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Using the ideal gas equation, we find

3 _(ap) _R
ov) \aT)y ¥

V. 1.00
AS = Rlnv2 = (8.31457-K"-mol™") In 00" —19.1J-K™ ! mol™

1

The van der Waals result is smaller than the value obtained with the ideal gas equation.

22-56. Derive an expression for AS for the reversible, isothermal expansion of ene mole of a gas
that obeys the Redlich-Kwong equation (Equation 16.7). Use your result to calculate AS for the
isothermal compression of ethane from 10.0 dm*-mol™ to 1.00 dm’-mol™" at 400 K. Compare
your result with the result you would get nsing the ideal-gas equation.

Because these are the same parameters as those used in the previous problem, the ideal gas equation
of state gives a value of —19.1 J-K'-mol™" for AS.
We can use the Maxwell relation (Equation 22.19)

(), (0,

RT A
V-B T'2V(V+B)

For the Redlich-Kwong equation,

P=

(ap) __R A
8T )y V—B 2T°V(V+B)

Substituting into the Maxwell equation (Equation 22.19), we find that
asy (a P) __R . A
ov),  \aT )y V-B 2T"V(V+B)

Anglnvz_B— A nVl(VZ—I—B)
V,—B 2BT" V,(V,+B)

or

For ethane, A == 98.831 dm® -bar-mol~*-K'* and B = 0.045153 dm® -mol™", so

1.00 dm* mol™ — 0.045153 dm®-mol ™
10.0 dm*-mol™! — 0.045153 dm®-mol ™!
98.831 dm® -bar-mol2-X'/* (10.0 dm®-mol™1(1.045153 dm’ -mol ™)
2(0.045153 dm’®-mol~')(400 K)*2 8 (1.00 dm® - mol™1)(10.045153 dm®-mol )
= —0.200 dm’ -bar = —20.0J- K" -mol™!

AS = (0.083145 dm® -bar-mol '-K™") In

This is smaller than the value obtained with the ideal gas equation.
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Phase Equilibria

PROBLEMS AND SOLUTIONS

23-1. Sketch the phase diagram for oxygen using the following data: triple point, 54.3 K and 1.14 torr;

critical point, 154.6 K and 37 828 torr; normal melting point, —218.4°C; and normal boiling point,
—182.9°C. Does oxygen melt under an applied pressure as water does?

We can use the triple point and the normal melting point to construct the liquid-solid line and the
triple point, normal boiling point, and critical point to construct the liquid-gas line. The liquid-gas
line stops at the critical point. We produce the diagram

1

In {P/ torr)

[ S R =\ T = R e

| | i | !
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We can see that oxygen does not melt under an applied pressure, because its normal melting 'point
temperature is higher than the triple point temperature.

23-2. Sketch the phase diagram for I, given the following data: tfiple point, 113°C and 0.12 atm;

critical point, 512°C and 116 atm; normal melting point, 114°C; normal boiling point, 184°C; and
density of liquid > density of solid. '

We use the triple point and normal melting point to construct the liquid—solid line and the triple
point, normal boiling point, and critical point to construct the liquid-gas line. Because the density
of the liquid is greater than the density of the solid, the solid-liquid line has a positive slope.
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Chapter 23

23-3. Figure 23.14 shows a density-temperature phase diagram for benzene. Using the following
data for the triple point and the critical point, interpret this phase diagram. Why is the triple point
indicated by a line in this type of phase diagram?

Freezing liquid

R

.

= Triple point T
g -278.7K  Liquid
.-

z rd

C.P.
~562 K
B.P. Gas
I v i i I

300 400 500 600 700
T/K )

FIGURE 23.14
A density-temperature phase diagram of benzene.

p/mel L'
T/K P/bar Vapor Liquid
Triple point - 278.680 0.04785 0.002074 11.4766
Critical point : 561.75 48.7575 3.90 3.90
Normal freezing point 278.68 1.01325
Normal boiling point 353.240 1.01325 0.035687 10.4075

The triple point is indicated by a line because it represents a temperature at which the solid, liquid,
and gas phases all coexist at equilibrium. The line labelled triple point connects the densities of
the liquid and vapor in equilibrium with each other. Notice that the liquid and gaseous densities
become equal at the critical point. The line labelled 500 bar represents the density of benzene at
500 bar as a function of temperature. Below the information conveyed by the density-temperature
phase diagram is represented in a pressure-temperature phase diagram.
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23-4. The vapor pressures of solid and liquid chlorine are given by

377K

In( P* /torr) = 24.320 —

In(P'/torr) = 17.892 — 2669 K

where T is the absolute temperature. Calculate the temperature and pressure at the triple point of
chlorine.

This problem is done in the same way as Example 23-1. At the triple point, the two equations for
the vapor pressure must be equivaient, since the solid and liquid coexist. Then

K  2669K
24320 - K _ 1789, 2699
' tp tp
(24.320 — 17.892)T, = —2669 K + 3777 K
T, =1724K

We can check this by substituting back into both expressions, and we find In(P*) = In(P"y =
241 torrandso £ = 11.1 torr.

23-5. The pressure along the melting curve from the triple-point temperature to an arbitrary temperature
can be fit empirically by the Simon equation, which is

T o
(P— Ptp)/bar:: a [(i) - 1:|

where a and « are constants whose values depend upon the substance. Given that S 0.04785 bar,

T, = 278.68 K, a = 4237, and o = 2.3 for benzene, plot P against T and compare your result
with that given in Figure 23.2.

Substituting into this expression, we find that we must plot

P fbar = 0.04785 + 4237 | { /X —
ar = u. ——— —_
' 778.68 K

P/b 0.04785 — 4237 + _4237 723
ar = 0. — :
(278.68)%°

where T is on the y-axis and P is on the x-axis. The result looks very much like Figure 23.2.
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Chapter 23

23-6. The slope of the melting curve of methane is given by

dr
7= (0.08446 bar- K~ '#) 7%

from the triple point to arbitrary temperatures. Using the fact that the temperature and pressure at
the triple point are 90.68 K and 0.1174 bar, calculate the melting pressure of methane at 300 K.

Integrating from the triple point to 300 K gives

Py 300 K
f dP = ] 0.08446 bar-K™'¥7°%4T
0 9

.1174 bar 0.68 K

0.08446 bar-K*

1.85
P, = 1556 bar

P, —0.1174 bar = [(300 KL _ (90.68 K)].SS]

This is the melting pressure of methane at 300 K.

23-7. The vapor pressure of methanol along the entire liguid-vapor coexistence curve can be expressed
very accurately by the empirical equation

10.752849 '
In(P/bar) = —— + 16.758207 — 3.603425x
X

+ 4.373232x% — 2.381377x° + 4.572199(1 ~ x)*™

where x = T/T , and T, = 512.60 K. Use this formula to show that the normal boiling point of
methanol is 337.67 K.

At the normal boiling point, P = 1 atm = 1.01325 bar. If the normal boiling point of methanol is
337.67 K, then the equality below should hold when x = 337.67/512.60:

10.752849
In(1.01325) = —————""" 1 16.758207 — 3.603425x
X

+ 4.373232x" ~ 2.381377x° + 4.572199(1 — x)'"°

0.013163 = ~16.323364 + 16.758207 — 2.373719 + 1.897712 — 0.6807220 4+ 0.735141
0.013163 =~ 0.0132546

23-8. The standard boiling point of a liquid is the temperature at which the vapor pressure is exactly

one bar. Use the empirical formula given in the previous problem to show that the standard boiling
point of methanol is 337.33 K.

