CHAPTER

Solutions 1]
Solid-Liquid Solutions

PROBLEMS AND SOLUTIONS

25-1. The density of a glycerol/water solution that is 40.0% glycerol by mass is 1.101 g-mL ™" at 20°C.

Calculate the molality and the molarity of glycerol in the solution at 20°C. Calculate the molality
at 0°C.

The mass of glycerol per millimeter of solution is
g glycerol per mL = (0.400)(1.101 g-mL™") = 0.4404 g-mL™"
The number of moles of glycerol per liter of solution is

4404 g 1!

52.003 g mor” — 78 mol L

molarity =

The number of grams of water per 0.4404 grams of glycerol is given by
1.101 g — 0.4404 g = 0.6606 g H,C

or 0.4404 g glycerol per 0.6606 g H,0, or 0.6666 g glycerol per g I, 0. Therefore,

666.6 g-kg™'

molality e ————
el 92.094 g-mol™

=724 mol-kg*

25-2. Concentrated sulfuric acid is sold as a solution that is 98.0% sulfuric acid and 2.0% water by
mass. Given that the density is [.84 g-mL ™", calculate the molarity of concentrated sulfuric acid.

g H,SO, per mL solution = (0.980)(1.84 g-mL™") = 1.80 g-mL"™")

1800 gL

98.08 g-mol T 18.4 mol-L™!

molarity =

25-3. Concentrated phosphoric acid is sold as a solution that is 85% phosphoric acid and 15% water
by mass. Given that the molarity is 15 M, calculate the density of concentrated phosphoric acid.
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A 15 molar solution 1mplies that there are

(15 mol . 1.7 1)(97.998 g-mol™!) = 1470 g of phosphoric acid per liter of solution

Therefore, the density of the solution is

1470 g-L™!
0.85

density = =1700g- L7 = 1.7 gmL™’

25-4. Calculate the mole fraction of glucose in an aqueous solution that is 0.500 mol kg™ glucose.

There are 0.500 mol glucose per kg H,0. so

_ 0.500 mol — 0.00893
e 1000g ,O

0.500 mol
MOt 1§02 g-mol HLO

25-5. Show that the relation between molarity and melality for a solution with a single solute is

. _ (1000 mL-L ™ pm
1000 gkg ' +mM,

where c is the molarity, m is the molality, p is the density of the solution in g-mL‘l, and M, is the
molar mass (g-mol ') of the solute.

Consider a solution of a certain molality, m, containing 1000 g of solvent. The total mass
of the solution is 1000 g-kg™' +mM, and its volume (in mL) is (1000 g-kg™t +mM)/p,
where p is the density of the the solution in g-mL™". The volume of the solution in liters is
(1000 g-kg™! + mM,)/p (1000 mL-L™") liters. There are m moles of solute per (1000 g-kg™ +
mM.,)/p (1000 mL-L™") liters, so the molarity is

(1000 mL-L ™) prm
c =
1000 g- kg™ +mM,

25-6. The CRC Handbook of Chemistry and Physics has tables of “concentrative properties of agueous
sclhutions” for many solutions. Some entries for CsCl(s) are

¢/mol. L™

A/% p/g-mL"

1.00 1.0058 0.060

5.00 1.0374 0.308
10.00  1.0798 0.641
20.00  1.1756 1.396
40.00  1.4226 3.380

where A is the mass percent of the solute, o is the density of the solution, and ¢ is the molarity.
Using these data, calculate the molality at each concentration.
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Using the result of the previous problem,

(1000 ¢ -kg™Ve
m =
(1000 mL-L. Dp — Mc

We have then (M, = 168.36 g-mol ™)

¢/mol-L™!  m/mol kg™

0.060 0.060
0.308 0.313
0.641 0.660
1.396 1.484
3.380 3.960

25-7. Derive a relation between the mass percentage (A) of a solute in a solution and its molality (m).

Calculate the molality of an aqueous sucrose solution that is 18% sucrose (C,,H,,G,,) by mass.

Mass percentage of solute, A,, is given by

mass,
A, = ———=— x 100
mass, + mass,
If we take a solution containing 1000 g of solvent, then mass, = mM, and mass, = 1000 g-kg™',
80
m,

A, = = x 100
1000 g- kg™ +mM,

Solve for m to get

(1000 g-kg DA,
(100 A DM,

For an aqueous sucrose solution that is 18% sucrose by mass,

(1000 g-kg™H(18)
T (100 — 18)(342.3 g-mol™)

= 0.73 mol-kg™!

25-8. Derive a relation between the mole fraction of the solvert and the molality of a sclation.

Start with

1,

2:
n1+n2

X

Now take a solution containing 1000 g of solvent, so that #, = m and n, = (1000 g}/ M|, where
M, is the molar mass of the solvent. Therefore,

m mM
Xy = T
1000 g-kg n
— = 4m
M

1

1

= 1000 g kg + mM,
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and

1000 g-kg !
r=1l-x= gl £
1000 g-kg ™" + mM,

25-9. The volume of an aqueocus sodium chloride solution at 25°C can be expressed as
V/mL = 1001.70 + (17.298 kg-mol™)m + (0.9777 kg® mol %)m*

— (0.0569 kg?*- mol *)m”

0<m =< 6mol-kg™!

where m is the molality. Calculate the molarity of a solution that is 3.00 molal in sodium chloride.

The volume of the solution at a 3.00 mol-kg ! concentration is
V/mL = 1060.86
The mass of a 3.00 mol-kg™" NaCl(aq) solution that contains 1000 g of solvent is

mass = 1000 g-kg™' + (3.00 mol-kg~')(58.444 g-mol™)
=117533¢

The density of the solution is

s 1175338
~ 1060.86 mL

and so the molarity is (see Problem 25-5)

= 1.108 g-mL"!

(1000 mL-L™")pm
1000 g-kgt +mM,
(1000 mL-L.7")(1.108 g-mL™")(3.00 mol -kg™")
1000 g-kg ™" + (3.00 mol-kg™1)(58.444 g-mol ™)
=2.83 mol-L™!

25-18. If x;°, m™, and ¢* are the mole fraction, molality, and molarity, respectively, of a solute at
infinite dilution, show that
mM M

00 1 _ 1

T 1000gkg (1000 mL-L)p,

where M| is the molar mass (g-mol ") and p, is the density (g-mL™") of the solvent. Note that mole
fraction, molality, and molarity are all directly proportional to each other at low concentrations.

