754 Chapter 23

Use Equations 16.17 and 16.18 with 7, = 561.75 K and P, = 48.7575 bar to calculate the van der
Waals parameters and the Redlich-Kwong parameters.

T/K  P/bar  pE/mol-L~!

290.0 0.0860 (.00359
300.0 0.i381 (.00558
316.0  0.2139 0.00839
3200 0.3205 0.01223
330.0  0.4666 0.01734
340.0 0.6615 0.02399
350.0 09161 0.03248

We can do this in the same way as the previous problem after finding a, &, A, and B using
Equations 16.17 and 16.18:

- 2
y— 27(1‘?’1;)2 _ 27[(0.083145 dm® -bar-mol ™)(561.75)] — 18876 dm® bar-mol 2

64P. 64(48.7575 bar)
3 —1
p _ RT. _ (0.083145 dw’ barmol Y(S6175) _ oo
8P, 8(48.7575 bar)
RTS? (0.083145 dm®-bar-mol 'K 1)2(561.75 K)*2

A =0.42748 P“ = 0.42748

<

48.7575 bar

= 453.21 dm®- bar- mel™! - K/

RT, (0.083145 dm®-bar-mol )(561.75) = 0.082996 dm*-mol ™!
B = 0.086640—< = 0.086640 487575 bar '

<

Now substitute into the appropriate equations to find the vapor pressure £ for each temperature and
density:

T/K  P(vander Waals)/bar P (Redlich-Kwong) /bar

290 0.00842 0.00757
300 0.13869 0.13843
310 0.21514 0.21459
320 - 0.32305 0.32194
330 0.47109 0.46897
340 0.66927 0.66541
350 0.92897 0.92225

CHAPTER

. Solutions |
Liquid-Liquid Solutions

PROBLEMS AND SOLUTIONS

24-1. In the text, we went from Equation 24.5 to 24.6 using a physical argument involving varying
the size of the system while keeping 7 and P fixed. We could also have used a mathematical
process called Euler’s theorem. Before we can learn about Euler’s theorem, we must first define a
homogeneous function. A function f(z,, 2y, ..., 2,) i8 said to be homogeneous if

FOz 2z A2 = AF (2 2+ 2,)

Argue that extensive thermodynamic guantities are homogeneous functions of their extensive
variables,

If we change extensive variables by a factor of A, then we change an extensive function of these
variables by a factor of A.

24-2. Euler’s theorem says that if £ {z,, 2, ..., z) is homogeneous, then

o af af
f(zl,zz,...,zN)—zla}Ll+22322+ +ZN3AN

Prove Euler’s theorem by differentiating the equation in Problem 24—1 with respect to A and then
setting A = 1.

Apply Euler’s theorem to G = G(n,, n,, T, P} to derive Equation 24.6. (Hint: Because T and
P are intensive variables, they are simply irrevelant variables in this case.)

Start with

A‘f(zll oI ZN) = f()“zl’A'ZZ’ ...,A.ZN)

differentiate with respect to A to obtain

0f Oz, My, -, Aay) Bz, 802,32,y ..., Azy) DAz,
Tw 2 2y) = arz, T Bhzy oA
. Af(hz), Az, ..., hzy) 0f (Azy, Azy, ..., Azy)
f Zl a)LZI + PR + ZN aA‘ZN
Nowseti =1
of af
a2y oo, zy) :ZIEZ_I +..._|_ZNBZN
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Chapter 24 Liquid-Liquid Solutions 757

To apply this result to G = G(n, n,, T, P}, welet f = G, z;, =n, and z, = n, to write ‘ . 24-6. Apply Euler’s theorem to V = V(T', P, n, n,) to derive Equation 24.7.

oG G :
Glny,n, T, Py =1, (—*) +n, (—) '
dn, TP, on., IPa, . Use the result of Problem 24- 3 with V = Y.
= Ry Ry

24-7. The properties of many solutions are given as a function of the mass percent-of the components.
If we let the mass percent of component-2 be A,, then derive a relation between A, and the mole

24--3. Use Euler’s theorem (Problem 24-2) to prove that ' ' fractions, x, and x,.
Yn,n, . T, P)=% nY, " Vo
A,= —2— x100= —22— x 100 (1)
for any extensive quantity ¥. m+m, Mun + Mn,

where the number of moles of component j is n, = m;/M; where M, is its molar mass. Now divide

Simply let ¥ = f and n, = z, in Problem 24-2 to wite . numerator and denominator of Equation 1 by n| + n, to write
: ' M x
oY Y . A =—22 %100
Y(n,n,y....,T,Py=mn, (B_) +n, (8_) + - _ _ : M x| + Myx,
ny TPy Ry T.Pn,

=n T, +n,7, 4

24-8. The CRC Handbook of Chemistry and Physics gives the densities of many aqueous solutions as
a function of the mass percentage of solute. If we denote the density by p and the mass percentage
of component-2 by A,, the Handbook gives p = p(A,) (in g-mL™"). Show that the quantity
V ={n M, +n,M,)/p(A,) is the volume of the solution containing r, moles of component 1 and
r, moles of component-2. Now show that

24-4. Apply Euler’s theorem to U = U(S, V, ). Do you recognize the resulting equation?

All three variables, S, V and 7, are extensive. Using Euler’s theorem (Problem 24-2) gives k 7 - M, A, dp(A)

au U U '_ T opa) L p(4) dA

v=s(5) +v(5) +(5) | | : ¥ e
as V.n aV S.n an sV and
= §(T) + V(= P) + n(w) , | v o M, I:l . (A, ~ 100) d,o(Az)]
=TS —PV+un . 2 p(A) p(A,)  dA,
Show that
G=un=U—-TS+PV=H-TS=A+PV : V=nV, +nV,
This is the defining equation for the Gibbs energy. _ | in agreement with Equation 24.7.
24-5, Apply Euler’s theorem to A = A(T, V, n). Do you recognize the resulting equation? _ The mass of component j in the solution is m; = n M, so the total mass’is n, M, +n,M,.
: Therefore, the volume is the mass divided by the density, or V = (n M, +n,M,)/p(A,). Now
The extensive variables are V and #. Using Euler’s theorem (Problem 24-2) gives . vV = v _ M, n M +n,M,[8p(A)
T \on /), T e@) T pAy | en
Ay (24 N dA "2 : "2
= —_— n —_—
v /). on J,y But, using Equation 1 of Problem 24-7,
= V(=P)+n(n) . | [ 3p(A2):| _ [dp(/—lz):l (%) _ [dp(A'Z)} I:;" M,n, M, y 100]
an, |, dA, on, /,, dA, (M, +n,M)* "
dp(A,) AM
G=A+7?P — _ 2t
RV [ dA, |\ mM +n,