We do this in the same way as the previous problem, but substitute x = 337.33/512.60 into

s 10.752849
In(l) = ———  + 16.758207 — 3.603425x
X

+4.373232x* — 2.381377x° + 4.572199(1 — x)"™°

0 = —16.339820 + 16.758207 — 2.371329 + 1.893892 — 0.678668 + 0.737572
(0 = —0.000143

Phase Equilibria

23-9. The vapor pressure of benzene along the liquid-vapor coexistence curve can be accurately
expressed by the empirical expression '

10.655375
In(P/bar) = ———— + 23.941912 — 22.388714x
x

+ 20.2085593x% — 7.219556x" + 4.84728(1 — x)"™

where x = 7/T, and T, = 561.75 K. Use this formula to show that the normal beiling point of
benzene is 353.24 K. Use the above expression to calculate the standard beiling point of benzene.

This problem is essentially the same as Problem 23-7. We must substitute x = 353.24/561.75 into
the equation

> 10.655375
In(1.01325) = ————— +23.941912 — 22.338714x
' X

+ 20.2085593x% — 7.219556x° + 4.84728(1 — x)'7°
0.013163 = —16.945014 + 23.941912 — 14.078486 - 7.990776 — 1.795109 + 0.899064
0.013163 ~ 0.0131423

To calculate the standard boiling point of benzene, we must solve the pelynomial equation for
x when P = 1 bar, or when In P /bar = {::
10.655375

0= ————— +23.941912 — 22.388714x
X

+ 20.2085593x% — 7.219556x> + 4.84728(1 — x)!'7°

Inputting this formula into a computational mathematics program such as Mathematica
(or using the Newton-Raphson method) gives x = 0.62806, so the standard boiling point is
T =(561.75K)x =3528 K.

23-10. Plot the following data for the densities of liquid and gaseous ethane in equilibrium with each
other as a function of temperature, and determine the critical temperature of ethane.

T/K p'/mol-dm™ p®/mol-dm™ T/K p'/mol-dm™ pf/mol-dm™’

100.00 21.341 1.336 x 107 283.15 12.458 2.067
140.00 19.857 0.03303 293.15 11.297 2,880
180.00 18.279 0.05413 298.15 10.499 3.502
220.00 16.499 (.2999 302.15 9.544 - 4.307
240.00 15.464 0.5799 304.15 8.737 5.030
260.00 14.261 1.051 304.65 8.387 5.328
270.00 13.549 1.401 305.15 7.830 5.866
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The linear nature of this plot tells us that (o' — p#) varies as (7 — 7.)'/* near the critical point.
o 15
=
2 10 23-13. The densities of the coexisting liquid and vapor phases of methanol from the triple point to the
g critical point are accurately given by the empirical expressions
S 5 pl .
< — ~ 1 =2.51709(1 — x)*™ + 2.466694(1 — x)
o

— 3.066818(1 — x%) 4 1.325077(1 — x%)

and
The critical temperature of ethane is about 305.4 K. 1 i 10 6196891 —x 2.556682(1 yos0
n— =—10. — =2 —x)
2, X *
2
23-11. Use the data in the preceding problem to plot (o' + p¥)/2 against T, — T, with 7, = 305.4 K. + 3.881434(1 — x) + 4.795568(1 — x)
The resulting straight line is an empirical law called the law of rectilinear diameters. If this curve whete p_ = 8.40 mol-L™ and x = T/7., where T. = 512.60 K. Use these expressions to plot p'
is plotted on the same figure as in the preceding problem, the intersection of the two curves gives _: and o* a?gainst temperature, as in Fi gurecé?,.’ﬁ No“f plot (o' - p¥)/2 against T. Show that this line
the critical density, o_. ’

intersects the p' and pf curves at T = T.

In this graph, the highest line represents p', the lowest line represents o8, and the dashed line which
comes between the two represents (p' + p8)/2. At T = T, o' = p*, and so (p' + p)/2 = p' = p=.
Therefore, the lines all meetat T =T,

—_
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The critical density p_ is about 6.84 mol-dm™.

23-12. Use the data in Problem 23-10 to plot (p' — 0%) against (T, — T)'” with T, = 305.4 K. What
does this plot tell you?

23-14. Use the expressions given in the previous problem to plot (o' — p*#)/2 against (T, — T)*. Do

you get a reasonably straight line? If not, determine the value of the exponent of (T, — T') that gives
the best straight line.

b

—
o

(p' + p%y/2

p/mol.dm™>

y=-0.081348 + 1.8432x

] ]
2 3

(TC—T)1/3 / K]/3
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We find a line which is reasonably straight (although the curvature shown here is marked, note the
scale of the y-axis).

(o' - p8r/2

17.60 ! 1 | | |
0 100 200 300 400 - 500

(TC_T)3/3 / K]/3

23-15. The molar enthalpy of vaporization of ethane can be expressed as

6
Avapﬁ(T)/k]-mol“] = Zij-f
=

where A, =12.857, A, =5.409, A, =33.835, A, =—97.520, A; = 100.849, A, =
—~37.933, and x = (T, — Y/ NUT, - Ttp)”3 where ﬂE critical temperature 7, = 305.4 K and
the triple point temperature T, = 90.35 K. Plot A H(T}) versus T and show that the curve is
similar to that of Figure 23.8. :

—_
o

=28

A, H/kT-mol™!

=]

i
273 385 293 305
T/K
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23-16. Fit the following data for argon to a cubic polynomial in 7. Use your result to determine the
critical temperature.

/K A, H/J-mol™ T/K A, H/I-mol!

83.80 6573.8 122.0 4928.7
86.0 6508.4 126.0 4665.0
90.0 6381.8 130.0 4367.7
94.0 62452 134.0 40247
98.0 6097.7 138.0 3618.8
102.0 5938.8 142.0 3118.2
106.0 5767.6 - 146.0 2436.3
110.0 '5583.0 143.0 1944.5
114.0 53835 149.0 1610.2
118.0 5166.5 150.0 1131.5

Fiiting the data to a cubic polynomial in T gives the expression
Awpﬁ/lvmol’1 =39458.8 — (912.758 K™)T -+ (8.53681 K™ T* — (0.0276080 K~ 7*?

Solving for T when Avapﬁ =0 {at the critical temperature) gives a critical temperature of
T, = 156.0 K. A better fit is to a fifth-order polynomial in T, which gives the expression

Avnpﬁ/l-mol“ = 474232 — (21594.6 KT + (396.54 K H)T? — (3.61587 K *)T?
+(1.63603 x 102 K™HT* - (2.94294 x 107> K5 T°

We can.sclve this fifth-order equation for T when Amﬁ = {0 by using a computational
mathematics program or the Newton-Raphson method, which hoth give a critical temperature of
T =153.2K
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Chapter 23 Phase tquilibria 731

23-17. Use the following data for methanol at one atm to plot G versus T around the normal boiling and
point (337.668 K). What is the value of AWPH ?

Gcnl
Il
al

™

7 -1 rd -1 -1
T/K H/kI-mol S/¥-mol™-K from which we obtain

240 47183 112.259
280 7.7071 123.870
300 9.3082 129.375
320 10.9933 134.756
330 11.8671 137.412
337.668 12.5509 139.437 . G =G =0600(P —1)+0.250
337.668 47.8100 243.856 0

350 48.5113 245.937 | - G — Gy =0850(P 1)

360 49.0631 247.492 | . G -G, =25mPp

380 50.1458 250.419 lot th h hf d ith Fi
00 212957 753,180 , Plot these on the same graph from P = 0.100 to 3.00 and compare your result with Figure 23.11.

