 2.661 x 107%( P /bar)*
— 1.390 x 107°(P/bar)® — 1.077 x 107*(P /bar)*

for 0 < P/bar < 600. Use this expression to determine the fugacity coefficient of ethane as a
function of pressure at 600 K.

Substitute into Equation 22.74:

PzZ-—1
lnyzf —d P’

n P
P

= f [—6.12 x 107* bar™" + (2.661 x 107° bar™) P’
)

—(1.390 x 107" bar) P? — (1.077 x 107" har *) P*] d P’
= —(6.12 x 107 bar™ ") P + 1(2.661 x 107" bar *) P?
—1(1.390 x 107 bar *) P — 1(1.077 x 107" bar™*) P*
y = exp[—(6.12 x 107 bar™') P + (1.3305 x 107 bar ) P*
—(4.633 x 107 bar *) P* — (2.693 x 107 bar™*) P*]
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22-30. Use Figure 22.11 and the data in Table 16.5 to estimate the fugacity of ethane at 360 K and
1000 atm.

From Table 16.5, T.=30534Kand P, = 48.077 atm. Then at 360 K and 1000 atm, 7/7, = 1.18
and P/P = 20.8. Using Figure 22.11, it appears that y =~ 0.63.

22-31. Use the following data for ethane at 360 K to plot the fugacity coefficient against pressure.

p/mol-dm™®  P/bar p/mol-dm™  Pfbar p/mol-dm™  P/bar
1.20 31.031 6.00 97.767 10.80 197.643
2.40 53.940 7.20 112.115 12.00 266.858
3.60 71.099 8.40 130.149 13.00 381.344
4.80 84.892 9.60 156.078 14.40 566.335

Compare your result with the result you obtained in Problem 22-30.

By definition,

z-n 11
P orT P’

Now we can plot (Z — 1)/ P vs. P

0._
&k
| —2+
g -2
2 3+
<

_4

I | | |

0 100 200 300 400 500
P /bar

Numerical integration using the trapezoidal approximation allows us to graph f/P vs. P, in the
same way that Figure 22.10 was created from Figure 22.9.

1.0
0.8 -

0.6 -

/P

0.4 -

0.2

0.0 I i |
50 100 150 200 250

P/ bar
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22-32. Use the following data for N, (g) at 0°C to plot the fugacity coefficient as a function of pressure.

Platm Z = PV/RT Platm Z = PV/RT Plaam Z = PV/RT

- 200 1.0390 1600 2.0760 1800 3.0861
400 1.2570 1260 2.3352 2000 3.3270
600 1.5260 1400 25942 2200 3.5640

800 1.8016 1600 2.8456 2400 3.8004

Again, plot (Z — 1)/ P vs. P:

1000(Z-1) /P
=
(=
l

] | ; |
0 500 1000 i500 - 2000

P /bar

Then do numerical integration with the trapezoidal approximation to graph f/ P vs. P:

201
1.5
[aW
~ 1.0
w,
0.5+
9.0 1 ! | |
500 1000 1500 2000
P/ bar

22-33. It might appear that we can’t use Equation 22.72 to determine the fugacity of a van der Waals
gas because the van der Waals equation is a cubic equation in V, so we can’t solve it analytically
for V to carry out the integration in Equation 22.72. We can get around this problem, however, by
integrating Equation 22.72 by parts. First show that

Vv
— — P
RTIny = PV—RT—];ill PdV wRTln}SE

vV

where P94 — Q, Vid —> 00, and Pidvid — RT.Substitute P from the van der Waals equation into
the first term and the integral on the right side of the above equation and integrate (o obtain
RTV Vb P
RTIny = —— — % —RT—RThh—— — = — RTIn—5
V—b V vi_p V P

701
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—id ca—id
Now use the fact that V- — 0o and that ¥V " = RT to show that

a(V — b)] b 2a

From Table 16.3, a = 1.473idm6-bar-mol" K™ and # = 0.039523 dm’® -mol~! for CO. We arc
given Iny as a function of V in Problem 22-33, and the van der Waals equation gives P as a
function of V. Therefore, we can choose values of V and calculate the corresponding values of In y

ny =—ln!i1w

—3 — - -
RTV V—b RTV and P.Then we can plot In y against P. The result is
This equation gives the fugacity of a van der Waals gas as a function of V. You can use the van der
Waals equation itself to calculate P from V, so the above equation, in conjunction with the van der 0.6
‘Waals equation, gives Iny as a function of pressure. o4l
>~ 0.2
First we integrate Equation 22.72 by parts: =
— 0.0
b/ =
14 1
I — _ — 4P -0.2
ny j{,m <R T P’)
~0.4
| r | \ |