Start with x, = n,/(n, + n,). At infinite dilution, n, > 0, and so

n, n,
_xz = > —= as n2
n, +n, 7y
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Consider a solution containing 1000 g of sclvent. In this case, n, = m and n, = (1000 g-kg™")/M,,
where M, is the molar mass of the solvent. Then

Lo m™ _ mli
2 1000g-kg™t 1000 g-kg™!
M

1

According to Problem 25-5, ¢® — (mL-L D pm™/(g-kg™), so

o c® _ CNM]
2T T 000mL L\ (1000 mL-L e
M, P

25-11. Consider two solutions whose solute activities are a; and a;, referred to the same standard
state. Show that the difference in the chemical potentials of these two solutions is independent of
the standard state and depends only upon the ratio a,/a;. Now choose one of these solutions to
be at an arbitrary concentration and the other at a very dilute concentration (essentially infinitely
dilute) and argue that

@ VY Vo Ve

Let

w, = (43) + RT Ina,
wy = (1) + RT Inaj = (u3)' + RT Inaj
Therefore,
%

"
2

Ap =y — pty = RT In

"

If the solution denoted by the double prime is very dilute, then a; = x5°, m

o0

, or ¢™. Therefore,

'
a4 Yuty Ve VaC
" o T S o6
az x2 I [

25-12. Use Equations 25.4, 25.11, and the results of the previous two problems to show that

li 2 C[Ml - Mz] )
Yo = Vam | 1T )=Vl T F =1
1000 g-kg o, 1000 mL-L™]
where p is the density of the solution. Thus, we see that the three different activity coefficients are
related to one another.

Using the result of the previous problem,

Using the result of Equation.25.4 and Problem 25-10, we have

_ M, 1000 g-kg™! am) = - ﬂ)
Vi = Von \ 1000 g-kg! M, ~ 1000 g-kg™
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Similariy, Problem 25-11 gives us
_, 2
Yo = Y2 £ x,
Using Equation 25.11 and the result of Problem 25-11, we have
M, :i [(1000 ml-L e + c(M, — Mz)]
Yar = Vo | (1000 mL-L )0, M

[ p c(M,— M) }
= VQC —+ -1
p, (1000 mL-L™")p,

i

25-13. Use Equations 25.4, 25.11, and the results of Problem 25-12 to derive

o cM,
Yam = Ve (p_l ~ p,[1000 mL-L‘l])
Given that the density of an aqueous citric acid (M, = 192.12 g-mol 1) solution at 20°C is given by
p/g-mLt = 0.99823 4+ (0.077102 L-mol™)c
0<c <1772 mol-L7!

plot v, /v, versus c. Up to what concentration do y, and y,_differ by 2%?

From Problem 25-11,

Using the results from Problems 25-5 and 25-10,

1 |:(1OOOmL-L'1),owa2:| B I:p M, ]
— Ve

Yom = Vaclp. 1000 mL-L! o (1000 mL-L )

The ratio v, /¥,, is plotted below.

1.00

0.95

& 090
-
3

& 0.85]

0.80

1 1 | L 1
0.0 0.4 0.8 1.2 1.6 2.0
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25-14. The CRC Handbook of Chemistry and Physics gives a table of mass percent of sucrose in an
agqueous solution and its corresponding molarity at 25°C. Use these data to plot molality versus
molarity for an aqueous sucrose sclution.

Use the relation between mass percentage and molality that is derived in Problem 25-7 to calculate
the molality at each mass percentage. Some representative values of A, ¢, and m and the plot of m
against ¢ are given below. '

A ¢/mol-L7" m/mol-kg™ A c¢/mol- L' m/mol kg™
1.00 0.029 0.030 24.00 0771 0.923
2.00 0.059 0.060 28.00 0.914 1.136
3.00 (.089 0.090 32.00 1.063 1.375
4.00 0.118 0.122 36.00 1.216 1.643
5.00 0.149 0.154 40.00 1.375 1.948
6.00 0.179 0.186 44.00 1.539 2.285
7.00 0.210 0.220 48.00 1.709 2.697
8.00 0.241 0.254 52.00 1.885 3.165
9.00 0272 0.289 56.00 2.067 37718
10.00 0.303 0.325 60.00 2.255 4.382
12.00 0.367 0.398 , 64.00 2.450 5.194
14.00 0.431 0.476 68.00 2.652 6.208
16.00 0.497 0.556 72.00 2.860 7.512
18.00 0.564 0.641 76.00 3.076 9.251
20.00 0.632 0.730 80.00 3.299 11.686
15.0—
Top 10.0
kv
>
g
s 5.0
0.0 | | { |
0.0 1.0 2.0 3.0 4.0
¢/ mol.L™!

25-15. Using the data in Table 25.2, calculate the activity coefficient of water (on a mole fraction
basis) at a sucrose concentration of 3.00 molal.

We use the equation y, = a,/x,. The relation between molality and mole fraction is given by
Equation 25.4:

1 _ 1000gkg™
' P MM 1000gkg +mM,
1000 g-kg™!
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At m = 3.00 mol-kg™" (with 3, = 18.02 g-mol™"), we have x; = 0.9487. Therefore,

0.93276

=098
0.9487 783

=

25-16. Using the data in Table 25.2, plot the activity coefficient of water (on a mole fraction basis)
against the mole fraction of water.

Calculate the mole fraction from the molality according to Problem 25-15, use the relation
Y., = @,/x,, and plot the results to get

1.00 -

0.98

le

0.96 -

0.94 i | l | ]
0.90 0.92 0.94 0.96 .98 1.00

Mole fraction

25-17. Using the data in Table 25.2, calculate ¢ at each value of m and reproduce Figure 25.2.

Use Equation 25.13,

mep

}Ilﬂ1 e
55.506 mol-kg

25-18. Fit the data for the osmotic coefficient of sucrose in Table 25.2 to a fourth-degree polynomial
and calculate y, for a 1.00-molal solution. Compare your result with the one obtained in
Example 25-5.

Suppressing the units of the coefficients, we get

¢ =14+ 0.075329m + 0.016554m* — 0.0039647m> 4 0.00024694m*

Use Equation 25.15 to write

1.00
Iny,, =¢— 1+ ——dm—008816+008235—01705
m

0

and so y,,, = 1.186.
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25-19. Using the data for sucrose given in Table 25.2, determine Jn y,, at 3.00 molal by plotting (¢ —
1)/m versus m and dete.rmining the area under the curve by numerical integration (Mathchapter G)
rather than by curve fitting ¢ first. Compare your result with the value given in Table 25.2.

Using Kaleidagraph, we obtain

3.00
¢—dm =0.272
1] R

From Table 25.2, ¢ — 1 = 0.2879, and so In Vo = 0.560, and y, = 1.75.