G, — Gg = 0.250

—=s —=! ==z, —= .
Now we can express G 5, G,and G * in terms of a common zero of energy, GOg , which we must do
to compare themn with each other and to plot them on the same graph. Show that

We can use the formula G = 7 — TS to find G from this data and then plot G vs. T: . We know from Chapter 22 that (9G/8P), = V. This means that (for an ideal gas)
- — P_ P
G—-G,= VdP =RTIn—
¢ » PO
a
For the solid and liquid phases, V is essentially constant with respect to pressure, and so

G — EO =V(P— F,). Therefore, we have

G’ =0.600(P-1)+GC,

G =0.850(P —1) +E‘

G /kJ.mol!

C‘D

P
_RTlnF+GO =25InP + G,

0
T/IK

. . ey -1 =2 ., ) L .
where the units are arbitrary. Now, at equilibrium, G = & . Since the solid and liquid are in

The line of best fit for the gaseous phase is G*/kJ-mol™ = 49.57 — 0249T and the line of best ' equilibrium at P = 2.00 and the liquid and gas are in equilibrium at P = 1.00,
fit for the liquid phase is G /kJ-mol™' = 8.1913 — 0.1267. Ampﬁ will simply be the change in

: - G'(P=200)=C (P =200
enthalpy when going from a liquid to a gas:

0.600 + G, = 0.850 + G,
G, -G, = 0250
G'(P=1.00)=G%P =1.00)

A, T/KI-mol™ = 47.8100 — 12.5509 = 35.2591

. —=!_ =&
23-18. In this problem, we will sketch G versus P for the solid, lltilllld and gaseous phases for : Gy =G,
a generic ideal substance as in Figure 23.11. Let V' =0600, V =0.850, and RT = 2.5, in

arbitrary units. Now show that and so 6; - Eog = (.250. Now substitute into the first equations we foand:
s s : G’ = 0.600(P — 1) + G, = 0.600(P — 1) + 0.250 + G,

G’ =0600(P — P)+ G, .
— . G~ G, =0.600(P ~ 1) + 0.250
G =0850(P — P) + G,

Also
G =25I(P - P)+G, G —GE=0.0850(P - 1)
where P, = 1 and EGS , a;, and G, are the respective zeros of energy. Show that if we (arbitrarily) .' and
choose the solid and liquid phases to be in equilibrium at P = 2.00 and the liquid and gaseous _ —p —2
phases to be in equilibrium at £ = 1.00, then we obtain G =Gy =25hr

605 e 01 = 0.250 A plot of the Gibbs energies of the gas, liquid, and solid using G, as the zero of energy is shown:
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Since we see a gas-liquid-solid progression, we are looking at a temperature less than the triple
point temperature (as explained in the caption of Figure 23.11).

23-19. In this problem, we will demonstrate that entropy always increases when there is a material flow
from a region of higher concentration to one of lower concentration. (Compare with Problems 2241
and 22-42.) Consider a two-compartment system enclosed by rigid, impermeable, adiabatic walls,
and let the two compartments be separated by a rigid, insulating, but permeable wall. We assume
that the two compartments are in equilibrium but that they are not in equilibrium with each other.
Show that

U1 = constant, U2 = constant, Vl = constant, V2 == constant,
and
n, + n, = constant

for this system. Now show that
du P

1
df= — 4+ —dV —- =
T +T Tdn

a8 a8
ds={— dn, + —2 dn,
on, in,

for this system. Use this result to discuss the direction of a (isothermal) material flow under a
chemical potential difference.

in general, and that

The volume of each compartment cannot change, since the walls of the compartments are rigid.

Thus V, = constant and V, = constant. Since the walls are adiabatic, 8¢ = O for the gases in each
compartment. For both components of the system dw = 0, since there is no change in volume, so
dU = 0 for both compartments. Thus U, = constant and U, = constant. Finally, since the entire

system is surrounded by impermeable walls, the total number of moles of gas in the system must
remain constant, so n, = constant.

Phase Equilibria 733

We have defined © = (8G/dn), . (Equation 23.3), so udn = dG. Now recall (Equation 22.13)
that

G=U-~-T5+ PV
dG=dU - TdS+ PdVv

udn  dU P
L I\
T T “+ TdV
dty P In
dS = ~—+ —=dV — =
7T T
For this system, since dU =dV =0,
2 2
ds, =— Tldn] d8, = — Tzdnz
Then
dSsystem = ldS] + dSZ

85, 2s
L DR )
(Bnl) i (3}12) dn,

= —&dn, —'tf—z—(—dn])

T
on(3-2)

If molecules are flowing into compartment 1, then dn, is positive and p, > p, (since transfer

occurs from the system with higher chemical potential to the system with lower chemical potential).
Then hoth terms in the expression\ above are positive and d Ssyslem > 0. If molecules are flowing into
compartment 2, then dn | is negative and i, < w4, making both terms negative and dS_ > 0. If

dn, is 0 (no transfer occurs), then the two compartments are in equilibrivm with respect to material
flow, and 45 =1{.

system

23-20. Determine the value of dT/d P for water at its normal boiling point of 373.15 K given that
the molar enthalpy of vaporization is 40.65 kI-mol™", and the densities of the liquid and vapor are
0.9584 g-L~! and 0.6010 g-mL ™", respectively. Estimate the boiling point of water at 2 atm.

First find Vo — V

k2] =] 1 1
Vi—V = _ 18, -
(0.6010 g-dm™ 9584 g-dm‘3) (18.015g mo'] )

= 29.96 dm?-mol™!

Now use Equation 23.10 to write

dT TA,V
AP~ A H
BRLRT V)
© 40650 F-mol™
_ [(373.15K)(29.96 dm’ -mol ") 83147
B [ 40 650 J-mol ™ } (0.08206 dmf’-atm)
=27.9K-atm™’
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To estimate the boiling point of water at 2 atm, we can find the change in temperature which
accompanies a change in pressure of 1 atm (since we know the boiling point of water at 1 atm).
Thatis AT = (27.9 K-atm™")(1 atm) = 27.9 K. Therefore, the boiling point of water at 2 atm is
about 127.9°C.

93 21. The orthobaric densities of liquid and gaseous ethyl acetate are 0.826 g-mL"' and
0.00319 g-mL™", respectively, at its normal boiling point (77.11°C). The rate of change of
vapor pressure with temperature is 23.0 torr-K~! at the normal boiling point. Estimate the molar
enthalpy of vaporization of ethyl acetate at its normal boiling point.

First find V° — VI:

— = 1 1
V-V = ( ——— — : _1) (88.102 g-mol )
0.00319 g-mL 0.826 g-mL

AWPV — 27510 cm® mol™! = 275.10 dm* - mo! ™’

Now use Equation 23.10 to write

— —(dP
AgH =TALV =

1 atm 8.3143
— (350.26 K)(27.51 dm®-mol~")(23.0 torr-K ™!
S ) - mol)(23.0torr )(760t0rr) (0.08206L~atm)

=29.5kJ-mol™

23-22. The vapor pressure of mercury from 400°C to 1300°C can be expressed by

70607 K
In{ P/torr) = - + 17.85

The density of the vapor at its normal boiling point is 3.82 gL and that of the liquid is
12.7 g-mL ™!, Estimate the molar enthalpy of vaporization of mercury at its normal boiling point.