0 100 200 300 400 500

P /bar

P-__ P RT
pid pid

V
~F ) P
= Pv|,,m—j;dPatV—R'rlnﬁ

B o v - P 22-35. Show that the expression for Iny for the van der Waals equation (Problem 22-33) can be
=PV - (PV)" - f—“ PdV —RTIn VI written in the reduced form
v

. LA— P
=PV—RT—f PdV — RTIn—;
7 P

1 33V, — 1)
Iny = - —In [1 - —
3V,—1 4V.T, 8T, Vi ]

Use this equation along with the van der Waals equation in reduced form (Equation 16.19) to plot

Substituting P from the van der Waals equation, we find that this equation becomes :
y against P for T, = 1.00 and 2.00 and compare your results with Figure 22.11.

—I RT a Vr RT a
RThy =V |e— — = 4RT—}(A -
—id

—r P

j— — -
,‘i— RV v_ V-—-b V We can use Equations 16.12 to express a and & in terms of 7_and V :
RTV V—b a a ¢ ©
= RT - RTh—g—— =+ — ~ RTIn—; _ RT 4 o
V—-b V Vieep V  V P 3V, =b+ P° 3V°:F V="
_RTV 2 _n RT1 V—-b a 2 RrTi P s c P,
T V_p v r- n v 7 + 79 - n pid Combining the first and the second, and the second and the third, equations gives
i . . . . e 3
Now, since V"' —> 00, we can neglect b in the denominator of the logarithmic term and consider 3V — b V RT, 37 Ve
the a/ V" term negligible. Also, since PYV = RT, we write the above expression as ¢ ab T
= —2 —
_ — — v 3V_RT Vv
RTV 2 V—b P 3V = ¢ ¢« S
RTIny = —— — = — RT — RT |In~—— +In—; =3t b=
V—>b v v P 9
— a=-V RT
2 —il f —_— c [4
My =— - 2% {4+ V'PY PV —b) 8
V—-b VR B Now we can substitute into the expression for Iny we found in the previous problem:
V-(V-b  2a ) P(V—-b) B
= — —_ — — 11 _
V—>b RTV RT 1ny=_—b—— za_—lﬁ[l—-a—(v b):|

V—b RIV RTV

Vv 2 (9- — V-V
- e (_ch;)_m[l_gmw_ﬂ

IRTV
1 9 33V, —
= —= - e — I 1——( VR_Z D
3Ve—1 4T Ve 8T, Vg

b 2a_ (V—b)(RT a)
~ V-b RTV RT \V-» ¥

b 2a a(V — b)
== ——1In 1*__2—
V—b RTYV RTV

22-34. Use the final equation in Problem 22-33 along with the van der Waals equation to plot iny
against pressure for CO(g) at 200 K. Compare your result with Figure 22.10.
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Equation 16.19 gives

We have now found expressions for both Iny and P as functions of VR and 7;,. We can therefore
choose values of V,, for a specific value of 7, and calculate the corresponding values of Iny and
P, and plot y against P. The result is

1.4~
1.0

0.6

0.2

This looks very much like the experimenta] curves plotted in Figure 22.11.

22 36. Use the method outlined in Problem 22-33 to show that
A A V+B [ AV — B) }
— In

Iny ==

— — — In g s ———
V- B RT*™V+B) BRT” v RT*V(V + B)

for the Redlich-Kwong equation. You need to use the standard integral

f dx 1. a-+bx

J S — | 1]
x{a+ bx) a X

For a Redlich-Kwong gas,

RT A
P== s
V-B TYZV(V+B)

We can still use the first equation indProblem 22-43, since it was independent of the equation of
i —i . ) —id
state chosen. Also, realize that as V' —» 0o, B becomes negligible with respectto V.

.
— — P
RTIny = PV—RT~],U PdV - RTla—5

v

RTV A YT ORT A — P
. _ = _RT_f |:_ - }dV—RTlnﬁ
V—B TYWV4+B # V-8B TYVW{HI+B P
Vv A V- B
=RTl—— 1] ———— — RTIn—;
V- B TV2(V + B) V' —B
— —id
A V4B V +B P
7 In i —1In _-: ~ RTIn—;
T'”R V v P
B A A V4B P(V - B)
ny == —1n

—_ — — In —— -
V—-B RT¥™V +B) BRT" v Py
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B - A A 1V+B
V_B RIP(V+B BRTE ' v

W (V—B)[ RT A
RT |Vv—-B TVV{V+B
_B B A A an-l-B_] AV - B)
V_B RIP(V+B BRI v | TRV 1B

22-37. Show that Iny for the Redlich-Kwong equation (see Problem 22-36) can be written in the
reduced form

ny = 0.25992 1.2824
V,— 025992 T2V, +0.25992)