This is the defining equation for the Gibbs energy.
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Substitute this into V| above to get Substitute p{A,) into V, = V1_propane] in Problem 24-8 and into V,= Vﬁzo to obtain
V = M, A,M, d_p(AZ) - M, ‘:1 A, dp(Az)]
1T 0@y P4y dA, )L T ey dA, 80 |- | _prapanol
Similarly
. 60
vV (8_\{_) _ M, B n M, +n,M, [ap(Az)} ,_C;
? any/, P4 PP (Ay) any 1, =
! 5 40
But =]
~
[Bp(Az)] B [dp(AZ)] (%) 1= sk Water
dn, " dA, on, .
B dp(Az)} 100M, 100n,M; ] 0 ! ! ! | |
- dAz n]M1 + nzMz (n1M1 + n2M2)2 0 20 40 60 80 100

Mass percent propanol

~ [dp(AZ)] [ 100M,n, M, ]
- (o, M, + nzMz)z

Substituting this into Vz gives

v _ M [_ A, dp(Az)]z M, [H.(Az-_loo)dp(Az)]
op(AY p(Ay) dA, p(Ay) o{A)  dA,

because A, + A, = 100. Finally,
— - M+ n,M, (n,MA, — n,M,A ) dp(A,)

24-10. Given the density of a binary solution as a function of the mole fraction of component 2
[p = p{x,)], shc)‘w tl_la.t the volume of the solutton containing #, moles of component 1 and 7, moles
of component 2 is givenby V = (n, M, + n,M,)/p(x,). Now show that :

7 - M [H(xz(Mz—M]HMl) x, dp(xz)]

1

v V,= =
i\ Tt ,O(Az) pz(Ag) dAg d p(X2) Ml p(xZ) dxz
an
But
n M Mpn, —a,M,Mn, V,= _ﬂé_ [1 _ (xZ(Mz — M)+ M1) 1—x, dp(xz)]
nM A, — n,M,A, = oM, M, x 100 =10 o(xy) M, plx) dx,
Show that
50
— — M M —— i74
"1V1+nzvz=f1—}(_-:i.n)ilzv V=nV, +nV,
P in agreement with Equation 24.7.

24-9. The density (in g-mol™") of a 1-propancl-water solution at 20°C as a function of A,, the mass The total mass of the solution is #, M, + n,M,, so its volume (mass/density) is ¥V = (n, M, +
— NV

percentage of 1-propanol, can be expressed as n,M,)/p(x,).
T . ’
plA) =) oAl V, = (ﬁ) _ M mM, M, [do(x)
j=0 anl y p (IZ) pz(‘xz) anl a
where But,
— — -7
o, = 0.99823 a, = 1.5312x 10 [3p(x2)] _ [dp(xz)] (%) ~ [d,o(xz)] [ n, }
&, = —0.0020577 o, = —2.0365 x 107 on, [, L dx, J\om/, L dx, JL O +m)
do(x
o, = 1.0021 > 107 o, = 1.3741 x 107" = —[ at 2)] ( 2 )
dx, n o+,
o, = —5.9518 x 107° o, = —3.7278 x 107

Use this expression to plot "\7“20 and Vl_pmpml versus A, and compare your values with those in
Figure 24.1.
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Substitute this result into V] to get

oM M A mMYxde() My (oM +xMy)x, dp)
plx)  (n+n)ot(x) dx,  plxy) p*(x,) dx
M, [:1 x M, +x,M, x, d,o(xz)j

2

p(x,) M, plx,) dx,
_ M, [1 M, +x,(M,— M) =x, d,o{xz)]
oz M, () dr,
Similarly
v _ (ﬁ) _ M, nmM +nM, [Bp(xz)]
2T \om, ), ety P Lom, |
But

{Bp(xz)] _ do(xy) [ﬁ} _ dp(x,) [ [ }
on, | dx, |onm,J dx, |n,+n, (n +"2)2

_ dp(x,) [ n, ] B dpix,) x,
dx (n,+n)t | dx, n +n,

2

Substitute this result into 72 to get

V. = M, B (x, M, +x,M))x, do(x,)

27 p(Ay) p(x,) dx,
_ M, {1 3 [M1 + x,(M, — M1):| 1 —xzdp(xz)}
(A M, Py dx,

Finally,

— — a M 4n,M M +x, (M, — M)Ydo(A

m vV, +n,V, = — 2 : 22( 2 ) 44y (nx, — nyx;
p(xz) 0 (AZ) dA2
Bui
n, P!
nX, — X = Ty =

80

24-11. The density (in g-mol™") of a 1-propanol/water solution at 20°C as a function of x,, the mole
fraction of 1-propanol, can be expressed as '

4
ENEDICE!
e
where
oy = 0.99823 o, = —0.17163
a, = —0.48503 a, = —0.01387

o, = 0.47518

Liguid-Liquid Solutions

Use this expression to calculate the values of V.

0 and Vl
the equation in Problem 24-10.

propanol 85 @ function of x, according to

Substimte o(x,) into ?1 = ?l-propanol and 72 = VH o in Problem 24-10 to obtain
2

80 I-propancl ]

.60 -
o)

% - -
-

g 40 -

I - =

20k Water i

L 1 L t
0.0 0.2 0.4 0.6 0.8 1.0

xl-prnpanul

24-12. Use the data in the CRC Handbook of Chemistry and Physics to curve fit the density of
a water/glycerol solution to a fifth-order polynomial in the mole fraction of glycerol, and then
determine the partial molar volumes of water and glycerol as a function of mole fraction. Plot your
result.

The curve fit of the density-mole fraction data gives (see the accompanying figure)

p(x,) = 0.99849 + 1.1328x, — 2.7605x; + 4.1281x;
— 3.2887x, + 1.0512x;

Density /g-mL™!

] ] ] ] ]
0.0 0.2 6.4 0.6 0.8 1.0

Mole fraction of glycerol
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Substitute this result into the equations for V] and 72 given in Problem 24-10 with M, = 18.02
and M, = 92.09 to get the following result:

Glycerol

[+,
=]

V/mL-mol™}
I
o

\ I \ I
0.2 0.4 0.6 0.8

Mole fraction of glycerol

24-13. Just before Example 24-2, we showed that if one component of a binary solution obeys
Raoult’s law over the entire composition range, the other compenent does zlso. Now show that if
M, = pty + RT Inx, for Xyn = % < Lthen gy = p) + RT Inx, for 0 < x, < 1 — Xy i) - NOtiCE
that for the range over which (., obeys the simple form given, u, obeys a similarly simple form. If
weletx, . =0 weobtainpu, =pu;+ RTInx, (0 <x, <1).