If we express P using the above equation, we find that
dr 7060.7 K
—=P|l—
dT T

At the boiling point and one atmosphere of pressure,

dP 7060.7 K
—— = (760t = | =13.52torr- K"
gt — {780t [(629.88 K)Z] o
We find /_\WPV by subtracting V' from V*
VE_V'= ! - ! (200.59 g-mol™")
=\382g.dm~ 12700 g-dm™ 78

A,V = 52.49 dm’-mol™’

Phase Equilibria

Now we use Equation 23.10 to estimate Ava;g.

A H=TA vif
T
= (629.88 K)(52.49 dm®-mol "){13.52 torr- K1)

= 447 200 dm’ -torr-mol ! ( ! atm ) ( 8.3147
760 torr / \ 0.08206 dm®-atm

= 59.62 kJ-mol ™!

23-23. The pressures at the solid-liquid coexist . o
cquation g oexistence boundary of propane are given by the empirical

P == —T18 + 2.385657"*

where P is in bars and 7 is in kelvins. Given that 7. = 85.46 K H
- - . =8546 K and A_ H = 3.53 kI-mol~
calculate A, V at 85.46 K, f fos 3.53 kJ-mol™",

At 85.46 K, the empirical equation gives

dpP
o7 = 3.06079(85.46)"** = 10.778 bar- K’

We substitute into Equation 23.10 to find

X/ Ausﬁ dr B
Afusv = —Le ( )

T dTr
35300 T-mol™! 10 bar-cm®
e K - —
540K (10.778 bar-K™) ( 17 )

=383 em’ - mol ™!

23-24. Use the vapor pressure data given in Problem 23-7 and the density data given in Problem 23-13

to calculate Avapg for methanol from the triple point (175.6 K) to the critical point (512.6 K). Plot
your result. .

We are given p in units of mol-dm™ in Problem 23—13 and P in units of bars in Problem 23-7. We
want to find A, 11 using Equation 23.10: .

A =TA TEE
Ve 4T

Taking the derivative of the expression for P given in Problem 23-7 gives us

dP
ﬁ/bar-K*1 =F [—0.0070297 —0.0151634(1 — 0.001950847)%7

5511.91 s
7 + 332871 x 10°T — 5.30412 10‘3T2:|

Using 1/p' for V' and 1/® for V° gives

AvapV/dn"P-mol‘l = 1 i}
PEop
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X7 - . . 71
or (where AvapV is in units of dm*-mol

A,V =0.119048 exp[2.55668(1 — 0.00195087)** — 3.88145(1 — 0.00195087)
vap

,  5443.65(1 — 0.0019508)
—4.79557(1 — 0.00195087)" +

T
—0.119048 [1 + 2.5171(1 — 0.00195087)*¥ + 2.46669(1 — 0.0019508T)

-1
—3.06682(1 — 0.00195087T)* + 1.32508(1 ~ 0.0019508T)3]

. 57 = . k —1
Substituting these expressions into Equation 23.10 gives A __H in units of dm® -bar-mol . To
convert this to kJ-mol™! we must divide by 10.
Now graph

A Vdp
10 4T
using the expressions found above for AVHPV addP/dT:

A H/KI-mol™ =

g
<=

30

.mol~!

20

10

AyapH 1 KJ

| |
200 300 400 500

T/K

23-25. Use the result of the previous problem to plot Ampg of methanol from the triple point to the
critical point. ‘

Since at a transition point A, G =0,

A H _
WA S
T vap

57 . . —1 -
We can use the expression for A__H given in Problem 23-24 (converting it to J-mol ™, since these
are the usual units of entropy) to graph A__§.

250

—1

150

.mol!.

AyupS 1]

50
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Notice that AvapS = 0asT — T.

23-26. Use the vapor pressure data for methanol given in Problem 23-7 to plot In P against 1/7T.

Using your calculations from Problem 23-24, over what temperature range do you think the
Clausius-Clapeyron equation will be valid?

Use the formula for In P given in Problem 23-7 to plot In P vs. 1/ T.

o ~1.0
<

-

-~ -
™~

[5:

=) ~2.0F
-

&

E -

-3.0L 4 | 1 I

200 300 400 500
1/7 7 K!

The stope of the line plotted should be constant for the Clausius-Clapeyron eguation to be valid. It
appears that the Clausius-Clapeyron equation is valid over the range plotted in Problem 23-31,

23-27. The molar enthalpy of vaporization of water is 40.65 kJ-mol™" at its normal boiling point.

Use the Clausius-Clapeyron equation to calculate the vapor pressure of water at 110°C. The
experimental value is 10735 torr.

Assuming AWPE remains constant with respect to temperature over this ten-degree temperature
range, we can use Equation 23.13:

m . Bwf (Tz_i_ﬂ)
PR \'TT
P, 40650 J-mol™! 10K
"Tatm ~ 83145 3-mol K [(373.15 K)(383.15 K)]
In (P,/ atm) = 0.342

P, = 1.408 atm = 1070 torr

23-28. The vapor pressure of benzaldehyde is 400 torr at 154°C and its normal boiling pointis 179°C.
Estimate its molar enthalpy of vaporization. The experimental value is 42.50 kJ-mol™".

Again, assuming Awpﬁ does not vary over this temperature range, we can use Equation 23.13.

P Bl (1,1,
P, R T T,
H = —%RTITZ lni

A
W T, TP

2 1 1

_ (831457 mol” K )(@27.15 K)ES2LISK) 760
= 25K " 300

=41.2kJ-mol™
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23-29. Use the following data to estimate the normal beiling point and the molar enthalpy of

vaporization of lead.

T/K Irsoo 1600 1700 1800 1900

P/torr!19.72 4848 107.2 217.7 408.2

Plotln Pvs. I/ T

In {P/torr)

5.5 6.0
T/ 104K}

The equation for the line of best fitis y = 17.3799 — 21597.6x. At 1 aim (the normal boiling point

pressure), In 760 = y and so

21597.6
17.3799 = 6.6333 + i

T=2010K

The normal boiling point is about 2010 K. Now recall that the slope of the plot we have created
should be —A, H/R (Equation 23.14). Then :

A H = (8.3141-mol ' -K)(21597.6 K) = 179.6 kJ-mol "

23-30. The vapor pressure of solid iodine is given by

8090.0K
In( P /atm) = - 2.013 In(T/K) + 32.908

Use this equation to calculate the normal sublimation temperature and the molar enthalpy of
sublimation of I,(s) at 25°C. The experimental value of A_, H is 62.23 kJ .mol~".

The sublimation temperature is found by setting £ = 1 atm in the above equation:

8090.0 K
0 = ———— —2.013In(T,,,/K) +32.908

sub

We can solve this equation for 7 using the Newton-Raphson method, and we find that 7, == 386.8 K.

We can now use the equation provided and Equation 23.12 to find the molar enthalpy of
sublimation:

ALH dimP  80900K 2013
RT*  dT T T

A H = R(8090.0K — 2.0137)

Ar25°C,

Phase Equilibria 736

A H = (8.314T-mol™-K™') [8090.0 K = 2.013(298.15 K)] = 62.27 kJ-mol™!