4.9340 n V, +0.25992 il 1.2824(V, — 0.25992)
T TV (Vi +0.25992)

Ve

From Problem 16-26, we can express A and B in terms of 7, and Vc.‘

_ RT . 2rn5/2
v, = £ 8 =10.25992V A = 042748 RT,
PC € Pc
Then
R2T5/23_ -
A= 0.42748---}°€T—v° = 1.2824R V‘:Tf/2

Now we can substitute into our expression for In y in the previous problem:

lnyﬂ_B - 32{ - A hlviBw]n[]—M——:l
V—-B RT¥(V+By BRT? ¥ RTPV(V + B)
_0.25992V, [.2824RV T3 L28MRT.TR V40259927
T V025992V, RTA(V+025992V)  RT(025992V) v
T {] | L28URV TV - 0-25992"‘7&}
RTY(V +0.25992V )V
0.25992 1.2824

V- 025092  TA(V, +0.25992)

_49340 Ve +0.25992 . 1.2824(V, — 0.25992)
' TRV (V, + 0.25992)

" v

22-38. Use the expression for In y in reduced form given in Problem 22-37 along with the Redlich-
Kwong equation in reduced form (Example 16-7) to plot In y versus P, for T, = 1.00 and 2.00 and
compare your results with those you obtained in Problem 22-35 for the van der Waals equation.

From Example 16-7, we have an expression for Py as a function of T, and VR:

_ 37, ~ 3.8473
Ve—025992  T,?V (V, +0.25992)

P

R
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and from the previous problem we have an expression for In y as a function of Ty anc_l V- We can
therefore choose values of VR for a specific value of T and calculate the corresponding values of

Iny and P, and then plot y against P. The result is

14 ,
1.0

0.6

0.2

The upward curvature observed here is more marked than that in the plot we obtained from the van

der Waals equation.

22-39, Compare Iny for the van der Waals equation (Problem 22-33) with the values of Iny for
ethane at 600 K (Problem 22-29).

: -2
We can graph both the experimental and van der Waals Iny vs. P,usinga = 5.5818 dm?-bar-mol
and b = 0.065144 dm®-mol~". This is only a good fit at extremely low pressures.

M.ovan der Waals
~

~

~ -
~ -
- I

| ! T !
0 100 200 300 400
P /bar

22-40. Compare Iny for the Redlich-Kwong equation (Problem 22-36) with the values of iny for
ethane at 600 K (Problem 22-29).

We can graph both the experimental and Redlich-Kwong Iny vs. P, using A = ?8.831 dm’-bar
K. mol* and B = 0.045153 dm”-mol~'. The Redlich-Kwong equation provides a markedly

better description of the behavior of Iny than the van der Waals equation does.
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0.00
-0.05
=~
£ -0.10 -
— Redlich-Kwong
-0.15F
» l \ | I
0 100 200 300 400

P /bar

22-41. We can use the equation (35/dU), = 1/T to illustrate the consequence of the fact that
entropy always increases during an irreversible adiabatic process. Consider a two-compartment
" system enclosed by rigid adiabatic walls, and let the two compartments be separated by a rigid
heat-conducting wall. We assume that each compartment is at equilibrium but that they are not in
equilibrium with each other. Because no work can be done by this two-compartment system (rigid
walls) and no energy as heat can be exchanged with the surroundings (adiabatic walls),

U = U, + U, = constant
Show that
a8 EN
dS=1{—=>)dU + | =2)dU,
aU, 2,

because the entropy of each compartment can change only as a result of a change in energy. Now
show that

P
ds =dU, (?_?>20

1 2

Use this result to discuss the direction of the flow of energy as heat from one temperature to another.

We know that U, + U, is a constant, so dU/, = —dU,. Since the change of entropy of each
compartment is dependent only on the energy change of each compartment (using the fact that we
can express dS in terms of dU and 4V, its natural variables), we can write

a5 as
dS(Ulo Uz) = (ﬁ)dUl + (BUZ)dUZ
1 2

Notice that this is a constant-volume process, so we use the expression (95/9U), = 1/T to wrile

(ﬁ) :—1— and (ﬂ) zi
B, v L al, /y T,

Substituting into the expression for S gives

au,  du, 1
dS=-A 4t 2 =dU{=-=)20

Tl TZ T] 2

where the inequality holds because entropy always increases in an irreversible adiabatic process.
If the energy flows from compartment 2 into compartment 1, U, must be positive, and so

T, < T, in order for the inequality to hold. Likewise, if the encrgy flows from compartment 2
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into compartment 1, dU, is negative and so 7, > T,. The energy always flows from the higher
temperature to the lower temperature.