25-20, Eq.uation 25.18 can be used to determine the activity of the solvent at its freezing point.
Assuming that AC7}, is independent of temperature, show that

ALHT) = A, H(TR) + AC(T — T7)

where A, H (T4 1s the molar enthalpy of fusion at the freezing point of the pure solvent (7, Tg.) and

AC is the difference in the molar heat capacities of liquid and solid solvent. Using Equation 25.18,
show that

B T 2

—11'1611 — fusH( f;S)Q 1 A H( fus) _ AC;P 92+
R( fus) R( fus)2 fus )

where 0 =T — T

fus*

Use
3 Afusﬁ A_*
aT ToTr
I

ALH(T) — A, H(TY = AC,(T - T™)

to derive

Using Equation 25.18

T A, H
lna,lzf _...—(?1) daT
le

«  RT?
_ A, H( A H TG [T dT Tos dT(T — T35
fu T T2
AL H(TZ) 1 AC, (T * .
— R f: (A + *)+ P(]}l fus+1}us_j}us
Tfus T;'us R Tf:s T;'us T};:s
— fusH(sz ) ( fus Tf:s) i AE; (lfl Tfus + Tf:;s - Tfus
Rszs T;us R Tf:s Tfus

NowletT, =177 —6anduse1/(1~x)=1+4+x-+x>+ - toget

N N s
T, T _9 T* T (fus)z }

fus fus fos
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and use In(1 —x) = —x — x2/2+ --- to get

T & 6 1 8
11-1.,.@.%:1“(1_ ): _—

To. T/ T 2(I3)
Finally, then
A HTE 9?
__1na1=_fus—(f2“5} — — — -
R(Tf:s Tfus
AC, 8* )
— —_ — —— . 811
a0 vo (1))
_M AT L (AHT  AGN
R(T) R(T;) T 2
25-21. Take A, H(T2) = 6.01 KJ-mol™, T, = 75.2 J-K™-mol™", and T}, = 37.6 J-K~'-mol " to

show that the equation for — Ina, in the previous problem becomes
—Ina, = (0.00969 KN +G2x10°K2)e* + ...

for an aqueous solution. The freezing point depression of a 1.95-melal aqueous sucrose solution
is 4.45°C. Calculate the vahe of g, at this concentration. Compare your result with the value in
Table 25.2. The value you caleulated in this problem is for 0°C, whereas the value in Table 25.2
is for 25°C, but the difference is fairly small because @, does not vary greatly with temperature
(Prablem 25-61).

Using the final equation in Problem 25-20, we have

_ (6.01 kJ-mol )8
17 (8314 . mol - K 1)(273.2K)?
+ 1 (6.01 kJT-mol™
(8.314 - mol™. K™ ) (273.2K)? 273.2K
= (0.00969 K™)0 + (5.2 x L0 K50 + . .-

—lIna

— 18.8 J-mol™! -K‘l)

If 8 = 4.45 K, then

Ina, = —(0.00969 K (@.45K) — (5.2 x 107 X%)(4.45 K)?
= —0.0432

and so a, = 0.958.

25-22. The freezing point of a 5.0-molal aqueous glycerol (1,2,3-propanetricl) solution is —10.6°C.
Calculate the activity of water at °C in this solution, (Sec Problems 25-20 and 25-21.)

Use the equation derived in Problem 25-21

Ina, = —(0.00969 K™)8 — (5.2 x 10 * K ?)8?

Solutions || Solid-Liguid Solutions
with 8 = 10.6 K to get

Ina, = —(0.00969 K '}(10.6 K) — (5.2 x 107 K%)(10.6 K)?
= —0.103

and so a, = 0.902.

25-23. Show that replacing T, A by T in the denominator of (T, — T )/ T T,

fus = fus

{see Equation 25.20)

ngBS _8/(1}35)2 - 92/(szs)3 e where 6 = Tf:s - I}us'
Tfus — Tf:s _ —f _ a2
TfusTfEs ]}:s(f}:s —0) {Tf:s 2 (1 _ 9* )
T{us
Now use the expansion 1/(1 —x) =x + x* + - - - to write
T — T 6 [ ] g2 }
fus fus
T Ib g
TfusI'fus (Tfus)z T}ns (I}us 2
8 6*
— —_ ..

——(Tf:s)z - (Tt 3

fus

25-24. Calculate the value of the freezing point depressicn constant for nitrobenzene, whose freezing
point is 5.7°C and whose molar enthalpy of fusion is 11.59 kJ-mol™".

Using Equation 25.23, we write

Kz( M, )MEJ
£ \1000gke™ ) A H

_ {12311 g-mol™"\ [ (8.314 J-mol™"-K™')(278.9 K)*
T\ 1000 g kg™ 11.59 x 10° J-mol™!
= 6.87 K-kg-mol™

25-25. Use an argument similar tc the one we used to derive Equations 25.22 and 25.23 to derive
Equations 25.24 and 25.25.

The condition for equilibrium at a temperature T is
pi(r, Py = ,LLiln(T, Py=ui(T,P)+ RTIna, = w + RT Ina,
Solving for Ina, gives

E_ !
Ina, = i
RT
Use the Gibbs-Helmholtz equation (Example 24—1) to get
oln al _ Ell - Ei; _ A\vapF
8T J,.  RT* ~—  RT?
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This equation s similar to Equation 25.17 except for the negative sign, which occurs becanse boiling
points of solutions are elevated whereas freezing points are lowered. The rest of the derivation
follows Equations 25.18 through 25.23.

25-26. Calculate the boiling point elevation constant for cyclohexane given that 7 = 354 K and that
A H =29.97kJ-mol .

Using the analog of Equation 25.23, we have
_ (84.161 g-mol ") (8.314 T-mol 'K 1)(354 K)*
b (1000 g-kg™)(29.97 x 10° J-mol ™)
2.93 K-kg-mol™!

25-27. A solution containing 1.470 g of dichlorobenzene in 50.00 g of benzene boils at 80.60°C at
a pressure of 1.00 bar. The boiling point of pure benzene is 80.09°C and the molar enthalpy of
vaporization of pure benzene is 32.0 kJ-mol . Determine the molecular mass of dichlorobenzene
from these data.

The value of AvapT is
AvapT = 80.60°C — 80.09°C =0.51"C=0.51K

Using the analog of Equation 25.23, we have

(78108 g-mol™)(8.314 J-mol-K™)(353.2 K)?
b= (1000 g-kg (32,0 x 10? T-mol )
=2.53 K-kg-mol ™'

The molality is given by

AT 051K

T=TK T 253K kg -mol!