Start with the Gibbs-Duhem equation

x dp, + x,dp, =0

Solve for dpt,

X =x,=<1

2.min

O0=<x, =1—x, .
min

Integrate to cbtain

#, =ty + RT Inx, D=x, =1-x

2,min

24-14. Continue the calculations in Example 24-3 to obtain y, as a function of x, by varying x, from
0 to 1. Plot your result,

‘We use the equation

P, x, Py _ x,(45.2 torr)

P X Pr+x,Pr (1—x,)(20.9 torr) + x,(45.2 torr)

¥y =

Liquid-Liquid Sofutions 763

A plot of y, against x, is

1.0

0.8 . ]

0.6 .

0.4F -

0.0 ] 1 1 |

0.0 0.2 0.4 0.6 0.8 1.0
i)

24-15. Use your results from Problem 24-14 to construct the pressure-composition diagram in

Figure 24.4.

P = (1 — x,)(20.9 torr) + x,(45.2 torr)
Solve the equation given in Problem 2414 for x, in terms of y,

_ (20.9torm) y,
27 452 t0mr + (20.9 torr — 45.2 tom)y,

Let x, vary from 0 to 1 in the first equation to calculate P, as a function of x,. Now let y, vary
from O to 1 to calculate x, and then P, to give P, as a function of y,. A plot of P against x,
and y, is

50

P torx

20 | | |
0.0 0.2 0.4 0.6 0.8 1.0

Mole fraction

24-16. Calculate the relative amounts of liquid and vapor phases at an overall compaosition of 0.50 for

one of the pair of values, x, = 0.38 and y, = 0.57, that you obtained in Problem 24-14.
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We use Equation 24.19
oy —-x,  057-050

A x —x, 050038

0.58

24--17. In this problem, we will derive analytic expressions for the pressure-composition curves in
Figure 24.4. The liquid (upper) curve is just

P

total

=x, P +x,P =0 -x)P+x,P =P +x,(P— P (1)
which is a straight line, as seen in Figure 24.4. Solve the equation
_ x, Py _ x, Py

y2_ P - P]*_'_xz(Pz* _Pl*)

total

for x, in terms of y, and substitute into Equation (1) to obtain
Pl ey
Ptotal = P* _ P — p*
2 yz( 2 1)

Plot this result versus y, and show that it gives the vapor (lower) curve in Figure 24.4.

We solve Equation 2 for x, to obtain

_ oYY
PZ* . y2 ( P‘z* _ P]*)

Substitute this result into
= P’ +x,(P; — )

PP}
Pmta] = pPF P* — p*
2 = (P — P

The plots of P_, against x, and y, for P = 20.9 torr and P, = 45.2 torr are

50

0.4 0.6
Mole fraction

24-18. Provethat y, > x, if P > P and that y, < x, if P;’ < P/, Interpret this result physically.

Liquid-Liquid Solutions
Start with

.
x5

TP (PP

¥z

Divide both sides by x, and the numerator and denominator of the right side by ;" to obtain

Y2 LTl R

x, 1+xP/P =1 1+xR-D

where 8 = P/ P Now subtract 1 from both sides

¥, R—1-x(R-1 xR 1

x,  1+5R-1  1+x(R-D

If R > 1(P; > P]), then the right side is always positive because < x =1land0 <x, <1and
s0y, > x,. If R < 1 (P < P), then the right side is always negative.

This result simply says that the moele fraction of a given component in the vapor phase will be
greater than that of the other component if it is more volatile.

24-19. Tetrachloromethane and trichloroethylene form essentially an ideal solution at 40°C at ali
concentrations. Given that the vapor pressure of tetrachloromethane and trichloroethylene at 40°C
are 214 torr and 138 torr, respectively, plot the pressure-composition diagram for. this system (see
Problem 24-17).

Plot
P =P +x,(P; — P) = 214 torr — x,(76 torr)

and
o e (214 torr) (138 torr)
wal Tpr —y (Py — P 138 torr + y,(76 torr)

220

180

P/ tOTT

140

l 1 i |
0.0 0.2 0.4 0.6 0.8 1.9

Mole fraction

24-20. The vapor pressures of tetrachloromethane (1) and trichloroethylene (2} between 76.8°C and
87.2°C can be expressed empirically by the formulas

2790.78

In( P} /torr) = 15.8401 — ————
n(P} ftom) = 15.8401 = ——> =

765
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and Some data and the plot are given below.

2345.4
t+192.7
wherze ¢ is the Celsius temperature. Assuming that tetrachloromethane and trichloroethylene form
an ideal solution between 76.8°C and 87.2°C at all compeositions, calculate the values of x, and y,
at 82.0°C (at an ambient pressure of 760 torr).

[n{ Py /torr) = 15.0124 — t/°C Piftorr Pjftorr x, ¥

76.8 761.7 5498 0,992 0.994
77.6 7803 5642 0.906 0.930
78.4 T7993. 578.8 0.822 0.864
792 B18.7 5937 0.739 0.796
80.0 838.5 6089 0.658 0.726
80.8 8586 6245 0.579 0.654
81.6 8791 6403 0.501 0.580C
824 9000 6564 0425 0.504
832 9213 6728 0.360 0433
840 6429 7066 0.207 0.262
856 0874 7240 0.137 0.178%

Let 1 denote tetrachloromethane and 2 denote trichloroethylene.

2790.78
+ ftorr) = 15.8401 — — 1% _ ¢791
In(#y /torr) 82.0 + 226.4 o19

or P = 890 torr. Similarly, £ = 648 iorr, Therefore, (see Example 24-5)

Py — 760 torr 648 torr — 760 torr

x =2 — 0.463 864 1010 7417 0.068 0.091
Py — P 648 torr — 890 torr 872 1033 7597 0.001 0.001

oA x Py (0463)8%0tm)

P60 torr 760 torr 760 torr ’

24--21. Use the data in Problem 24-20 to construct the entire temperature-composition diagram of a
tetrachloromethane/trichlororethylene solution.

The vapor pressures of tetrachloromethane (1) and trichloroethylene (2) between 76.8°C and 87.2°C
are given by

2790.84
1H(P1*/t0r1’) — 15.8401 — 0.0 0.2 0.4 0.6 0.8 1.0
t+226.4 Mole fraction
23454
In( P/t =150124 — —
n(£z /tom) t+ 1027

where ¢ is the Celsius temperature. The mole fractions of tetrachloromethane (1} in the liquid and

vapor phases at temperature £ are given by 24-22. The vapor pressures of benzene and toluene between 80°C and 110°C as a function of the

Kelvin temperature are given by the empirical formulas

P — 760 torr x, 7 3856.6 K
ME T _pe MO N T o :
! PP 1 760 torr In{ Py, /torr) = -t 17.551
and
45146 K
In(Py, /torr) = 7 + 18.397