22-42. Modify the argument in Problem 22-41 to the case in which the two compartments are
separated by a nonrigid, insulating wall. Derive the result

Pl PZ
={L-2)av
as (T T) :

1 2

Use this result to discuss the direction of a volume change under an isothermal pressure difference.

Since the entire system is isolated, we know
U, + U, = constant and V, + ¥, = constant

This means that dU, = —dU, and dV, = —dV,. Now entropy depends on the energy and the

volume, so
a8, as, a5, a8,
ds = dU, dV, dU, + dv,
(aul) +(5m) e+ (3 4o (53)

From Equation 22.40, (85/8U), = 1/T and (88/8V), = P/T, s0

dU, dU, P P
ds=—L—- 1+ Ldv,— 24V,

. LT
-3
"\7, T,
For an isothermal process, this expression becomes
dV,

1 1
= ——— 1 +d
w(z-7)*
ds = I(P——P)

If the volume of compartment 1 increases, d'V, is positive and so P, > P, in order for 45 to be
positive. If the volume of compartment 1 decreases, d V) is negative and P, > P,. The higher
pressure compartment will expand under an isothermal pressure difference.

22-43. In this problem, we will derive virial expansions for U, H, S, 4, and G. Substitute
Z=1+B,,P+B, P+

into Equation 22.65 and integrate from a small pressure, P, to P to obtain
el i RT B, 2
G(T, Py = G(T, Py = RTIn P— + RTB,, P+ ——LP

Now use Equation 22.64 (realize that P = P in Equation 22.64) to get

G RTB,, ,
G(TaP)*‘GD(T)=RTIUP+RTB2PP+T'P + ... (1)
at P° = 1 bar. Now nse Equation 22.31a to get
d(RTB,,) , 1d(RTB,) .,
dar 2 dT

S(T,P)—8°(Ty=—RInP — (2}

Helmheltz and Gibbs Energies
at P° = 1 bar. Nowuse G = H — TS to get

- dB RT?dB
H(T, P)— H(T) = —RT?*—22p _ P pr
(7. P) () o7 s Pt (3)

Now use the fact that EP = (3H/3 1), to get

2

— dB
C,(T, P) - C(Ty=—RT [2 4T

d’B,, p_ RT[,dB5 d’B
dT dT?

T AP plg L.
AT ] o @)
We can obtain expansions for U and A by using the equation H = U + PV = U + RTZ and
G =A+ PV =A+ RTZ. Show that

— dB,, TdB
U—-U"=—RT P—RTi{B 3P LS.
and
e RTH
A~A°=RT1nP——23~’iP2+--- (6)
at P° =1 bar.

‘We can use the virial expansion in pressure to write
— 2
Z=1+4+B,,P+8,,P +

— RT
V= +ByRT + B, RTP +...

Now substitute into Equation 22.65:

acG _
(ﬁ) =V
T

P P RT
Ld@:ﬁ [»»«F)W-I-BZPRT-FB”RTP—%O(PZ)}(:!P

id id

- P RTB ,
G(T, P)— G(T, Py = RTIn—5 + RTB,, (P — P*) + —=E£(P* = P%) + O(P)

Since P* is very small, we can neglect it with respect to P in the last two terms and find

—= —= ; P RTE
G(T, Py — G(T, P = RT]nF+RTB P+ > e p2 gy 0(P3)
Equation 22.64 states that

id

_ P
G(T, PY) = G*(T) + RT In -

Substituting,

— P RTB
G(T, P)—-G(T) = RTIn 5 + RTB,, P+ — P24+ O(PY)
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which is Equation 1 when P° = 1 bar. Now

~ (aﬁ)
§=_{—2
aT

P

AG(T, P) — G*(M)]
aT ,

d(RTB,;,) = 1d(TRB,,) , ;
2klp DT pr oy o pt
dT 2 dT O

S(T, Py — 85Ty = — (

=-—RInP —

which is Equation 2. Since G = H — TS, we can now write

G(T, P)— G(T) = H(T, P) — H*(T) — T [S(T, P) — 5°(T]

_ RTB,, ,
(T, P)— H(T) = RTIn P+ RTB,,P + — 2L P’ +- T[-RIn P

d(RTB,,) 14(TRB,,) , ;
STl p TV TR pl L (P
7 P ST + O(P7)

dB RT*dB
= —RT? d;fP— 5 d?{PP2+0(P3)

This is Equation 3. Now we can take the partial derivative of enthalpy with respect to temperature

to find EP:
— aH
Cr = (a—T)
P

A[H(T, P) — H°(T)])
.