23-31. Fit the following vapor pressure data of ice to an equation of the form

lnP:—%—i—b]nT—i—cT

where T is temperature in kelvins. Use your result to determine the molar enthalpy of sublimation

of ice at 0°C.

t/°C  Pltorr t/°C  Pfiorr
—10.0 1.950 —4.8 3.065
—-96 2021 —4.4 3.171
—9.2 2093 —4.0 3.280
—88 2168 —-36 3.393
— 8.4 2.246 —3.2 3.509
— 8.0 2326 —2.8 3.630
—7.6 2408 -24 3753
—172 2493 -2.0 3.880
—~ 6.8 2.581 —-1.6 4.012
—64 2672 ~1.2  4.147
—6.0 2765 -0.8 4.287
—56 2862 —0.4  4.431
—52 2962 0.0 4579

Fitting the data to an equation of this form gives

5686.
lnpzmﬂ

,...
N

—_
<

In (P/torr)

+4.4948InT — (0.010527K'T)

Using this equation and Equation 23.12, we find that

AnH dinP  5686.7K L 44948

—0.010527 K™!

RT* 4T T2

sub

A H = R[5686.7 K + 4.4948T — (0.010527 K77

At 0°C,

A H = (8.314T-mol™ . K™) [5686.7 K + 4.4948(273.15 K)
—(0.010527 K71)(273.15 K)*]

= 50.96 kJ-mol™!
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23-32. The following table gives the vapor pressure data for liguid palladium as a function of
temperature:

T/K P /bar

1587 1.002 x 107°
1624 2,152 x 107°
1841 7.499 x 107

Estimate the molar enthalpy of vaporization of palladiuom.

Plotln Pvs. I/T:

In (P/bar)
I
o

|
2
b2

5.5 6.0 6.5
1/T/10%K!

The line of best fit is y = 10.4359 — 49407x. Since the slope of this line is equal to —Avapﬁ/ R,

A H = (49407 K)(8.31451 J-mol ™' -K™") = 410.8 kJ -mol "

23-33. The sublimation pressure of CO, at 138.85 K and 158.75 K is 1.33 x 10~* bar and
2.66 x 107 bar, respectively. Estimate the molar enthalpy of sublimation of CO,.

Substitute into Equation 23.13:

h'l& — AsubH T2 — ;r'l
PR \ LT,

1

2.66 x 102) [(138.85 K)(158.75 K)]

A H = (83145 mol™-K™) In (

1.33 x 107° 199K

= 27.6 ki-mol ™’

23-34. The vapor pressures of solid and liquid hydrogen iodide can be expressed empirically as

2906.2 K
In(P*/torr) = ——F -+ 19.020

25957 K
In( P /torr) = TR +17.572

Phase Equilibria

Calculate the ratio of the slopes of the solid-gas curve and the liquid-gas curve at the triple point.

We can write the slopes of the solid-gas and liquid-gas curves as

ar: 29062 K d P 2595,
= P* — and _— = Pl —-—59‘5 7K
dT T ar T

where pressures are in units of torr. Since P* = P' at the triple point, the ratio of the slopes at the
triple point is
dP°/dT  2906.2K
dPYdT  2595.7K

1.120

23-35. Given that the normal melting point, the critical temperature, and the eritical pressure of
hydrogen iodide are 222 K, 424 X and 82.0 atm, respectively, use the data in the previous problem
io sketch the phase diagram of hydrogen iodide.

The triple point is located where the solid and liquid vapor pressures are the same, so at the triple

point
2906.2K 2595.7K
19020 - ————=17.572 — ——
:Ttp ip
14487 =3105K
T,=21443K

Substituting to solve for Ptp, we find that P‘;J = 236.8 torr. We also know that the normal melting

point of HI is 222 K, so we can produce a phase diagram of hydrogen iodide by plotting the line

between the solid and gas, the line between the vapor and gas, the critical point, the triple point, and
the normal melting point. Note that the equation for the liquid-gas line is not completely accurate
at high temperatures and pressures (it does not intersect the critical point).

~ 10
-
-
S
o 8
=
6
| | | |

250 300 350 400
T/IK

23-36. Consider the phase change
Cqgraphite) = C{diamond)

Given that A G°/J-mol™ = 1895 + 3.3637, calculate A H® and A §°. Calculate the pressure
at which diamond and graphite are in equilibrium with each other at 25°C. Take the density of
diamond and graphite to be 3.51 g-cm™ and 2.25 g-cm , respectively. Assume that both diamond
and graphite are incompressible. ‘ '
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To find the standard molar Gibbs entropy, we use the Maxwell relation (Equation 22.46)

— A G
AS =—( E)TT )P = —3.363 J.mol ™

Substituting into A G = A_ H — TA_ S (Equation 22.13), we find that A H = 1895J-mol ™.
Because both graphite and diamond are incompressible, we can write (as in Problem 23-18)

—0

G Ggraph + ngph

(P —F)

graph =

—a

diam

(P—-F)

diam

Combining these two equations gives
ArE = ATEO + (Vdiam - Vgraph)(P - PD)

When graphite and diamond are in equilibrium, AE = {). Substituting into the equation given in
the problem, we see that at 25°C, A G° = 28981 -mol™". Then

1
3510 g-dm® 2250 g-dm°
5= 2898 J.mol™! — (1.916 x 107 dm® mol™) (P — 1 bar)
1 0.08206 dm*-bar
P= —— — - = 1 bar
1.916 % 10% dm’-mol 8.31457
= 15000 bar

0=AG + ( ) (12.01 g-mol™)(P — 1 bar)

(2898 J-mol 1) (

23-37. Use Equation 23.36 to calculate p° — E, for Kr(g) at 298.15 K. The literature valune is
—42.72 kI -mol .

°_E rrm| (L) %L 23.36
w—E,=—RTh|(1 ]2 (23.36)

We do this in the same way we found u° — E; for Ar(g) in Section 23-5. First,

gV, T) 2;rka:r>3/2
Vo B

_ [(m)(1.391 x 107 kg mol )(1.381 x 1077 I.K')(298.15 K)]”2
N (6.626 x 107 J.5)

=7.422 x 10® m™
ky T (1381 x 1072 J.K™)(298.15 K)

= . =4.116 x 107 m™
Pe 1.0 x 10° Pa

Substituting into Equation 23.34 gives

0
. g N\ kT
22 _ECI:_RTIH[(V) %ii

= —R(298.15K) In[{7.422 x 10 m™®) (4.116 x 107 m )]
= —4.272 x 10* J-mol™!

Phase Equilibria

23-38. Show that Equations 23.30 and 23.32 for u(T, ) for a monatomic ideal gas are equivalent to
using the relation G = H — T.§ with H = 5RT/2 and § given by Equation 20.45.

Recall that z for a pure substance is G. Equation 20.45 is

- 5 2rmk, T\** V
S:—R+R1n __MTB 1
2 h N

A

Therefore,

G=H—-T§="——-TS

3/
_SRT SRT . | (27amkT Tk T
2 2 n? P

2emk, TN &k, T

= —RTW[(L)kT]+ RT WP

This is Equation 23.30. Equation 23.32 appears when we substitute #° = 1 bar into this equation.