Assuming that benzene and toluene form an ideal solution, use these formulas to construct a
temperature-composition diagram of this system at an ambient pressure of 760 torr.
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This problem is very similar to Problems 24-20 and 24-21. Some data and the plot are given below - This problem is very similar to Problem 24-21. Some data and the plot are
T/K t/°C Pf/torr Pfftorr x; ¥, ' $/°C Pljtorr Pljtorr x, Y
353.0 79.85 7543 2725 1.000 1.000 823 4196 7609 0.003 0.001
355.0 81.85 8022 2929 0917 0.968 843 4560 8237 0.173 0.104
357.0 83.85 8525 3145 0.828 0.929 ' . 853 4752 8567 0.254 0.159
359.0 8585 9054 3375 0.744 0.886 86.3 4951 890.8 0.331 0.215
361.0 87.85 9609 361.8 0.665 0.840 _ 873 5156 926.1 0405 0.274
363.0 89.85 1019.2 387.6 0.59 0791 ' _ 88.3 53068 9624 0476 0.336
365.0 91.85 1080.3 4150 0.519 0.737 893 5588 1000.0 0.544 0.400
367.0 93.85 11443 4439 0451 0.680 90.3 581.5 1038.7 0.610 0.466
369.0 9585 12114 4745 0.387 0.618 : 91.3 605.0 1078.7 0.673 0.536
371.0 97.85 12816 5069 0327 0.551 . 923 6292 11200 0.733 0.607
373.0 99.85 13550 5411 0.269 0480 ' 933 6542 11625 0.792 0.682
375.0 101.8 14319 5771 0.214 0.403 ' 943 680.1 12064 0.848 0.759
377.0 103.8 15122 6152 0.161 0.321 : ‘ 953 706.8 1251.7 0.902 0.839
379.0 105.8 15960 6553 0.111 0234 : 96.3 7343 12983 0.935 0.922
381.0 107.8 16836 697.6 0.063 0.140 972 7599 13415 1.000 1.000
383.0 109.8 17750 7421 0.017 0.040

100
110
y?,
100 —
s
90} *2 -
_ 20 ! | | q
20 I L L i : 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 Mole fraction

Mole fraction

24-24. Prove that Vj = V; for an ideal solution, where V: is the molar volume of pure component ;.

24-23. Construct the temperature-composition diagram for 1-propanol and 2-propanol in Figure 24.5
by varying ¢ from 82.3°C (the boiling point of 2-propanol} to 97.2°C (the boiling point of _ _ ‘ _ _ .
1-propanol), calculating (1) P; and P; at each temperature (see Example 24-5), (2) x, according The chemical potentials of compounds 1 and 2 of an ideal solution are given by
to x, = (P} —760}/(F; — PPy, and (3) y, according to y, = x, P’ /760. Now plot ¢ versus x, and
y, on the same graph to obtain the temperature-composition diagram.

K, = w; + RT Inx, j==Tland2

The Gibbs energy is given by

G=np +np, =nul+nu;+n,RTInx, +n,RT Inx,

().

The volume is given by

o apt
P'q +n2 Ha
oFr j, oP j,

—*
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By comparing this result to Equation 24.7, we see that ?: =V,

24-25. The volume of mixing of miscible liquids is defined as the volume of the solution minus the

volume of the individual pure components. Show that
AV = le(vi -V

at constant P and T, where VT is the molar volume of pure component £, Show that AmixV =0 for

an ideal solution (see Problem 24-24).

Problem 24-24 shows that V: = V]. for an ideal solution, so A,V = 0.

24--26. Suppose the vapor pressures of the two components of a binary solution are given by

_ ® x2f2
P =x Ple?

and

— % x3f2
P, =x,Pye"

Given that P; = 75.0 torr and P}
of the vapor phase at x, = 0.40.

— P+ P, =x, P} 4 x, Preil
(0.40)(75.0 torr)e /2 1 (0.60)(160 torr)e @402
— 35.9 torr + 104 torr = 140 torr

_ 35.9 torr

P
)’1 = —-—1 = = 026
P .. ld0torr

= 160 torz, calculate the total vapor pressure and the compesiticn

24-27. Plot y, versus x, for the system described in the previous problem. Why does the curve lie

below the straight line connecting the origin with the point x;
which the curve would lie above the diagonal line.

We simply use

2
P lel*exlﬁ
H= = 3 7
Pow X P,"‘e”ﬂ'2 + x, Plen &

x,(75.0 tor)e =72
xsz

- x,(75.0 torr)e® "2 4 (1 — x (160 torr)e

=1, y, = 17 Describe a system for

Liquid-Liquid Solutions

A plotof y, against x, is the curved line shown below.

1.0
0.8 - _
0.6 _|
1
0.4 |- |

021 *

0.0 | \ | |
00 02 04 06 08 1.0
X

Ci IIlpO p 3 p VI

24-28. Use the expressions for P, and P, given in Problem 24-26 to construct a pressure-composition

diagram.
Start with
P, =P + P,=x Pt 4 x, Preil?
= x,(75.0 torn)e" =72 4 (1 — x)(160 torr)e™
and

Pl x P*e)rg/?.
y, = — 171
1= p * x2/2 2
total xlplel +x2P;€x1/2
%,(75.0 torr) e 02

x,(75.0 torr)e® =72 1 (1 — x, ) (164 torr)e®i

Now calculate P i i
ort 204 ¥; s a function of x; and then plot P, against x, and y,.

160

120

P, a1/ tOrr

80

0.0 0.2 0.4 0.6 0.8 1.0
Mole fraction
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2429, The vapor pressure (in torr) of the two components in a hinary solution are given by

2 3
P = 120x180,20x2+0.1012

and

0.35x2-0.10x>
P2 = 14sze 1 "1

Determine the values of P, Py, Ky and km.

Use the fact that P, — x, Prasx, — Lo obtain
P —120x;, as x, —> 1 and P, —>140x, as x,— 1
or P} = 120 torr and P; = 140 torr. Now use the fact that P, — b j%; a8 x; = {1 to obtain
P, —> 120x,¢"*” = 162 torr = ky

and

P, —> 140x,e"® = 180 torr = ky;

24-30. Suppose the vapor pressure of the two components of a binary solution are given by
P1 _ xl Pl*emx§+,ﬁx;

and

P =x, P e(m+3,3/2)xf—ﬁx§

Show that kH,l = Pl*e[x"'ﬁ and kH,Z — P;eﬂﬂ'ﬁﬁ_

Use the Tact that Pj — kH‘jxj as x; — 0 to obtain
P — x Pje*™? and P, — x,P;e*t?
or

k

— p¥ a8 I LT
a1 =1¢ and kg, = Pje

24--31. The empirical expression for the vapor pressure that we used in Examples 24-6 and 24-7, for
example,

P

2 3
_ # 0y +fxg
1_x1Ple Pl

is sometimes called the Margules equation. Use Equation 24.29 to prove that there can be no linear
term in the exponential factor in P}, for otherwise P, will not satisfy Henry's law as x, — 0.