T
dBZP ZdzBZP : dB?P RTZ dzB'iP 2 3
=(- —~ P— (RT3 32} p2 4 (P
( 2RT—2* — RT*~-2 Tt + 0P
dB

d*B RT { dB d°*B
2P T 2P P—— 2 ip T 3F P2 0 P3
ar dTZ) 2 ( ar Tl )T oW

C, (T, P)— C(T) = (

= —RT (2

This is Equation 4. Now use the factthat U = H — PV:

U(T, Py U(T) = H(T, Py — H*(T) — P[V(T, P} — V()]

2
[t ST ] o [T - S o

= _erdf;” - RZTZ df%” P*— ZRT — RT 4+ O(P%

= ——RTzdf;P P R; df;j” PP—[1+B,,P+ 33PPf] RT — RT + O(P?)
= —RT (BZP + Tdf;‘”> P—RT (BEP + g%) P+ O(PY)

In the above derivation, we realized that PV° = RT, or Z = 1 for these conditions. We can
similarly use the fact that G = A + RTZ, and write

A-A°=G -G —RT(Z-1)

RTB
= [RTlnP + RTB,, P+ 'T”PZ] — RT (14 B,,P+ B,,P*—~ 1)+ O(P%)

Helmheltz and Gibbs Energies 711
1 1P p2 2 3
= R1 nP+PR]BzP+—_2 P-—PR?BZPfRI‘B_gPP + O(P)

RTB
=RThhP-— T“’P2 + O(PH

22-44. In this problem, we will derive the equation
- , VI [ap —
HT,P)-H(T)=RI{(Z- D+ | |T{—=] ~P|dV
7 ar /.,

where V" is a very large (molar) volume, where the gas is sure to behave ideally. Start with

dH =TdS + Vd P to derive
oH LR ar
— ) =7{-=} +v{ZIZ
av /., v/, av/,

and use one of the Maxwell relations for (85/3 V), to obtain

oH ap
_) =T(—) +v ﬁ)
av /, ar /, av ),

Now integrate by parts from an ideal-gas limit to an arbitrary limit to obtain the desired equation.

Start with Equation 22.49 and take the partial derivative of both sides with respect to V:

dH =T7TdS+VdP

oH 38 9P
av ), av/, av /),

Now use Equation 22.19 to write this as
aH ap apr
— ) =T{—} +V]|—
av/, aT /., v/,
‘We now integrate the above equation. Recall that PV = nZRT, and for an ideal gas Z = 1,
H vr
apP apP
dH = T|{— Vi—1 |4V
Juon= [ (57), v ()]
"'T.. (2P nZRT YA
H-H = T{—=) - V{— RT § — dv’
J. ! (BT)V ( Z )J”'f (avn
T..[8P nZRT z
H—-H = T{-—=1 — dVi+ nRTdAZ'
ya | \OT J, 1% 1
z , v aP
=aRT | dZ'+ TE— | —PldV
1 yid ' aT Vv

v 3P )
—nwrz =+ [ [r () ~+]av

Dividing both sides of the above equation by n gives the desired equation.

22-45. Using the result of Problem 22-44, show that H is independent of volume for an ideal gas.
What about a gas whose equation of state is P(V — ) = RT? Does U depend upon volume for
this equation of state? Account for any difference.
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For an ideal gas,

5P\  nR . (ap) nRT
N = — an g =
(BT)V v ov /. 'S

Substituting into the equation from the previous problem,

P ar nRT nRTV
MY _r(2E) v (Gy) = =0
BV T BT v 8V T V V

For the second eguation of state given in the problem,

9P R (BP) RT
e = —— and e =T a2
(BT)V V—b v /¢ (V—-0)

(), G ().

Remember that U=H-PV,so

avy _ (94 —va(g)
oV 3V 8V /+
T T
T

VvV — RT
R Ay ——— =0
(V- by

Therefore U does not depend on volume for a gas that obeys the equation of state P(V —b) = RT.

22-46. Using the result of Problem 22-44, show that

— RTh  2a
H-H==—-=
V—b V¥
for the van der Waals equation.
For the van der Waals equation of state,
RT a ar R
Pee—e—re — = and — ) ==
V—-b vV oT /v Vb

Also,

. PV [ RT a]v
T RT  |V-b T ART

Now we substitute these values into the equation from Problem 22-44:
S VI, (8P —
H—H:ZRTRT+] T{—1} —P|aV

7 aT /v

- T VI RT RT p—
zv[:R——_%]—RT—kj [:—w_—-+_—“~;]dv
V_b V wlv-b V-b 7

Helmholtz and Gibbs Energies

(v v

prl VP 2 4
g V ?iil
_ RTb Za n a
V-t V "
_ RTh  2a
V-b V
because V" is very large comparedto V.
22-47. Using the result of Problem 22-44, show that
RTB A 34  V+B

ﬁmHQﬁ_ — _— — In
V-B TY"V+B)y 2BT'Y” v

for the Redlich-Kwong equation.