= 0.20 mol-kg™!

Therefore,

1.470 g C.H,CL, «— 50.0 g CH,
29.4 g CH,Cl, «— 1000 g C.H, <— 0.20 mol

and so the molecular mass is 147,

25-28. Consider the following phase diagram for a typical pure substance. Label the region
corresponding to each phase. Illustrate how this diagram changes for a dilute solution of a
nonvolatile solute.

Solutions Il Solid-Liguid Solutions

P/ bar

Now demonstrate that the boiling point increases and the freezing point decreases as a result of the
dissolation of the solute.

Use the following figure for water, which is self-explanatory

Freezing point curve Vapor pressure curve
of solution of pure solvent
Freezing point curve Vapor pressure curve
/of pure solvent / of solution
1.00(-----------------}p----------mmme e
]
| b
1 4!
l 1
H i
¥ i
I i
i
Ao
H
) |
E E i Vaper pressure
= ! ' lowering
| |
\ 1 | . .
A, | | {Freezing point Boiling point ¢levation
! ' depression
' '
\ f
h i
] )
1 1
; \
I ]
I ll
| )
Sublimation !
pIESSUIE curve | !
1 age .
l ! ! Depressed freezing point Nermal boiling point
I 1
i 7 Normal freezing point Elevated boiling poin:
P
O ] I/
0 n
0 T, T¢ T T,

T/K

TIE'— Tf = freezing point depression be Tbn = beiling peiat elevation

25-29. A solution containing 0.80 grams of a protein in 100 mL of a solution has an osmotic pressure
of 2.06 torr at 25.0°C. What is the molecular mass of the protein?

We use Equation 25.31,

o (2.06 torr) /(760 torr-atm™")

T RT  (0.08206 L-atm-mol " -K1)(298.2 K)
=1.11 x 107* mol-L™! = 1.11 x 107 mol/100 mL
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Therefore, 1.11 x 107 mol corresponds to 0.80 g protein, and so the molecular mass of the protein for a binary salt. Therefore, we have the following table.

is ?2 {00. type I

-1 Ylm, 4+ 1m )= 1(2m) =m

12 (@m, + lm ) = 1(4m +2m) = 3m
2-1 J(m, +4m )= ;@2m+4m)=3m
2-2 3(4m,+4m ) =1(8m)=4m

1-3 %(9m+ + 1m_) = %(9m -+ 3m) = 6m
3-1 %(m++9m_) = %(3m+9m) = 6m

25-30. Show that the esmotic pressure of an aqueous solution can be written as

0= RT m o
7 \55.506 mol-kg™!

Simply sobstitute Equation 25.13 into Equation 25.30.

25-31. According to Table 25.2, the activity of the water in a 2.00 molal sucrose solution is 0.95807. To prove the general result, substitute m, = v mandm_=v_m into Equation 1 to get

What external pressure must be applied to the solution at 25.0°C to make the activity of the water
in the solution the same as that in pure water at 25.0°C and 1 atm? Take the density of water to be

1
I = 5(21v+ +z2v ym
0.997 g-mL™",

m

Now use the electroneutrality condition z v, == |z_{v_ to get

. . 1
Using Bquation 25.30, we have I.,= -Z-(ZJJZ,I[ +iz_ v )m

H

Z,1Z Z_|¥
_ kel (v_+| | _)mzlz_m(v o

2 z,

_ RTIng, _ (0.08206L-aum-mol '-K™)(298.2 K)(In0.95807)

v, 0.01807 L-mol™!
= 58.0 atm

25-34. Show that the inclusion of the factor v in Equation 25.41 allows ¢p — 1 asm — 0 for solutions
of electrolytes as well as nonelectrolytes. Hins: Realize that x, involves the total number of moles
of solute particles {(see Equation 25.44).

25-32. Show that a, = a. = m?yZ for a 2-2 salt such as CuSO, and that a, = a} = 27m*y{ fora1-3
salt such as LaCl,.

For a nonelectrolyte, Ina, — Inx, — Ila(l — x,) - —x, as x, — 0. According to Equation 25.21,
x, = M;m/(1000 g-kg™") as m -> 0, so ¢ defined by Ina, = —M,m¢/(1000 g-kg ") (Bqua-
tion 25.13) becomes ¢ = (Ina,}/x, =1 as x, — 0 or m — 0. For an electrolyte, x, —
vM,m/(1000g-kg ") asx, —> Qorm — 0. Therefore, ¢ defined by Ina, = —v M m/(1000g-kg™"
(Equation 25.41) becomes ¢ = (Ina,)/x, = lasx, = Qorm — 0.

Equation 25.40 gives us @, = a} = m}y; . For a 2-2 salt, such as MgS8O,, v, =1, v_=1,
m, =m,andm_=m,and so a, = a} = m’y,ora, =my,.
For a 1-3 salt, such as LaCl,, v, = Lv=3m =m, and m_ = 3m, and so a, = ai =

[m'(3m)*yl, ora, =27 my,.

25-33. Verify the following table: 25-35. Use Equation 25.41 and the Gibbs-Duhem equation to derive Equation 25.42.

Type of salt Example 1

1—1 KCl m Consider an aqueous solution consisting of 1000 g of water. The Gibbs-Duhem equation is
1-2 CaCl 3

21 KjSOi 3$ ndhna, +n,Ina, =0

2-2 MgS0, 4in of

i—-3 LaCl, 6m

3-1 Na,PO, 6m (55.506 mol-kg HydIna, + mdlna, =0

Show that the general result for [ is |z, z_[(v, + v)m/2. Use Equation 25.41 to obtain

~vd{m¢) + mdlna, =0
We use Equation 25.52 in terms of molality.

Equation 25.37 gives a, = a} = m} y;, and so we have

1< 1
I ==Y Zm ==(m, +22m) = (1
2; T M —~vd(me¢) +mvdlnm,y, =0
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But generally m = cm, where ¢ is a constant whose value depends upon the type of electrolyte
{see Table 25.3), and so

vd(m¢) = mvd In(cmy,)

= mvd In(my,)
Thus
d(m¢) = md In(my,)
or
mde + ¢pdm = m(dlny, +dInm)

Division by m gives
dm dm
4l -
dé -+ ¢— ny,+
or
-1
n

Now integrate from m = 0 (where y, = ¢ = 1) to m to obtain Equation 25.42.