23-39. Use Equation 23.37 and the molecular parameters in Table 18.2 to calculate p° — E for N, (g)
at 298.15 K. The literature value is —48.46 kJ-mol ™"

q° _ 2rmic, T A & 1
v U R 0B 1 —e Ol
27(4.65 x 1072 kg-mol ™"k, (298.15 K) T 298.15 K 1
= PE 20288 K) 1 — ¢ 3M/29%.15
=742 %x 10" m™
RT
_=4.116 x 107 m’
N, P

where use the value of RT/N, P° from Problem 23-36, since the fraction RT /N, P° is independent
of the substance. Now, substituting, we see that

°\ RT
uo— Ey=—RTIn|{ L
V)N P

= —R(298.15K) Inf(7.42 x 10% m'3)(4.1 16 x 107 m3)}
= —48.43 kT-moi™’

23-40. Use Equation 23.37 and the molecular parameters in Table 18.2 to calculate u° — E, for CO(g)
at 298.15 K. The literature vatue is —50.26 kJ-mol™".
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23-40. Use Equation 23.37 and the molecular parameters in Table 18.2 to calculate p° — £, for CO(g)
at 298.15 K. The literature value is —50.26 kJ-mol .

¢ (2mmk, TN T 1
Vv h? c® 1-— e /T
27 (4.65 x 107 kg-mol 2k, (298.15 K) 7" 298.15K 1
= Pe 22TTEK) 1 — ¢ 103/ 15

=154 x 10* m™

RT
- =4.116 x 107 m®
N, P

Now, substituting, we see that

g — rrm|(L) 2T
S "\V) N P

—R(298.15 K) In{(1.54 x 10%* m>)(4.116 x 107 m*)]
— —50.25 kJ-mol !

23-41. Use Equation 18.60 [without the factor of exp(D,/k, T)] and the molecular parameters in
Table 18.4 to calculate u° — E, for CH,(g) at 298.15 K. The literature value is —45.51 kJ -mol~.

' 1/2
2 M. T\ Y2 g2 T3 9 -8, /2T
v h a & & ®rot.C (1—e "ws'h)

rot, A roL,B =1

The ground-state energy must be considered for each -vibrational state, so, in analogy to the
derivation of ¢° in Section 23-5,

172
q° (ZanBT)3/2 7' 7 / ﬁ 1
v hz (22 ®rot‘A®rDt.B®rot,C (1 — g""@vih.f/T)

J=1
=230x%x10"m™

RT
=4.116 x 107% m®
N, P°

A

° RT
p—E,=-RTIn|{L
V) NP

—R(298.15 K) In[(2.30 x 10¥ m™)(4.116 x 107 m%)]
= —45.53kT-mol ™!

23-42. When we refer to the equilibrium vapor pressure of a liquid, we tacitly assume that some of
the liquid has evaporated into a vacuum and that equilibrium is then achieved. Suppose, however,
that we are able by some means to exert an additional pressure on the surface of the liquid. One
way to do this is to introduce an inseluble, inert gas into the space above the liquid. In this problem,

we will investigate how the equilibrium vapor pressure of a liquid depends upon the total pressure
exerted on it.

Consider a liquid and a vapor in equilibrium with each other, so that ' = 8. Show that

V'ap' = Viape

Phase Equilibria

because the two phalses are at the same temperature. Assuming that the vapor may be treated as an
ideal gas and that ¥ does not vary appreciably with pressure, show that
PraP'=P) VP
n ==
Pat P' =) RT

Use this equation to calculate the vapor pressure of water at a total pressure of 10.0 atm at 25°C.
Take PE (at P' = 0) = 0.313 atm.

We start with the fact that p' = u8. Since p can be written as a function of T and P, and since the
temperature does not change, we can write

G —
dpd = [ = | ap' = V'ap!
AP
Likewise, du® = ngPg, and s0
V'dP' = VodP®

follows naturally frcl)m the inital assumption. Now we assume that the vapor can be treated as an
ideal gas and that V' does not vary with respect to pressure, so

g RT
VdP' = —dP?
PE
—t
Vv dP®
. §
RT PE
—] B pl
1Y P PE(P'=P) 4Pe
— | aP'= / —
RT Jo PE(PI=0) P

VP PP = P)
=1In
RT PE(P' =0

The speciﬁc density of water is 1 g-cm™, so V = 0.018 dm® - mol™. For water at a total pressure

of 10.0 atm at 298.15 K, since the vapor pressure of water expanding into a vacoum is .0313 atm
at 298,15 K, '

PP =P) VA
0.0313atm _ R(298.15K)
PP =P (0.018 dm® mol™)(10.0 atm)
0.0313atm _ (0.082058 dr’-atm-mol~ -K-1)(298.15 K)
PE
003 3am Y

Pt =0.0315 atm

The vapor pressure of water at a total pressure 10.0 atm at 298.15 K is 0.0315 atm, or a change of
2 x 107™* atm.

23-43. Using the fact that the vapor pressure of a liquid does not vary appreciably with the total
pressure, show that the final result of the previous preblem can be written as

Aps V'P

Pe RT
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Hint: Let PE(at P = PY) = P%(at P = 0) + AP and use the fact that A P is small. Calculate A P
for water at a total pressure of 10.0 atm at 25°C. Compare your answer with the one you obtained
in the previous problem.

PP =Py TP
“PHP =0) RT
PEP =0) + APE VP
PP =0)  RT

Use the relation In{1 + x) ~ x when x is small to obtain
(1 AP VP!

n e —

PE RT

APE VP

P:  RT

Again, the vapor pressure of water expanding into a vacuum is 0.0313 aim at 298.15 K and
V = 0.018 dm’-mol™, so

APE VP!

Pe ~ RT
_ (0.0313 atm)(0.018 dm” - mol")(10.0 atm)
"~ (0.082058 dm*-atm-mol - K~1)(298.15 K)
=2.30 x 107 atm

PE

This would give a vapor pressure of 0.0315 atm, as in the previous problem,

23-44. In this problem, we will show that the vapor pressure of a droplet is not the same as the vapor
pressure of a relatively large body of liquid. Consider a spherical droplet of liquid of radius r in
equilibrium with a vapor at a pressure P, and a flat surface of the same liquid in equilibrium with a
vapor at a pressure F. Show that the change in Gibbs energy for the isothermal transfer of dr moles
of the liquid from the flat surface to the droplet is

P
dG =dnRT In—
7,

This change in Gibbs energy is due to the change in surface energy of the droplet (the change in
surface energy of the large, flat surface is negligible). Show that

P
dnRTh — = ydA
P{J
where y is the surface tension of the liquid and d A is the change in the surface area of a droplet.
Assuming the droplet is spherical, show that

dmridr
==

v
dA = 8xrdr

dn =

and finally that

Phase Equilibria

Because the right side is positive, we see that the vapor pressure of a droplet is greater than that of
a planar surface. What if r — c0?

For an isothermal process involving an ideal gas,

PZ
AG =nRTIn -} (22.58)

1

When a small amount of Gibbs energy goes from the flat surface (of vapor pressure Fy) to the
droplet (with vapor pressure P), corresponding to adding dn moles to the droplet from the flat
surface, the change in Gibbs energy dG is

P P
G(droplet) — G(surface) = dn RT In i dnRT In FO

1 1

where P, is an atbitrary reference pressure. Therefore, we have

P
dG =dnRTIn —
£

This change in surface energy is equal to yd A, so
P
dnRTIn — = pydA -
PO

If a spherical droplet contains 7 moles, then

i 4
nVl = —ms?
3
Anrid
an = 204
v
A = dart
dA = 8rrdr

Substituting these expressions back into dnRT In(P/ F)) = yd A, we find that

dmrrid P
JI'éerTln--w = y8mrdr
v 7
a4
P, FRT

0

If ¥ — o0, then In( P/ F;) — (: the spherical droplet becomes more and more like the flat surface.