For the Redlich-Kwong equation of state,
RT A ( apP ) R A

P == — — — | =
V-8B TYWV+B a7

— 3 + 3257
v VB 2T"V(V + B)

Also, we write Z as

z—[ RT A v
V—B TVV(V+ 3)} RT

Now we substitute these values into the equation from Problem 22-44:

. v 3P _
H H =ZRT — RT + T{Z) - pldV
V"' aT v

—T RT A v
S T i —
V—B TVVW(V+B) VIV -B 2TV {V + B

RT A ]d?’
V-B TWV+8
_ VRT - RT(V - B) A v 3A -
= = Sy
V-8 T'"*(V+ B) f?‘“ 2TVV(V + B)dv

_BRT A 34 [ VeB T'ype

VB TRV+B 2BTF\"y  "m

BRT A 34 V4B

— - - — 1
V—B T V4B BT Y

~—id . p—
because V' is very large compared to V.

The following six problems involve the Joule-Thomson coefficient.
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22_438. We introduced the Joule-Thomson effect and the Joule-Thomson coefficient in Problems 19-52
through 19-54. The Joule-Thomson coefficient is defined by

_ {7 _#L(ﬂ>
a=\ap),” C,\aP/,

and is a direct measure of the expected temperature change when a gas is expanded through a
throttle. We can use one of the equations derived in this chapter to obtain a convenient working

equation for ;. Show that
1 v
=g |7 Gr), )
TG, .

Use this result to show that p .. = 0 for an ideal gas.

Start with

aH av
Y =v-T{— 34
(57),=v-7(5), @24

Substitute this into the expression for p; to obtain

1 v
- —|r{<) -v
Fore CP[ (ar),, }

For an ideal gas, (0V/8T), =nR/P, so

1 {nRT
un=c—[ P —V]:O
P

22-49. Use the virial equation of state of the form

v B (T
PV _ . By(D,

RT ~ RT T

to show that

1 dB
Hypr [T 2 Bzv] +0(P)

dr

It so happens that B,,, is negative and dB,, /dT is positive for T" < 3.5 (see Figure 16.15) so
that 1. is positive for low temperatures. Therefore, the gas will cool upon expansion under these
conditions. {(See Problem 22-48.)

Use the virial equation of state to express V:

Y |, BaD)

RT
RT

V= — T By(D) + O(P)
R

1+ P+ O(PYH

+ 8w 4 oepy
TP AT

Helmheltz and Gibbs Energies

Substituting into the equation for g, from Problem 22-48,

e

7 (57, -]

L \9T/p

[ RT dB,, RT :

_T T—&?_Tf 2V+O(P)]
[ 4B,y

TW =8B, |+ OF)

Hyr =

A= o= O]~

-l

22-50. Show that

Hyp = .
P

for a gas that obeys the equation of state P(V — b) = RT. (See Problem 22-48.)

For such a gas,

av R — RT
(ﬁ)F—F and V:**I*)*--I-b

Substituting into the equation for 1, from Problem 22-48,
1 av 1 [RT RT b
m=z|7(wr), V=g 7T l=2
P P p

22-51. The second virial coefficient for a square-well potential is (Equation 16.41)

B, (T) =p,[1 - (A2 = DT - 1)]

Show that

b
= [(ﬂ -1 (1 + %) et — )P}
P B

where by = 2ro° N /3. Given the following square-well parameters, calculate g, at 0°C and
compare your vatues with the given experimental values. Take p =5R/2Tor Arand TR/2 for N,
and CO,.

Gas b,/mL-mol™ A e/k, w,p(exptl)/K-atm™
Ar 39.87 1.85 69.4 (r43

N, 45.29 1.87 53.7 0.26

CO 75.79 1.83 119 1.3

2

From Problem 2249, we have

dB,
My = o5~ |:Td—;,v - Bzv:| + O(P)
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Now we find dB,, /dT from Equation 16.41: _ | By definition, p, = (37/3 F), so
By = by [1 = 07 = DT~ 1) o = (%)
dB,, b, b AT/

A _(A3 _ l)eS/kBT
aT K, T?

f#”dP=de

Let us assume that 1, does not change significantly over the pressure range. Then

Substituting into the expression for g, we find

4By _ B,, | +0(P)
2v AT = u AP

Using the experimental values of u.,;., we see that Ar(g) experiences a temperature drop of 42.6 K,

— DT — b, + bO(A3 ~ D" — 1)]
N,(g) has a temperature drop of 25.7K, and CO,{(g) drops in temperature by 129 K.