Assume (hat there is a linear term in the exponent of F,.

_ * 00X
P =x Ple™

Liquid-Liquid Solutions

Then

According to Equation 24.29,

dlnP, x,8InP
ox

5 x, Ox;

Integration with respect to x, gives
InP,=(1—-ea)lnx,+ax,+nA
where In A is an integration constant. Then
P, = Ax, %e"

Asx, =0, P, — szl'“‘. But according to Henry’s law, £, — kH‘zx2 as x, —> p, 50 ¢ must equal
Zerc. :

24-32. In the text, we showed that the Henry’s law behavior of component-2 as x, — 0 is a direct
consequence of the Raoult’s law behavior of component 1 as x, — 1. In this problem, we will prove
the converse: the Raoult’s law behavior of component 1 as x; — 1 is a direct consequence of the
Henry’s law behavior of component-2 as x, — 0. Show that the chemical potential of component-2
as x, — Qs '

1,(T, P = u3(T) + RT lnk,, + RT Inx, x, > 0

Differentiate j¢, with respect to x, and substitute the result into the Gibbs-Duhem equation to obtain

dx,
d,u] =RTx_ x2—>0
1

Integrate this expression from x, = 1 to x, ~ 1 and use the fact that . (x, = 1) = u] to obtain
p (T, P) = u;(T)+ RT Inx, x, =1

which is the Raoult’s law expression for chemical potential. Show that this result follows directly
from Equation 24.29.

Start with

P
LL2=MZ+RTln?§~ =u;— RTInP;+RTIn P,

Asx, = 0, P, — kmxz, 80
o= p3— RTIn P + RT Inky,+ RTInx, (x, —> 0)
=u{(T)+ RT ln;’cH2 +RTInx, {(x,—0)
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Now ‘ Rewrite this expression as

du, _ RT : P, = sze”"ﬂ%ﬂxf*ﬁx?

dx, X, :
and so according to the Gibbs-Duhem equation where B = A —a — 8/2. Note that B = P} because P, — x, P asx, — 1.

x, x, RT dx : _
du, = — x—dﬂdz =Ty dez = RT ;’l (x, —0) : 24--34. Suppose we express the vapor pressures of the components of a binary solution by
1 1 2 L
2
Now integrate this expression from x, = 1 to x, & 1 (because the expression is valid only for Py =x Ple™

x, &~ 0, or x; & 1) to obtain
and

=uf+RTInx x, — 1
By =y 1 (x, ) PZ=szZ”‘e“’"l2

Use the Gibbs-Duhem equation or Equation 24.29 to prove that o must equal 8.

24-33. In Example 24-7, we saw that if

P1 — x] Pl*eufx%-b—,ﬂxg Start with
InP =1Inx, +InP +ax;

P, =x, p;etmﬂﬂﬂ)xffﬁx? (x, —> 0) Differentiate with respect to x; to obtain

Show that this result follows directly from Equation 24.29. % = i —2a(1 —x)
xl xl
Start with Use Equation 24.29 to get
) ; dlnP, x dlnP 1 5 1 26 42
_ * _ _ . —_— e = — — = — — L X
P =lnx +InP"+al—x)"+(1-x) | ox, %, o7, P ax, x 2
and differentiate with respect to x, to obtain _ : Integrate with respect to x, to get
dln P 1
o 1 :x__za(l_xl)ﬁ:;ﬁ(l_xl)Z . 11’1P2=1ﬂx2—20!x2+£¥2622+14
: L 1 B ' =lnx2—2a+2mxl+a—2ax]—I—ozxf-l—A
According to Equation 24.29
= . _ =Inx, +axi+ (A —a)

dlnP, x dlnp 1 :
ax PR 2ax) — 38x,x, : where A is an integration constant. Therefore,
1 2 :

X

2 2

]. —_ C(12
— — 20+ 2ex, — 3fx, + 3px F = Bre™
X
’ where B = A — a. Clearly B = Py because P, — Pyx,as x, — 1.
Now integrate with respect to x, to obtain

) .
In?P, =lnx, ~ 2ox, + (20 — 3 ﬁ)x_z + 8 x; + A i 24--35. Use Equation 24.29 to show that if one component of a binary solution obeys Raoult’s law for
) 2 : all concentrations, then the other component also obeys Raoult’s law for all concentrations.

where A is an integration constant. Substituting x, = 1 — x, in the last three terms gives

20— 3 : i Raoult’s 1
In P2=1nx2—2rx(1—xl)+( o . ﬁ) (L= x) + B0 = %) + A According to Raoult’s law
3 3 Py=xF
= Inx, — 20 + 20x, + ¢ — 2ax, +ax? — =f + 38x, — —fBx?
2 1 1 175 1 gﬁ L _ Therefore,
+B—3Bx, +38x*—Bx}+ A
. ; ] dln P _ l
dx X

3
=lnx2+o¢x12—|- —z—ﬂxlz—ﬁx13+(A~a—§)
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and Equation 24.29 gives
dlmP, 1

dx, x,

which upon integration gives

InP,=Inx, +A

P, = Ax, = Px,

where A is an integration constant.

24-36. Usc Equation 24.29 to show that if one component of a binary solution has positive deviations
from Raoult’s law, then the other component must also.

Equation 24.29 says that
(alnPl) (Blan)
JCI — .762 _
ax, ax,

dlnP, 9lnPp,
dlnx, dlnx,

For an ideal solation, P;ﬂ = x, P} and so

dmp’  dlmp
dlnx,  dlnx,

If P, > P9 = x, P} (positive deviation from ideality), then

dln P,
—_— >
dlnx

dln P,
d1nx,

>

Conversely, if one component has negative deviations from ideality (3In P,/8Inx,) < 1, then the
other must also.

24-37. If the vapor pressures of the two components in a binary solution are given by
P =xPje*/® and P, =x,Pfe”t/RT

show that

_ ' RT
AnGlu=A, G/(n +n)u= T(x1 Inx, +x,Inx) +xx,

ApS/R=A_ 85/(n, +n)R = —(x,Inx, +x,Inx,)

mix

Liquid-Liguid Solutions
and

ApHiu=A_ Hi(n +n)u=xx,
A solution that satisfies these equations is called a regular solution. A statistical thermodynamic
model of binary solutions shows that 1 is proportional to 2¢,, — £,, — &,,, whete ¢,, is the interaction
energy between molecules of components i and j. Note that u =0 if &, = (g, + ¢,,)/2, which
means that energetically, molecules of components | and 2 “like” the opposite molecules as well
as their own.