25-36. The osmotic coefficient of CaCl,(aq) solutions can be expressed as
& = 1.0000 — (1.2083 kg"? mol™/2)m'/2 4 (3.2215 kg-mol)m
— (3.6991 kg*? - mol " ¥?)m** | (2.3355 kg® - mol)m’
— (0.67218 kg*?-mol~)m>? 1 (0.069749 kg® -mol )’
0 <m < 5.00mol kg™’

Use this expression to calculate and plot Iny, as a function of m'/>,

Substitute the expression for ¢ given in the problem into Equation 25.42. The result is shown in the
following figure.

2.00

1.00

In vy

0.00 -

~1.00 ! | | ] ;
0.00 0.50 1.00 £.50 2.00 2.50

17 1/ — Ly
m 2/ mol 2.kg *

Solutions Il Solid-Liquid Solutions

25~37. Use Equation 25.43 to calculate In y, for NaCl(ag) at 25°C as a function of molality and plot
it versus m'/?. Compare your results with those in Table 25 4.

Substitute Equation 25.43 into Equation 25.42. The result is shown in the following figure. The
calculated and experimental values are indistinguishable on the graph.

I | I f J
0.00 0.50 1.00 1.50 2.00 2.50

m'?/ mol"2.kg 2

25-38. In Problem 25-19, you determined Iny, for sucrose by calculating the area under the curve
of ¢ — 1 versus m. When dealing with solutions of electrolytes, it is better numerically to plot
(¢ — 1)/m'? versus m'/* because of the natural dependence of ¢ on m'/2. Show that

ml/l ¢m1

A I V)
m

Iny, =¢—-1+2
0

Start with Equation 25.42, and let x = m'/® and dx = dm/2m'? = dm/2x to obtain

"1 o1
f ?—,—dm’xj{ ¢ ——2x'dx’'
U 0 X

mlf?
o[ g
A 2

The full expression for In y, is

w2 é—1
lnyi=¢“1+2] —1/20»’??11/2
0 m

25-39. Use the data in Table 25.4 to calculate Iny, for NaCl(ag) at 25°C by plotting (¢ — 1}/ m*/?
against m'*> and determine the area under the curve by numerical integration {Mathchapter G).
Compare your values of In y, with those you obtained in Problem 25-37, where you calculate In y_

from a curve-fit expression of ¢ as a polynomial in m /2,

809
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The plot is essentially identical to the one obtained in Problem 25-37.

25-40, Don Juan Pond in the Wright Valley of Antarctica freezes at —57°C. The major solute in the '

pond is CaCl,. Estimate the concentration of CaCl, in the pond water.

We say “estimate” because the concentration will be too large for Equation 25.45 to be quantitative.
Nevertheless, we can “estimate” the molality to be
57K
m =~ -
(3)(1.84 K-kg-mol™)

= 10 mol-kg™

where the factor of 3 in the denominator results because v = 3 for CaCl,.

25-41. A solution of mercury(Il) chloride is a poor conductor of electricity. A 40.7-g sample of HgCl,
is dissolved in 100.0 g of water, and the freezing point of the solution is found to be —2.83°C.
Explain why HgCl, in solution is a poor conductor of electricity.

Because 40.7 g HgCl, corresponds to 0.150 mol HgCl,, the molality of the solution is 1.50 mol kg
Using Equation 25.45, we find v to be

AT, 283K

T Kyn  (1.84K-kg-mol™)(1.50 mol-kg™")

=1.02

v

This result indicates that HgCl, is not dissociated under these conditions, and so is a poor conductor
of electricity.

25-42. The freezing point of a 0.25-molal aqueous solution of Mayer’s reagent, K,Hgl,, is found to
be —1.41°C. Suggest a possible dissociation reaction that takes place when K, Hgl, is dissolved in
water.

Use Equation 25.45 to obtain v = 3. The equation for the dissociation reaction is

K,Kgl,(aq) — 2 K*(aq) + Hgl}™ (aq)

25-43. Given the following freezing-point depression data, determine the number of ions produced per
formula unit when the indicated substance is dissolved in water to produce a 1.00-molal solution.

Formula AT/X

PICL-4NH,  5.58
PICL,-3NH,  3.72
PCl,2NH,  1.86
KPiCl,-NH,  3.72
K,PiCl, 5.58

Interpret your results.

Solutions 11 Solid-Liguid Solutions 811

Use Equation 25.45 to obtain

formula v ions

PCL-4NH, 3 Pt(NH, ooaar
PtCL-3NH, 2 Pt(NH,),CI* CI”
PCL-2NH, 1 PtNH,),Cl
KPtCl,-NH, 2 K" PuNH,)CIy
K,PiCl, 3 2K* PCR”

25-44. An aqueous solution of NaCl has an jfonic strength of 0.315 mol-L~!. At what concentration
will an agueous solution of K, 50, have the same ionic strength?

The ionic strength, I, equals ¢ for a 1-1 electrolyte and 3¢ for a 2—1 electrolyte. Therefore,
a solution of K,S0,(aq) would have an ionic strength of 0.315 mol-L™" when its molarity is
0.105 mol-L™".

25-45. Derive the “practical” formula for «* given by Equation 25.53.

Start with
RS, P N 52l
g g T iV g8y T 4 7V
Now

n,
_ -3
VJ = (1000 L-m )CJ.

because V, being in SI units, has units of m?. Therefore,

, 2¢*N,(1000L-m™)
K- =
sosrkBT

(I /mol-L™")

25-46. Some authors define ionic strength in terms of molality rather than molarity, in which case

153,
Im = EZijj
j:

Show that this definition modifies Equation 25.53 for dilute solutions to be

2 _ ZezNA(l()OO L-me
snsrkT

K (I_jmol-kg™)

where p is the density of the solvent (in g-mL™").

For dilute solutions, ¢ = pm {see Problem 25-5), and so I, = pI, . Therefore,

2 _ 2¢*N, (1000 L-m™)p
g,6,kT

x (7_/mol-kg™)
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25-47. Show that
Iny, = —1.171)z,2z_|(Z,/mol-kg ™)'

for an aqueous solution at 25.0°C, where I is the ionic strength expressed in terms of molality.
Take &, to be 78.54 and the density of water to be 0.99707 g-mL7L, :

We use the equation for «? that is derived in Problem 25-46.
. (2)(1.6022 x 107" C)*(6.0221 x 10” mol)(1000 L-m™)(0.99707 g-mL™")
K = T88542 x 1072 s> kg m™?)(78.54)(1.3806 x 107 J-K1}(298.2K)
x(I /mol-kg™")
— (1.077 x 10® g L-mL ™37 -s72)(I, /mol kg™)
1kg 1000 mL
1000g 1L

= (1.077 x 10" m™»)(I /mol-kg™")
( m

(752 _/mol-kg™)

= (1.077 x 10*° g-L-mL ™)

The expression for Iny, is
e’k
Iny, =—lz ZJW
(1.6022 x 107 C)*(1.077 x 10" m )Y jmol kg2
~le e 8542 % 10 7 C7-2 kg m *)(78.54)(1.3806 x 1077 J-K™)(298.2K)
= —1.171|z+z:7|{Im/mol-}t(g’l)”2

25-48. Use the Debye-Hiickel theory to calculate Iny,, for 2'0.010-molar NaCl(aq) solution at 25.0°C.