{eE/kBT [%(KB _ 1)] —1 +}L3€g/kBT _ ee/kBT . A‘B + IE
B

22-54. When a rubber band is stretched, it exerts a restoring force, f, which is a function of its
length L and its temperature T'. The work involved is given by

B0 ) et & 43 i 43
{e [kBT(A D4+ 1)} )&.}

gg_ I:(;La PN (1 n ﬁ) T ks} w= f (L, TYdL (1)
P B

Why is there no negative sign in front of the integral, as there is in Equation 19.2 for P-V work?

We can now use the given values of 1, by, and £/ky to calculate 1, (theoretical) for Ar, N,, and Given that the volume change upon stretching a rubber band is negligible, show that

CO,. We use C,, = 5R/2 for argon and C, = 7R/2 for N, and CO,.

Gas Ar N, co, dU=TdS5+ fdL 2)

tep(theor.) /K -atm™ 0.44 0.24 and that

,u,]T(exp.)/K-atm'l 0.43 0.26 ” 55

Percent Difference 3.4 7.3 . (_) =7 (_) + f 3)
aL /., oL/, .

Using the definition A = U — T8, show that Equation 2 becomes
22-52. The temperature at which the Joule-Thomson coefficient changes sign is called the Joule-

Thomson inversion temperature, T,. The low-pressure Joule-Thomson inversion temperature for the dA = —8dT + fdL %
squarc-well potential is obtained by setting tt;, = 0 in Problem 22-51. This procedure leads to an ‘J . )

equation for k, T /e in terms of A’ that cannot be solved analytically. Solve the equation numerically jand derive the Maxwell relation

to calculate T, for the three gases given in the previous problem. The experimental values are 794 K, af a5

621 K, and 1500 K for Ar, N, and CO,, respectively. (ﬁ) . == (EZ) , ©)

Substitute Equation 5 into Equation 3 to obtain the analog of Equation 22.22

N PR &\ Ty
O_CPI:(JL 1)(1+kBT)e x] (BU) mf_T(%)

3L
M=03—1) (1 + %) ot/

For many clastic systems, the observed temperature-dependence of the force is linear. We define an
B

‘ ideal rubber band by

We can use the experimental values as initial values and then use the Newton-Raphson method to

find T}. The inversion temperatures found are tabulated below. f=Tae(L) (ideal rubber band) (6)
Gas Ar N, CO, Show that (8U//3 L), = 0 for an ideal rubber band. Compare this result with (U /3 V), — 0 for an
T.(theor.}/K 791 634 1310 ideal gas.
T(exp)/K 794 621 1500 Now let’s consider what happens when we stretch a rubber band quickly (and, hence,
Percent Difference 0.378 2.09 12.7 adiabatically). In this case, U/ = dw = fd L. Use the fact that I/ depends upon only the

: temperature for an ideal rubber band to show that
22-53. Use the data in Problem 22-51 to estimate the temperature drop when each of the gases dU = (B_{{) dT = fdlL (7)
undergoes an expansion for 100 atm to one atm. ' 0T/,
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The quantitj (8U/8T), is a heat capacity, so Equation 7 becomes
C,dT = fdL (8)

Argue now that if a rubber band is suddenly stretched, then its temperature will rise. Verify this
result by holding a rubber band against your upper lip and stretching it quickly.

There is no negative sign in front of the integral because the force the rubber band exerts is a
restoring force, which means that it is acting to contract the rubber band.
Since dU = §g + dw and 8g = TdS,

dU =TdS+ fdL 2)
Taking the partial derivative of both sides with respect to L at constant T gives
au as
— 1 =T{—=1 + 3)
(50),=7 (%), (
Then, since A == U - TS, U=A+TSand

dU = TdS + fdL
dA+TdS ~ SdT = TdS+ fdL
dA = —8dT + fdL (@)

We can also write 44 as the total derivative of A(T, L): ‘

aA aA
A=1—3 dT — 3] dL
4 (aT)L '*(aL)T

Comparing the above equation and Equation 4, we see that

3A A
(8_T>L =5 and (B—L)T =f

and equating the second cross partial derivatives gives

as\ _ (af
-(i1).= G7),
184 af
(H)T“T (é'f)ﬁf

afN
f=T¢(L) and so (ﬁ)L =¢,

Uy af _ _
(E)T— T(BT)L+f_ Te¢+Tp=0

Both this result and the result (§U/8 V), = O essentially state that the energy of the system is
independent of the length of the rubber band or the volume of the gas at constant temperature.