Use the equations
G = nyty T By,

and

#;=p;+ RTIn PJ.'*

7

to write
G = nouy +n,u; +n RT ln(xle“?%/”) +n,RT ]n(xze“xf/”)
But r, ] + n,u; is the Gibbs energy of the two pure liquid components, so “
A G=G"—nput+nps=nRTIx +n,RT Inx, + u(nx; +n,xl)
Divide by the total number of moles, n, + #,, to get
A, G = RT (x,Inx, +x,Inx,) + ux,x,(x, + x,)
Now divide by # and use the fact that x, +x, = 1 to get -
Amixg/u = R;L:;T—(;v:1 Inx, +x,Inx,) + x x,
Use the equation A, § = —(3A , G/9T) to obtain
A, S=—R(x Inx, +x,lnx)
Now use Amiﬁ = Amix—I—-I- — TAmix§ to get

Ay H/u = xx,

24-38. Prove that Amiﬁ, Amij, and Amixﬁ in the previous preblem are symmetric about the point
x, =x,=1/2

Each expression is symmetric in x, and x,. Therefore, they must be symmetric about x, = x, = 1/2.

24-39. Plot P,/ P} = xle‘”‘:?/” versus x, for RT /u = 0.60, 0.50,0.45, 0.40, and 0.35. Note that some
of the curves have regions where the slope is negative. The following problem has you show that
this behavior occurs when RT /u < 0.50. These regions are similar to the loops of the van der Waals
equation or the Redlich-Kwong equation when T < T_ (Figure 16.8), and in this case correspond
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to regions in which the two liquids are not miscible. The critical value RT /u = 0.50 corresponds
to a solution critical temperature of 0.50u/ R.

See plot

1.5

0.35

24-40. Differentiate P, = xIPl*e“(l'xl)z/ AT with respect to x, to prove that 7| has 2 maximum or a
minimum at the points x, = § + (1 — 20)!”%, Show that RT/u < 0.50 for either a maximum or
a minimum to occur. Do the positions of these extremes when RT /i = (.35 correspond to the plot
you obtained in the previous problem?

dP * u(l—x 2 2“  nu(l—x 2
d_x: =0 = Ple' ‘”RT—ﬁxl(l —~ x ) Prett™ R = ¢
Cancelling several factors and rearranging gives
5 RT
xl - xl + E =0

or

1 1 2RT\'Y
n==x-{1-
z 2 u

The values of x, will not be real unless 2RT /u < 1, orunless RT /u < 0.50. When RT /i = 0.35,
x, = 0.226 (a maximum) and 0.774 (a minimum).

24-41. Plot Amixa/u in Problem 24-37 versus x, for RT /u = 0.60, 0.50, 0.45, 0.40, and 0.35. Note
that some of the curves have regions where aZAmiﬁ/ axf < (0. These regions correspond to regions
in which the two liguids are not miscible. Show that RT /u = 0.50 is a critical value, in the sense
that unstable regions occur only when RT/u < 0.50. (See the previous problem.)

Liquid-Liquid Solutions

0.00 L 0.35
0.40
=2
B 0.45
ol
E-0.10 |- 0.50
4 0.10
B 0.60
—0.20L_ ! 1 : |
0.0 0.2 0.4 0.6 0.8 1.0
Xy

Differentiate Amixg with respect to x, to obtain

aA__ G RT
—mx . — —[lnx,+1-In(l-x)—1]+1—2x, =0
Bx1 i
or
T
AN T S
u 1——3:1

Note that both sides of this equation equal zero when x; = 1/2. The unstable regions occur when
a*A,, G/ox} < O

A G RT(l 1 )
mix doe— =7

dx? u \x, 1-x
_RT _.,,_,1_] )
v [ x,(1—x)
The unstable regions are centered at x, = x, = 1/2, so substituting x, = x, = 1/2into aZ/_\mixE/axf
gives the inequality

4RT_2<0
U
or
RT 1
W <3

24-42. Plot both P,/ P} = x&*4/*" and P,/ P; = x,eV/*" for RT/u = 0.60, 0.50, 0.45, 0.40,
and 0.35. Prove that the loops cccur for values of RT /u < 0.50.

See Problem 2440 for proof that unstable regions occur only for RT/u < 0.50.

24-43. Plot both P/ P} = x,e"+/*T and P,/ P; = x,e"1/* against x, for RT /u = 0.40. The loops
indicate regions in which the two liquids are not miscible, as explained in Problem 24-39. Draw a
horizontal line connecting the left-side and the right-side intersections of the two curves. This line,
which connects states in which the vapor pressure (or chemical potential) of each component is the
same in the two solutions of different composition, corresponds to one of the horizontal lines in
Figure 24.12. Now st P,/ Py = x,e“/*" equalto P,/ Py = x,e*1/R7 and solve for RT [u in terms
of x,. Plot RT /u against x, and obtain a coexistence curve like the one in Figure 24.13.
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24-44. The molar enthalpies of mixing of solutions of tetrachloromethane (1) and cyclohexane (2) at
25°C are listed below.

The plot of P,/ P} and P,/ P; against x, for RT /u = 0.40 is shown below.

X, A H/T-mol™
1.2 0.0657 37.8
0.2335 107.9
~— | T N 0.3495 134.9
0.8k - 0.4745 146.7
" 0.5955 141.6
ST ] 0.7213 118.6
S oal ‘ - 0.8529 73.6
Plot Amﬁ against x x, according to Problem 24-37. Do tetrachloromethane and cyclohexane
‘ form a regular solution?
0.0 ] | ] ]
0.0 0.2 0.4 0.6 0.8 1.0
x . _
! If tetrachloromethane and cyclohexane form a regular solution at 25°C, then a plot of A, H /x,
against x, should be linear. The linearity of the following plot shows that they form a regular
Write solution.
xleuxg/m" — xzeuxf/RT
600
as -
w2 —x/RT _ X2 =)
e T g 4o0f -
H —
4
and take logarithms to get :N
RT x% - xt _ 1—2x, IEK 200 N
u  In(x,/x))  Inl(1 —x)/x] %F
A plot of RT /u against x, follows. 0 ' ‘ * '
0.0 0.2 0.4 0.6 0.8 1.0
1
0.6
0.4 7]
= 24-45. The molar enthalpies of mixing of solutions of tetrahydrofuran and trichloromethane at 25°C
[EQ are listed below.
0.2 —
Xpp O H/I-mol™!
00 : 1 | 1 0.0568 —0.469
0.0 0.2 0.4 0.6 0.8 1.0 0.1802 —1.374
‘ X, 0.3301 —2.118
0.4508 —2.398
0.5702 —2.383
0.7432 —1.888
0.8231 ~1.465
0.9162 ~0.802

Do tetrahydrofuran and trichloromethane form a regular solution?
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If tetrahydrofuran and trichloromethane form a regular solution at 25°C, then a plot of Amﬁ/ﬂ
againstx, should be linear. The nonlinearity of the following plot shows that they do not quite form
a regular solution.