Take ¢ = 78.54 for H,0(]) at 25.0°C. The experimental value of Iny, is —0.103.

We can use Equation 25.56 directly.
ny, = —1.173(0.010)"* = -0.1173

and so y, = 0.889.

25-49. Derive the general equation
1 m
p=1 +—-f m'diny,
m Jo

(Hint: See the derivation in Problem 25-35.) Use this result to show that

Iny,
3

$=1+

for the Debye-Hiickel theory.

Start with (see Problem 25-35)

d(m¢) = mdIn(my,) = m(dlnm + diny,)
=dm+mdiny,

Solutions It Solid-Liquid Solutions

and integrate from m = 0 to arbitrary m to obtain

mqb:m—l—f m'dlny,
¢
or
[
qb:l—}-——f m'diny, (1)
m Jo
Now use Equation 25.49 to write In y, as

(c/mD)
Fic3

RS VA
8me,e k, T

Iny, = —|q,q_|

where i /m'/* is independent of m. Then

(c/m?y  dm Iny,
= dm

din = — e
Vi 12,9 8re,e k, T 2m'"? 2m

and

(c/m'"™)

1
diny, — —— efm )
ey Mﬂ—ismosrkBT

In
m'dm = Aa‘m
2 2

Substitute these results into Equation 1 to obtain
: o
p—1=— m'diny,
m Jo
1

¥2y | pm
q+q7|—(x/m ) —f mdm’

2 8mege kg T m Jo

_ Iy,

3

25-50. In the Debye-Hiickel theory, the ions are modeled as point ions and the solvent is modeled as a
continuous medium (no structure) with a relative permittivity ¢,. Consider an ionof type: (i = a
cation or an anion) situated at the origin of a spherical coordinate system. The presence of this ion
at the origin will attract ions of opposite charge and repel ions of the same charge. Let N, (r) be the
number of ions of type j (j = a cation or an anion) situated at a distance r from the central ion of
type i (a cation or anion). We can use a Boltzmann factor to say that

N, ()= Njg_wri(r)/kBT

where N,/ V is the bulk number density of j fons and w, (r) is the interaction energy of an i ion
with a j ion. This interaction energy will be electrostatic in origin, so let w,,(r) = g,¥,(r), where
q; is the charge on the j ion and ¥ (r) is the electrostatic potential due to the central i ion.

A fundamental equation from physics that relates a spherically symumetric electrostatic
potential v, () to a spherically symmetric charge density p,{r) is Poisson’s equation

4[] 20

)
redr dr €48,

(1)

where &_is the relative permittivity of the solvent. In our case, p,{r} is the charge density around
the central ion {of type i). First, show that

!

1 = r
p,(r) = v quNU(r) = qucje 4 ¥, 0/ kT
i
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where C, is the bulk number density of species j (C; = N,/ V). Linearize the exponential term and '

use the condition of electroneutrality to show that

2
_ %<
p(r) = =¥, (") }: T @
Now substitute p,(r) into Poisson’s equation to get
1d | ,dy(r) ) |
"y [" T]_K ¥, (r) 3

where

2 2
q;C, q; N,
2 J 1 J I
‘ 7 ot kp T Z £k T ( V) ®
Show that Equation 3 can be written as

d2
F[r Vv, (N] = 1 r ()]
Now show that the only solution for ¥, () that is finite for large values of r is

—Kr

Ae

¥, () = (5)

r

where A is a constant. Use the fact that if the concentration is very small, then W, (r) is just
Coulomb’s Jaw and so A = ¢,/4mee, and,

—Kr

q.€
Amege v

¥ = ©)

Equation 6 is a central result of the Debye-Hiickel theory. The factor of ¢™modulates the resulting
Coulombic potential, so Equation 6 is called a screened Coulombic potential.

The number of ions of type j situated at a distance r from the central ion of type i is given by
— N 0T
N, () = N ™™

The charge about a central ion of type i due to ions of type j is given by g, N, () and the net charge
is given by zi q; N, (). The charge density at a distance » from the central ion of type i is given by

1
I — —g ¥ )/ g T
pir)y = = 3 gN, ) =) g,Ce™
7 J
Now expand the exponential using the expansione™ =1—x +--to obtain

Y, ()
P,-(?’)=ijcj_‘“ﬁ qucj'“'_
i B i

= 0 (by electroneutrality) — M Z qu CJ.2 + -

KT 4
Now substitute p,(r) into Poisson’s equation to get
1 d [ ,dy(r) N
ridr [r dr ] =0 )

Solutions |i Solid-Liquid Solutions

where
K2 = ; Z ZC
&8, ky T 4 4%
Now
14 [rzdw,-(r) _ a4 (r) N 24dy,(r)
ridr dr dr? F o dr
and
il AR S A SR AG)
ar’ T dr? dr
S0

1d I:,.zd‘/’i(”) _ 1&g )]
rrdr dr :I Ty drr

Therefore, Equation 3 can be written as

d*[r,
L)~ ety

This differential equation has the general solution
F, () = B + A
or
B A
d’,‘ (r) = mptT 3 —e T
¥ s

But B must be zero for ¥,(#) to be finite as » — oo. Therefore, we have simply

A
11[’,'(]') = ?‘3_“

If the concentration is very small, then « — 0 and y,(r) —> g,/4me ¢, r. Therefore,
A .
Y — ==
r dmwesr
and we see that A = g,/4mee, . Finally then, we have

—Kr

q;e
dmee v
T

lp'[.(r):

25-51. Use Equations 2 and 6 of the previous problem to show that the net charge in a spherical shell

of radius r surrounding a central ion of type i is

p,(r)dr = p,.(r)4:r£r2dr = —q!.fczre_"’dr

as in Hquation 25.54. Why is

j P,-(T)dr = —q,;
0




816

Chapter 25
Start with
p,(rdr = p, (rYdnridr
Equations 2 and 4 of Problem 25-50 show that

__,0_1-(2 — ’CZU’{(”)

€&,
so that
p,(r)dr = —e,e, K (r)Amridr
Using Equation 6 of Problem 25-50, we have
p,(rydr = —g,k’re™"dr

Therefore,

/ p,(rdr = —qt,.!czf re “dr = —g,
0 o

which it must be because of electroneutrality.