23-45. Use Equation 1 of Problem 2344 to calculate the vapor pressure at 25°C of droplets of water
of radius 1.0 x 107 cm. Take the surface tension of water to be 7.20 x 107 J-m >

P 2V
In— =
P0 rRT
P _ 2(7.20 % 10~ ]-m_z)(18.0 x 107% m*-mol™)

= 1.046 x 107

1 =
: 0.0313atm (1.0 x 107" m)(8.3145T-mol™"- K™ ")(298.15 K)
Solving for P, we find that

P = (0.0313 atm)e" ™" = 0.0313 atm
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The vapor pressure of these droplets of water is not significantly different from the vapor pressure Now u' = ut, so
of water in a surface.

f (P,— P}V =0
bedef

23-46. Figure 23.15 shows reduced pressure, &, plotted against reduced volume, VR, for the van der
Waals equation at a reduced temperature, 7, of 0.85. The so-called van der Waals loop apparent
in the figure will occur for any reduced temperature less than unity and is a consequence of the
simplified form of the van der Waals equation. It turns out that any analytic equation of state (one
that can be written as a Maclaurin expansion in the reduced density, 1 /V'R) will give loops for

- subcritical temperatures (T, < 1). The correct behavior as the pressure is increased is given by the : 1 (BV>
T

or the specified area in a plot of P against V is equal to zero.

23-47, The isothermal compressibility, «c, is defined by

path abdfg in Figure 23.15. The horizontal region bdf, not given by the van der Waals equation, “r vV
represents the condensation of the gas to a liquid at a fixed pressure. We can draw the horizontal
line (called a rie line) at the correct position by recognizing that the chemical potentials of the
liquid and the vapor must be equal at the points b and f. Using this requirement, Maxwell showed
that the horizontal line representing condensation should be drawn such that the areas of the loops
above and below the line must be equal. To prove Maxwell’s equal-area construction rule, integrate

“viep

Because (3 P/9V), = 0 at the critical point, k. diverges there. A question that has generated a great
deal of experimental and theoretical research is the question of the manner in which «,. diverges as
T approaches 1. Does it diverge as In(T — T) or perhaps as (7' — 7)™ where y is some critical
exponent? An early theory of the behavior of thermodynamic functions such as «. very near the

(/8 P), = V by parts along the path bedef and use the fact that ' (the value of g at point £) critical point was proposef:l by van .der Wjaal.s, who predi‘cted that «. diverges as (T — 7). To
— 12® (the value of y at point b) to obtain see how van der Waals arrived at this prediction, we consider the (double) Taylor expansion of the
pressure P(V, T) about T and V :
¢ 2 _ w! e 573
,u—,u,_PO(V—V)—f PdV — — 3P 1 3*P
bode PV.Ty=PV_ T)+HT-T)|—= (T -TY{—
N (V.Ty=PV,.T)+( °)(3T)C+2( 9y (8Tz)c
P —P)dV
bcdef( ? ) ’ YV ap | = 3 P
TV -V 5==) + -V (=) +
where F; is the pressure corresponding to the tie line. Interpret this result. ' avor J, av /.

Why are there no terms in (V — VC) or (V — Vc)z? Write this Taylor series as

P=P+all —T)+bT -T)  +c(T-T)V -V )+d(V V) +.-..
Now show that
(8P> (T~ T)+3d(V -V ) + e
e = - - o — -
aV/r ¢ ¢ V>V,
and that
. _ -1/V
FIGURE 23.15 ' L (T =T)+3d(V-V) +.-
A plot of reduced pressure, Py, versus reduced _
volume, V, for the van der Waals equation at a : Now let ¥V = V_to obtain
reduced temperature, T, of 0.85.
Ky O T—T T (T)
Start with the equation Accurate experimental measurements of «,. as T — T, suggest that . diverges a little more

strongly than (T — Tc)'l. In particular, it is found that . — (T — T,)7" where y-= 1.24. Thus,
the theory of van der Waals, although qualitatively correct, is not quantitatively correct.

and infegrate by parts to obtain . - = .
The Taylor expansion of P(V, T) about T, and V _ is

—1 — —
,u,‘p,g:P(VV)f PdV _ _ =
’ - bedet | PV, T)=PV,T)+(T - T) (Q) +(V-V) (“Z%)

ar
Now combine the two terms on the right to get

' 1 9*P — — (P
_ _ F=(T = T)? (——2) + (T—TC)(V—VC)( - )
p—-uf= | (P,—P)V 2 8T/, avar/.

bedef 1 — — arp 1 - = adp
+2(V -V ) (T) +-(V-V) (T) +
2 av-/. 6 v /.
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However, recall from Section 16-3 that, at the critical point, (3 P/ BV)C = (8°P/ BT/_Z)C = {}. Thus,
the Taylor expansion becomes

74 P 1 o°P
P=PV, T)+T-T)|{—=| +=(T~-T)*{—=
Vo, T+ ( °)(BT)C+2(T 1) (arz)c
avaT
=P +a(T—T)+b(T - T) +c(T-THV-V)
+d(V-V) -

2 3
+(T—Tc)(V—VC)( 7 ) +3(V—”’Vc)3(a—_};) +--
. 6 av /.

(2) =c(T—T)+3d(V-V)Y+-..
av/, ¢ ¢

Note that in differentiating, we truncated our expansion and dropped terms of O[(V — Vc)"],
OU(T ~ T )%, and third-order terms of O[(V — V )*(T — T.)"]. Our partial derivative is thus
accurate to O[(V — V ] and O[(T — T.)*]. We can truncate these terms because when V — v,
and T — T, the higher-order terms become negligible, so we find

1 (ap)‘l
v\av/;

1 1
Y I:C(T—TC)—f—Bd(V—VC)Z+..J

Letting V = Vc, we find that

1

VeT-T)
i

Ky O T-1)

Ky

Again, this expression is only accurate to O[(T — 1;)2].

23-48. We can use the ideas of the previous problem to predict how the difference in the densities

(p' and p®) of the coexisting liquid and vapor states {orthobaric densities) behave as T — T.
Substitute

P=P +a(T-T)+bT—-TY+c(T-T)V-V)+dV-V) +... (1)
into the Maxwell equal-area construction (Probiem 23-46} to get
Py= P +a(T =T)+b(T = T} + 5(T - T)(V +V* =27
d e _ T T Ty T LT AT
+ V-V 4 (V =V)UV + V=2V )+ @

For P < P, Equation 1 gives loops and so has three roots, V,and V:for P = F,. We can

? c
. L . . =1 e . .
obtain a first approximation to these roots by assuming that V_~ %(V +V g) in Equation 2 and
writing

?I
V.

Pi=P +a(T-T)+b6(T~-T)
To this approximation, the three roots to Equation 1 are obtained from

diV-VY+ce(T-THV-V)=0

Phase Equilibria

Show that the three roois are

V==V, (5) @ -y
1 [ 4 c

VZ == Vc

—_ —p c\ 1/

V,=VI=V +(5) @ -D"
Now show that

v e (535)
and that this equation is equivalent to
T<T
Pt — AT, —T)'? (T_”i)

Thus, the van der Waals theory predicts that the critical exponent in this case is 1/2. Tt has been
shown experimentally that

' pF — AT, — 1)

where = 0.324. Thus, as in the previous problem, although qualitatively correct, the van der
‘Waals theory is not quantitatively correct.