Substituting into Equation 3 gives

For an ideal rubber band,

Then

Helmholtz and Gibbs Energies

Now define C;, = (aU//aT),. For the ideal rubber band, I/ depends only on temperature, so we can

write
U
U=f — 1 dT
ar /,

a7
dU ={ — 1 dT =
(BL)T C,dr

We know that U/ = fd L from the problem text, so we can now write
C,dT = fdlL

If we suddenly stretch a rubber band, we arc applying force f over the distance we stretch the

rubber band. Then
jf fédL=C, f dT

FAL = C,AT

which is approximately

If AL is positive (we are stretching the rubber band), then AT must also be positive, and the rubber
band heats up when we stretch it.

22-55. Derive an expression for AS§ for the reversible, isothermal expansion of one mole of a gas that

obeys van der Waals equation. Use your result to calculate A S for the isothermal compression of
ethane from 10.0 dm®-mol~* to 1.00 dm®-mol™" at 400 K. Compare your result to what you wounld
get using the ideal-gas equation.

We can use the Maxwell relation (Equation 22.19)

(%), (G0,

For the van der Waals equation,

(ap) R
aT)y V—b

Substitating into the Maxwell equation above, we find that

(aE) _ R
av] ~V-b
T

or

For ethane, b = 0.065144 dm®-mol ™', so

1.00 dm?-mol™* — 0.065144 dm’-mol™
10.0 dm®-mol™! — 0.065144 dm’®-mol™!

AS = (8.31451- K -mol™ ) In

=—19.7J.K .mol™
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Using the ideal gas equation, we find

s _(BP) _ R
V) T )y ¥V

V. 1.00
AS=RIn 72 = (8.3145F. K" -mol™) lnm =—19.1J.X " mol™’

1

The van der Waals result is smaller than the value obtained with the ideal gas equation,

22-56. Derive an exptession for AS for the reversible, isothermal expansion of one mole of a gas
that obeys the Redlich-Kwong equation (Equation 16.7). Use your result to calculate AS for the
isothermal compression of ethane from 10.0 dm® mol™" to 1.00 dm®-mol™" at 400 K. Compare
your result with the result vou would get using the ideal-gas equation.

Because these are the same parameters as those used in the previous problem, the ideal gas equation

of state gives a value of —19.1 J-K™'-mol™! for AS.
We can vse the Maxwell relation (Equation 22.19)

(), ).

_ RT A
VB TYV(V+B)

For the Redlich-Kwong equation,

P

(ap) __R A
aT )y V-B 2T"V(V+B)

Substituting into the Maxwell equation (Equation 22.19), we find that

as _(ap) __R A
av) ~\aT)y V-8B 21°°V(V+B)

AE:RanZ"B— 4 ntht D
V,—B 2BT*  V,(V,+B)

For ethane, A = 98.831 dm®-bar-mol~%-K"? and B = 0.045153 dm* - mol™', so

1.00 dm*-mol™"' — 0.045153 dm® mol ™"
10.0 dm® -mol™! — 0.045153 dm® - mol ™
98.831 dm®-bar-mol™>-K'2 (10.0dm’-mol™")(1.045153 dm® mol™")
©2(0.045153 dm® - mol ™) (400 K)** 8 (1.00 dm®-mol™")(10.045153 dm®-mol™")
= —0.200 dm® -bar = —20.0 1. K" mal™’

AS = (0.083145 dm®-bar-mol "-K ") In

This is smaller than the value obtained with the ideal gas equation.

CHAPTER 2 3

Phase Equilibria

PROBLEMS AND SOLUTIONS

23-1. Sketch the phase diagram for oxygen using the following data: triple point, 54.3 K and 1.14 torr;
critical point, 154.6 K and 37 828 torr; normal melting point, —218.4°C; and normal boiling point,
—182.9°C. Does oxygen meli under an applied pressure as water does?

We can use the triple point and the normal meiting point to construct the liquid-solid line and the
triple point, normal boiling point, and critical point to construct the liquid-gas line. The liquid-gas
line stops at the critical point. We produce the diagram

1

In (P/torr)

[ AT~

| 1 I | |
60 80 100 120 140

T/

We can see that oxygen does not melt under an applied pressure, because its normal melting point
temperature is higher than the triple point temperature.

23-2. Sketch the phase diagram for I, given the following data: triple point, 113°C and 0.12 atm;
critical point, 512°C and 116 atm; normal mekhing point, 114°C; normal boiling point, 184°C; and
density of liquid > density of solid.

We use the triple point and normal melting point to construct the quuid—solici line and the triple
point, normal boiling point, and critical point to construct the liquid-gas line. Because the density
of the liquid is greater than the density of the solid, the solid-liquid line has a positive slope.

11

liquid

In (P/torr)

- gas

] i 1 |
400 500 600 700

TIK
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