25-52. Use the result of the previous problem to show that the most probable value of r is 1/k.

Problem 25-51 shows that p,(r) = re . Therefore, the most probable value of r is given by

dp.
% e —gre ™ =0
orr,, = 1/x.
25-53. Show that
1 304 pm
ry =

m = ¢ T (c/mol-LH

where ¢ is the molarity of an aqueous solution of a 1-1 electrolyte at 25°C. Take g, = 78.54 for
H,O(1) at 25°C.

Use Equation 25.53
2(1.602 x 107" €)2(6.022 x 10”* mol™")(1000 L-m~*)(I /mol-L™)
~ (8.8542 x 10712 C-s>- kg™t -m~*)(78.54)(1.3806 x 1072 J- K )(298.15K)
= (1.080 x 10" g-1-mL™ 57237 (I fmol- L")
tkg 1000 mL
1000g 1L

= (1.080 x 10" mfl)(lc/mol-L’l)

2
K

— (1.080 x 10" g-L-mL ") (s3I, /mol-L™)

K = (3.29 x 10° m™)(I_/mol-L™)*?

Soluticns 1t Solid-Liquid Solutions 317
For a 1-1 electrolyte, I = ¢, and so

1 3.04x 107" m 304 pm

£ (c/mol-L Y2 " (c/mol-L-H)1"2

25-54, Show that

mp

r =l=430pm
I's

for a 0.50-molar aqueous solution of a 1-1 electrolyte at 25°C. Take e, = 78.54 for H,0(1) at 25°C.

Use Equation 25.55 and the result of Problem 25-52:

1 304 pm 304 pm
Fop = . = iz iz = 430 pm
Pk  (c/mol-L7) (0.50)

25-55. How does the thickness of the ionic atmosphere compare for a 1-1 electrolyte and a 2-2

clectrolyte?

Equation 25.50 shows that k3_» = 4k]_q, or that &y_g = 2«1_1. Because 1/k is a measure of
the thickness of an ionic atmosphere, we see that the thickness of the ionic atmosphere of a 2-2
electrolyte is one half that of a 1-1 electrolyte.

25-56, In this problem, we will calculate the total electrostatic energy of an electrolyte solution in

the Debye-Hiickel theory. Use the equations in Problem 25-50 to show that the number of ions of
type j in a spherical shell of radii » and r + dr about a central ion of type i is

N..(r) ' ()
" Vagridr = Ce O 4my2dr e C [ 1 — ﬂ- 4ridr o))
v j i ke, T

The total Coulombic interaction between the central ion of type i and the ions of type j in
the spherical shell is N, (r)ul.j (Mamridr/V where u i (r) =4q,q; /4meqe,r. To determine the
electrostatic interaction energy of all the ions in the solution with the central ion {of type i), ug,
sum N, (P, (r)/ V over all types of ions in a spherical shell and then integrate over all spherical

shells to get
oo N.(ryu, (r)
U.cl — 1 .z 4 Zd
o= (z 2y 0,0 ) wrdr

!

Cqgq. > A,
- Jq,q,j[ (l_q,w,(r)>rdr
—~ £,6, Jo ke, T

)

Use electroneutrality to show that

UI.'31 = —ql.fczf v (rivdr
0

Now, using Equation 6 of Problem 25-50, show that the interaction of all ions with the central ion
(of type ) is given by

2.2 0o . 2
Uel__ 4 K f e dyr = — ;%
= —— = ——
dmee Jo dme,e,
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Now argue that the total electrostatic energy is
a_ Vk Ti?
SO

Why is there a factor of 1/2 in this equation? Wouldn't you be overcounting the energy otherwise?

According to Problem 25-50, the number of ions of type ; in a spherical shell of radii 7 and » + dr
about a central ion of type i is given by

N..(Ndmridr :
”—V—- = Cjef"f”"i(’)/kﬁrélrrrzdr
Linearize the exponential term to obtain

N..(rHdmridr q,¥,(r)
RCALALAY) 2
v ; (1 T )47rr dr

The Coulombic interaction between the ions in the spherical shell and the central ion (of type i) is
u (PN (rY4mridr]V, where u, (r) = q,q;/4mee,r. The interaction of all ions with the central
ion is given by

u(ﬂN&Mm' @y
f Z _Zf (4188r>cj(1——kT)4yrrdr

B

a4 2 =
Z J{ q,CAmrdr — —— qu c, ){ W (Panrdr
7 r J

2
4;C; %
= 0 (by electroneutrality) — g, — f ¥, (rrdr
y | 1 XJ: gt kg T 7 Jo

4me,E,

= —qr.lczj. Y (r)rdr
0
Using Equation 6 of Problem 25-50,
U-elz— QEZK:Z fwewxrdr=_ qg"’c
‘ dree, Jo drege,

The total electrostatic energy is given by

_1 SN = Vi, Tx aC_ _ ViTe
8 ek, T 8

The factor of 1/2 is needed in the second term in the above equation because in the summation
over i, each ion occurs both as a central ion and as an ion in the spherical shell.

25-57. We derived an expression for U® in the previous problem. Use the Gibbs-Helmholtz equation
for A (Problem 22-23) to show that

Vi, Tic?

Ael —-
127

Use the Gibbs-Helmholtz equation for A written in the form

(%fﬁsz
%

with (see Problem 25-56)

Uel

Vi, T’

174 q;

i

8

Vﬁlﬂ

 8nik,

3/2

g.zC.

8

E : J )
&y€,

J

0" r

)"7? Z ot

Solutions Il Solid-Liquid Solutions

372

Substitute this result into the Gibbs-Helmholtz equation and integrate from 0 to 8 to obtain

ﬁAeiz_

Cr

372

1% ﬂ3/2 qjlcj _ Kfi
127 T &8, 127
ao VT
127

25-58. If we assume that the electrostatic interactions are the sole cause of the nonideality of an
electrolyte sclution, then we can say that

-Mj _

or that

el

Ly =

aAel
an,
Al
aAel
N,
iy

= RT Iny}!