Integration from x, = 1 (where y, = 1) to arbitrary x, gives

lny2=—2a[ (1 — x)dx)
1

-1 )
0.0 = —2u xz—l—T =O£(1—2x2+x2)
Lé. L . =o(l — xz)2 = cxxlz
&
.:; _4.0F _ in agreement with Example 24-8.
£ 2 |
I 24-47. The vapor pressure data for carben disulfide in Table 24.1 can be curve fit by
a -8.0 N 2 k)
<] P] — x] (5 14.5 torr)el.dﬁ)ﬁ'fx: —0.68175x,
| | ! |
0.0 0.2 0.4 0.6 0.8 1.0

Using the results of Example 247, show that the vapor pressure of dimethoxymethane is given by

2 3
Pg, - x2(5877 ton)80.4741x]+058175x1

Now plot P, versus x, and compare the result with the data in Table 24.1. Plot G against x,. Is the

plot symmetric about a vertical line at x; == 1/27 Do carbon disulfide and dimethoxymethane form
a regular solution at 35.2°C?

24-46. Derive the equation

x,dlny, + x,dIny, = 0 According to Example 24-7, if

by starting with Equation 24.11. Use this equation to obtain the same result as in Example 24-8. P oy Pt
1 7201

th
Equation 24.11 is o

F

 =x, P; e(u+3,e/2)x§—ﬁx§‘

x,dp, + x,dp, =0

Theref i =1. = —
Substitute &, = u} + RT Iny,x; for u, and u, to obtain erefore, since or = 1.4967 and § O'.68175’

* .tz . x3
dx, dx, P, = x, P} O 0817
xRT{— +dmny | +xRT{ — +dhny,} =0
X X

. 5 A comparison of P, from Table 24.1 with that calculated from the above equation is shown below.

or The solid curve is the calculated curve and the dots represent the experimental data. The agreement
is very good.
RT(dx +dx,) + RTxdny + RTx,dlny, =0
But dx, + dx, = 0 because x, +x, = 1, and so we have 600
xdlny +x,dlny, =0
400+ —
~According to Example 24-38, E
y, = e &
! 200} -
Therefore, 3
x
diny, = —2Ldlny, = -2 2ax,dx,) | | | |
X2 %, 0.0 0.2 0.4 0.6 0.8 1.0

= —2a(l — x,)dx, X1
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Now use Equation 24.51:
EE/RT =x,Iny, +x,Iny,
= x1(1.4967x§ — 0.68175x3 + 0.4741x7 + 0.68175x7)
= 0.8149x x,{1 + 0.4183x)

The following plot shows that G is not symmetric about x, = x, = 1/2. Carbon disulfide and
dimethoxymethane do not form a regular solution under the given conditions.

0.20 ‘ .

GEIRT

0.00 | J | |
0.0 0.2 0.4 0.6 0.8 1.0

*1

24-48. A mixture of trichloromethane and acetone with x__, = 0.713 has a total vapor pressure of
220.5 torr at 28.2°C, and the mole fraction of acetone in the vapor is y,, = 0.818. Given that
the vapor pressure of pure trichloromethane at 28.2°C is 221.8 torr, calculate the activity and the
activity coefficient (based upon a Raoult’s law standard state) of trichloromethane in the mixture.

Assume the vapor behaves ideally.

We have x_, = 0713,y =0818,and P = 220:.5 torr. Theretfore,

acet

P_ = (1.000 — 0.818)(220.5 torr) = 40.13 torr

and
P. 4013t
o® = s o 20T g gy
pr~ 221.8torr
and
®) 0.181
®_ T % 631
Vei x, 1.000-0.713

24-49. Consider a binary solution for which the vapor pressure (in torr) of one of the companents (say
component 1) is given empirically by

2 3
P] — 78-8x1e0.65x2-|‘0.1311

Calculate the activity and the activity coefficient of component 1 when x;, = 0.25 based on a solvent
and a solute standard state.

Liquid-Liguid Solutions

£ 2 3
S

P]* 1
When x, = 0.25, o = 0.25¢**'® = 0.39 and ™ = a{¥' /0.25 = 1.6. The activity based upon a
Henry's law standard state is given by

a(ﬂ) _ —HP]_ _ xl P1*60.651§+0.13xg B 039 B 0 17
1 kH‘I Pl*eﬂ.65+0.tﬁ - 2.99 —

and ™ = 0.17/0.25 = 0.68

24-50. Some vapor pressure data for ethanolwater solutions at 25°C are listed below.

xethanol Pel.ha.nul/ torr szm:r/ torr

0.00 0.00 2378
0.02 4.28 23.31
0.05 9.96 22.67
0.08 14.84 22.07
0.16¢ 17.65 21.70
0.20 27.02 20.25
0.30 31.23 19.34
0.40 33.93 18.50
0.50 36.86 17.29
0.60  40.23 15.53
0.70 43.94 13.16
0.80 48.24 9.89
0.90 53.45 5.38
0.93 55.14 3.83
0.96 56.87 2.23
0.98 58.02 1.13
1.00 59.20 0.00

Plot these data to determine the Henry’s law constant for ethancl in water and for water in ethanol
at 25°C,

Henry's law constant of component j is given by the limiting slope of the vapor pressure of.
component j as x, — 0. The straight lines are shown in the following figure. The slopes of these
lines give ky ... ~ 20 torr/0.35 = 57 torr and &y, = 25 torr/0.10 = 250 torr

water

60
L~
. 7
s
; 40 Efthandgl |
5 p=
2 / i
[#]
N =
= /A T =
= 4 Waler R
3 =S
0
0.0 0.2 0.4 0.6 0.8 1.0

Mole fraction of ethanol
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24-51. Using the data in Problem 24-50, plot the activity coefficients (based upon Raoult’s law) of 24-53. Some vapor pressure data for a 2-propancl/benzene solution at 25°C are
both ethanol and water against the mole fraction of ethanol.

x2-propanol F 2—pr0panol/ torr Ptota] / torr

The activity coefficients based upon Raoult’s law are given by Y, = P J/x, P?, where all thes ggg(g} 1{;% 1%‘5‘1‘}5
guantities are given in the problem. The activities are shown in the following figure. : 0.146 99 4 109.0
0.362 27.6 108.4
4.0 0.521 304 105.8
- 0.700 36.4 99.8
5 0.836 39.5 84.0
s 30 0.924 422 66.4
@ 1.000 44.0 44.0
8 2.0
o Plot the activities and the activity coefficients of 2-propanol and benzene relative to a Raoult’s law
T standard state versus the mole fraction of 2-propanol.
g 1.0 Ethanol
<
0.0 1 ' ' l The activity coefficients based upon Raoult’s law are given by v, = P./x, P/, where all these
0.0 ¢.2 0.4 0.6 3.8 1.0 ! Jooi

quantities are given above. The activities and activity coefficients are shown in the following