We start with the result of Problem 23-46,
w—p=[ (B PaT
bedef
0= f [Ph— P —a(T —T)~b(T =T — (T~ THV-V)
—d(V-V)y ---.]dV
—1  — 1 —  — —
=[B - P=alT = T) =BT = TP}V = V) = 2e(T = 1) [(V ~ V) = (V* - 7.7]
I T T T4
e (A GERAY
Po=P +a(T ~T)+b(T ~T)

1 77

e (VY -2V TV + V. — (VY +27V, -V
2 Vo7
-
d|(V-VY—(V -V = . —
+_ ( c) ( c) ] [(Vl _ VC)Z + (Vg o VC)Z]

=P +a(T-T)+6(TT)

V-V

[V +VHT -7 -2V (7 - 7%
"2 V7
=l —E —1_—gu—_]__g
LA EFDE V) -2V V)][(VI—VC)Z+(V3~VC)2]

- Pc+a(T—Y;)+b(T—TC)2+%[V1+78—2V0]

+7 [V+ 727 ][V -7+ 7 V7]
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23-49. The following data give the temperature, the vapor pressure, and the density of the coexisting
vapor phase of butane. Use the van der Waals equation and the Redlich-Kwong equation to calculate
the vapor pressure and compare your result with the experimental values given below.

Now assume that V_ & L(V* + V) to get

Po=P +a(T-T)+bT-T)

To this approximation, the three roots to Equation 1 are given by T/K  P/bar  p?¥/mol L™

200 0.0195 0.00117
210 0.0405 0.00233
220 0.0781 0.00430
230 0.1410 0.00746
240 0.2408 0.01225
250 0.3915 0.01924
260 0.6099 0.02905
270 0.9155 0.04239
280 1.330 0.06008

dV—V)Y +c(T-THV-V)=0
V-V)[dV-V) +c«(T-T)]=0

This expression is accurate only to O(T — T.). We then find the three roots

|

V-V =0

c

<|
=

ra

=[ o(T — T)]

7 () e

_ MC(T_TC)j|]/2
c_[ d

V=V - (;cf)m (T, —T)'"

<
[
<

@

=
||

For butane, from Tables 16.3 and 16.4, 2 = 13.888 dm®-bar-mol 2, b = 0.11641 dm® -mol ™,
A =290.16 dm® bar-mol™.K'?, and B = 0.080683 dm*-mol™!. We can substitute the given
density and temperature into the van der Waals and Redlich-Kwong equations and thus find the
vapor pressure P that is given by each equation.

For the van der Waals approximation,

<
|
=]

RT a
P=cm 16.
These values are only accurate to O[(T — T,)'*]. We know that the largest root is the value of Vb 7 (16.5)
V* and that the smallest root is the value of V. Then, to the correct accuracy, and for the Redlich-Kwong approximation
= o = o172 " _ oy 12 " RT A
: V“V_VCJ’(E} (=1 - Vc_.(E) (J.=1 Pow o (16.8)

V—B T"V(V+EB)
—2()" -0
=2(3 .

T/K  P(vander Waals)/bar  P{ Redlich-Kwong) /bar
where T —> T,but T < T (in order for the quantity 7, — 7" to be real). Notice that the (' — T)

term in the product of the molar volumes drops out, since we have been truncating our expressions. 200 0.0194 0.0194
The difference in densities is then 210 0.0406 0.0406
1 1 220 0.0784 0.0783
p—pf=——= 230 0.1420 0.1417
vV 240 0.2427 0.2419
V-V 250 0.3957 0.3938
Ve 260 0.6184 0.6143
o2 — 270 0.9314 0.9233
=2(2) (@ -D"V; 280 13584 13432
— A(T; _ T)I/Z

23-50. The following data give the temperature, the vapor pressure, and the density of the coexisting
vapor phase of benzene. Use the van der Waals equation and the Redlich-Kwong equation to
calculate the vapor pressure and compare your result with the experimental values given below.
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Use Equations 16.17 and 16.18 with T, = 561.75 K and P, = 48.7575 bar to calculate the van der

Waals parameters and the Redlich-Kwong parameters.

T/K  P/bar  pf/mol-L™

2900 0.0860 0.00359
300.0 0.1381 0.00558
3160 0.213% 0.00839
320.0  0.3205 0.01223
330.0 0.4660 0.01734
340.0 0.6615 0.02399
350.0 0.9161 (.03248

We can do this in the same way as the previous problem after finding a, b, A, and B using

Equations 16.17 and 16.18:

-1 2
u— 27(RTC)2 _ 27{(0.083145 dm?-bar-mol~)(561.75)] — 18.876 dm®-bar-mol

64 P, 64(48.7575 bar)
3 -1
_RT, _ (0.083145 dm’-bar-mol')(561.75) _ 0.11974 dm -mol-!
- 8P, 8(48.7575 bar)
RT3 {0.083145 dm®-bar-mol ™' - K)?(561.75 K)*"2

A =0.42748 P" = (.42748

[

48.7575 bar

= 453.21 dm®-bar-mo] " - K2
(0.083145 dm® -bar-mol~')(561.75)
48.7575 bar

RT
B = 0.086640 7 £ = 0.086640

c

Now substitute into the appropriate equations to find the vapor pressure P for each temperature and

density:
T/K  P(van der Waals)/bar  P( Redlich-Kwong)/bar

290 0.00842 0.00757
300 0.13869 0.13843
310 0.21514 0.21459
320 $.32305 0.32194
330 0.47109 0.46897
340 0.66927 0.66541
350 0.92897 0.92225

= (0.082996 dm®-mol™!

CHAPTER

| Solutions |
Liguid-Liquid Solutions

PROBLEMS AND SOLUTIONS

24-1. In the text, we went from Equation 24.5 to 24.6 using a physical argument involving varying
the size of the system while keeping T and P fixed. We could alse have used a mathematical
process called Euler’s theorem. Before we can learn about Euler’s theorem, we must first define a
homogeneous function. A function f (245 235 - - -, 2,y) 1s said to be homogeneous if

fQzy dzy oo hzy) = Af (), 250 - -2, Zyy)

Argue that extensive thermodynamic quantities are homogeneous functions of their extensive
variables.

If we change extensive variables by a factor of X, then we change an extensive function of these
variables by a factor of A.

24-2. Euler’s theorem says that if £ (24, 25, - - -, 2y} is homogeneous, then
af af of
f(zl,zl’.l.,zN)—ZIakl +Zzazz+' +ZN8A_N

Prove Euler’s theorem by differentiating the equation in Problem 24—1 with respect to A and then
setting A = 1.

Apply Euler’s theorem to G = G(n,, n,, T, P) to derive Equation 24.6. (Hint: Because T and
P are intensive variables, they are simply irrevelant variables in this case.)

Start with

M2 2y oo 2y) = fRz, Az, .., Azy)

differentiate with respect to A to obtain

af (rz,, AZy, o AZy) Az, af{rz;, Az, ..., Azy) drz,,
Py 2oty = aiz, o T oz, oA
Af Az, Az, -, Ay 3f (Azy, Az, - .., Azy)
— A aAz, Ty dAz,
Nowsetd =1
af af
f{zl’zz""’zh’) —213—21+"'+2N55
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