_ el
=k, Tlny

Use the result you got for A® in the previous problem to show that

Use the formula

to show that

ky

Iny, =

2
Tlnyd = ——H
4 8me e,
vi= v
v gl +v_g’ P
v, Fv_ 8reye kT

Use the electroneutrality condition v_g,_ +v_qg_ = 0 to rewrite Iny, as

Iny, =

in agreement with Equation 25.49.

~lg,q_|

K
Brreye by T

819
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Using the final result from Problem 25-57,

u aAel
Hi=\oN,
17 v

12
Vg 9 7<) T ypt s Zq? ¢ 4
R éﬁ; Z g6,V T 12z 2 £48, eoer

i H 0

2
"qu 1
= — =k Thnyk
8we s, B Yi

Now, take the logarithm of the equation yy = y,t* yﬁ‘ and the previous result to obtain

v+lny++v_lny_ =_( K ) <v+qi+v_9"3

Iy, = v, v 8me,e,ky T v, +V_

But
v,qt v g =q,v,a)F v gt =g,(v.gN+v_lgl

=gq,lq_| (v_ + v_!—q;]) =lg,q_|(v_+v,)
4.

where we have used the electroneutrality condition, v g, = v_lg |, and so finally

K
Iny, = Ji@ﬂjm

25-59. Derive Equation 25.56 from Equation 25.49.

Sce the solution to Problem 25-47, but do not include the factor p = 0.99707 g-mL™".

25-60. Show that Equation 25.59 reduces to Equation 25.49 for small concentrations.

We want to show that Equation 25.59 reduces to Bquation 25.49 as p — 0 or as & = 0. Let’s
consider In 2 first. Use the fact that (1 -+ OV =14+x/2—x*/8+ x*/16 - - - - to write

@0* , @x)
8 + 16

x(1+ZX)1/2*xr—x2=x[1+x—— +O(x4)]—x—x2

3
X

2
Using the fact that x = xd, Equation 25.60 becomes

IC3

Inyf = ~Snp

For a 1-1 electrolyte, k* = p/e e, kT, s0 we have

K
re.ek, T

¢y B

Iyl =

Solutions 11 Solid-Liquid Solutions 821

in agreement with Equation 25.49 for a 1-1 electrolyte. The In ¥ contribution to Equation 25.59
is negligible when p — 0 because y = Tpd’ /6.

25—-61. In this problem, we will investigate the temperature dependence of activities. Starting with the
equation u, = [ -+ RT Ina,, show that

(Bl‘nal _?f:"H1
0T Jp.  RT

where E? is the molar enthalpy of the pure solvent (at one bar) and H | is its partial molar enthalpy
in the solution. The difference between ?f: and H, is small for dilute solutions, so a, is fairly
independent of temperature.

Starting with ¢, = 4] + RT lna,, differentiate g, /T with respectto T to obtain

(ap,]/T (/T _ p(2ne
0T J»s aT /J, T )

Now use the equation (see Example 24-1)

(a,u,j/T ___ﬁ_j
T S, T

(alnal) _-IT;—E]
aT P‘xl_ RT?

25-62. Henry’s law says that the pressure of a gas in equilibrivm with a non-electrolyte solution of
the gas in a liquid is proportional to the molality of the gas in the solution for sufficiently dilute
solutions. What form do you think Henry’s law takes on for a gas such as HCl(g) dissolved in
water? Use the following data for HCI(g) at 25°C to test your prediction.

to write

P /107 atm g /107 mol-kg™

0.147 1.81
0.238 2.32
0.443 3.19
0.663 3.93
0.851 4.47
1.080 5.06
1.622 6.25
1.929 6.84
2.083 7.12

A plot of pressure against molality is not a straight line, but a plot of pressure against molality
squared is almost a straight line. This is due to the fact that HCl(ag) dissociates into Hf(aq) and
Cl™ (aq).
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25-63. When the pressures in Problem 25-62 are plotted against molality squared, the result is almost : | CHAPTER
a straight line. Curve fit the data to polynomials of the form '

P = k(1 cym'® + cgm e £ o) Chemical Equilibrium

of increasing degree and evaluate k.

PROBLEMS AND SOLUTIONS

If the data are fitted to P = kym?, k, turns out to be (in units of atm-kg®-mol %) 4.15 x 107". The
subsequent fits are (suppressing the units)

Ty “ €2 Oy o

483 %107 =177
492x 107" -2.24 348
493 x 1077 -2.33 475 —6.21

493 %107 -234 507 -945 103 : ' 26-1. Express the concentrations of each species in the following chemical equations in terms of the
, , _2 extent of reaction, £. The initial conditions are given under cach equation.
Thus we see that &, = 4.93 x 1077 atm-kg*-mol™. a. S0,CL(5) < SO@ + CL(g
H n, 0 0
. 2 . 172 2 R n 0
25-64. When the data in Problem 25-62 are plotied in the form of P/m?* against m'/?, the result _ o .
is essentially a straight line with a negative slope. Why is this so? Use Debye—Hﬁckel theory to . b. 280,(2) = 2S0,(8) + O,»
calculate the slope of this line and compare your result with the final valve of ¢, in Problem 25-63. D 7, 0 0
; (2) n, 0 n,
' ‘ N + 20 = NO
The activity of the HCI(ag) is given by @y, = P/ky. Using the fact that aye, = a = m"yZ, we __ “ (1 fmig) 2;28) ) 04(g)
have (2) fy n, #]
P =k m’y;
2 .d. The Debye-Hiickel expression for We can use Equation 26.1 in all cases to express the concentrations of each species.
Note that as m — 0, y, — 1, and P — kym", as expected. The Debye-Huckel exp he a. SOCL(E = SO, + CLig)
in this case is ‘ 0)] n,—§& I3 E
Iy, = —1.171m'" @ m=s m+§ §
. : 2.2 . : ding b. 280,(g) = 280, + 0O,®
Substitute this expression for y, into P = kym vy and linearize the exponential according to : (1) n,—2 2§ £
e*=1—x+--toobtain ' : (2 n,—2% 2& n,+&
=k, m*(1 —2.342m' + - - c. N(gy + 20,8 = N0l
P =km (1 —2.342 +-00) (1 n,—& 2n, — 2 4
Thus, we predict that ¢, in Problem 25-63 is equal to —2.34, in excellent agreement. _ ) n,—¢& n, — 2£ £

26—2. Write out the equilibrinm-constant expression for the reaction that is described by the equation
280,(g) +0,(g) = 250,(g)

Coempare your result to what you get if the reaction is represented by

1
SO,(g) + 2 0,(2) = SO,(g)

Using Equation 26.12, we write K, for the first chemical equation as
2
£ 50,

K (T) = ——2—
} ‘PO2 PSZOZ
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