Mole fraction of ethanol ﬁgures,

1.0
—E ozl Benzene ]
24-52. Using the data in Problem 2450, plot G /RT against Xy o Is a water/ethanol solution at 25°C
o
a regular solution? 2 06l _
= -
. . S 0.4 .
According to Equation 24.51, < 2-propanol
—E 0.2 —
ﬁ:xllnyl-i-xllnyz 0.0 | | | 1
. 0.0 0.2 0.4 0.6 0.8 1.0
The activity coefficients are calculated in Problem 24-51, and G /RT is plotted against the mole Mole fraction of 2-propanol
fraction of water below. The plot is not symmetric about x, = x, = 1/2, and so water and ethancl
do not ferm a regular solution under these conditions.
0.30 50
- 2-propanol
B 40 s
Y 0.20+ - o
S
& S 3.0 -
- =)
o Q
" o.10} . > 2.0f .
E
5 1.0 Benzene
< _
0.00 L 0'4 0'6 0'8 To 0.0 ! ; s |
0.0 0.2 ' ' ' ‘ 0.0 0.2 0.4 0.6 0.8 1.0

Meole fraction of ethanocl
Mole fraction of 2-propanol
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24-54. Using the data in Problem 24-53, plot G JRT versus x, ooy 24-56. Show that

—B G®
. = =HEA,
Aceording to Equation 24,51, n tn,
—E
G : ' E
ﬁlelnyl—f—lenyz - §E= h) -0 ;
. n tn,
The activity coefficients are calculated in Problem 24-53, and G /RT is plotted against the mole _ : and
fraction of 2-propanol below. The plot is not symmetric about x, = x, = 1/2, and so 2-propancl ' .
and benzene do not form a regular solution under these conditions. ' 7 _ H — urx
”1 + ﬂz 172

for a regular solution (see Problem 24-37).

0.4

A regular sclution is defined in Problem 24-37. For example,
A G = RT(x,Inx, + x,Inx,) + ux,x,
But the first terms on the right side of this equation are .Amﬁid, and so

G =A _G—A .‘7(—'1‘"id=ux1;rc2

] H | ]
0.2 0.4 0.6 " 0.8 . _ Similarly,

Mole fraction of 2-propanol ‘ o _r
. S

= 2,854,585 = —R(x,Inx, + x,Inx,) + R(x, Inx, +x,lnx,)
= () .

andG =H ~T5 gives

24-55. Excess thermodynamic quantities are defined relative to the values the quantities would have T — uxx
if the pure components formed an ideal solution at the same given temperature and pressure. For T
example, we saw that (Equation 24.51)
G G : _ 24-57. Example 24-7 expresses the vapor pressures of the two components of a binary solution as

_—= e = in x,In
RT (nl + n2)RT 'xl y] + 2 Vl’, . ]
P = x, Ple*tha

Show that
and

=—(x;Iny, +x,Iny,) : _ %z%@wmmwﬁ

dln 31
-7 (—’51 L VZ) Show that these expressions are equivalent to

a7 *ar

y, =™ and y, = eOrBDT—px

Use the relation § = —(3G/ aT)P-"p"z to write E : Using these expressions for the activity cocfﬁcient%, derive an expression for G" in terms of @ and

55" f. Show that your expression reduces to that for G for a regular solution.

—E

§ = | =
T

?
= —5=[RT(x,Iny, +x,In,)]

" . Start with Equation 24.51

dlny, dlny,
—R(x;Iny, +x,Iny,) — RT { x, 3T X, aT
P

EE/RT =x Iny +x,lny,
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and y, = P,/x P.For P, and P, given in the problem

P 1 P
')/1 = i = eaxl'l'ﬂ X5 31’1(1 ]/2 = 2 =

238/ B —fx]
x By x, Py

3
G /RT = x,{ax] + Bx) +x, [(m -+ ?ﬁ) x; — ﬁxf:l

= XX, (ax + Bxy +etx, + ——-x — Bx}

2

[ 3
=xx,|a+ Tﬁxl + B(x, — x)(x, +x )]

—xafaa(1-3)]

This expression reduces to that of a regular solution when 8 = 0.

i 3
oalx, +x,)+ ﬂx +,B(Jc2 — x? }

24-58. Prove that the maxima or minima of A mg defined in Problem 24-37 occur at x, = x, = 1/2
for any valne of RT /u. Now prove that

>0 for RT/u > 0.50

Ch AmG

=0 for RT/u =050
9x}

<0 for RT/u < 0.50

at x, = x, = 1/2. Is this result consistent with the graphs you obtained in Problem 24-417

Start with

A G RT
—“;L = ———u—(x] Inx, +x,Inx,)+x x,
The maxima or minima are given by

DOl ) R bl da —x) — ) 1= 25, =0
dx, u

LI T
u 1—x

Note that this equation is satisfied by x, = x, = 1/2 for any value of RT /u.
-
A, Glu =E(l+ 1 )mz
Bxlz w \x, 1l-—ux

_RT[ 1 ]w
T ow [x,(1—x)

_4RT
h iU

—2

Liquid-Liquid Selutions

at x; = x, = 1/2. This expression is greater than zero when R7 /u > 0.50, less than zero when
RT /u < 0.50, and equal to zero when RT /w = 0.50.

24-59. Use the data in Table 24.1 to plot Figures 24.15 through 24.17.

Use the relations a

1

= P/P and y/* =

PCSZ ftorr P Jtorr

P /x P} The results of the calculations are given below.

&) (R} (R) (R) E -1
dcs,  Ogimetn Yes,  Viime AG" /kJ-mol

0.0000
0.048%
0.1030
0.1640
0.2710
0.3470
0.4536
0.4946
0.5393
0.6071
0.6827
0.7377
0.7950
0.8445
0.9108
0.9554
1.0000

6.0 587.7
54.5 558.3
109.3 529.1

159.5 500.4
234.8 451.2
271.6 4127
324.8 378.0
340.2 360.8
357.2 3422
381.9 3133
407.0 2718
424.3 250.1
442.6 2174

458.1 184.9
481.8 1242
501.0 65.1
514.5 0.0

0.000 1.000 222 1.00 0.000
0.106 0950 2.17 1.00 0.037
0.212 0900 206 1.00 0.078
0.310 0.851 1.89 1.02 0.120
0456 0768 1.68 1.05 0.179
0.540 0706 1.55 1.08 0.204
0.631 0643 139 1.18 0.239
0.661 0614 1.34 1.21 0.242
0.694 0.582 1.29 1.26 0.244
0.742 0533 122 1.36 0.242
0.791 0473 116 149 0.227
0.825 0426 1.12 1.62 0.209
0.860 0370 1.08 1.80 0.184
0.890 0315 1.05 2.02 0.154
0936 0.211 1.03 2.37 0.102
0974 0.111 1.02 248 0.059
1.000 0.000 1.00 2.50 0.000
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