CHAPTER 2 7

The Kinetic Theory of Gases

PROBLEMS AND SOLUTIONS

27-1. Calculate the average translationéi} energy of one mole of ethane at 400 K, assuming ideal
behavior, Compare your result to TU" for ethane at 400 X given in Figure 22.3.

From Section 18-1, for an ideal molecule

3
E = ERT =499 kJ-mol™!

tran:

At P = 0 bar (ideal conditions), U # 14.6 kJ-mol™' from Figure 22.3. Therefore, E,___ accounts
for a third of the total energy.

27-2. Calculate the root-mean-square speed of a nitrogen molecule at 200 K, 300 K, 500 K, and
1000 K.

Using Equation 27.14, we find that

3RT\"*  [3(8.3145J-mol™ -K-I)T]”"‘
u = —_— =
s M 0.02802 kg-mol™

Substituting for T, we find the values below.

T/K u_/m- 57!
200 4219
300 516.8
500 667.2
1000 943.5

27-3. If the temperature of a gas is doubled, by how much is the root-mean-square speed of the
molecules increased? '

Let the original temperature of the gas be T and the original root-mean-square speed be u_ (T').
Then (Equation 27.14)

rms(T)

3RQT)Y T
s = [220]" o,
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The root-mean-square speed is increased by a factor of +/2.

27-4. The speed of sound in air at sea level at 20°C is about 770 mph. Compare this value with thé
root-mean-square speed of nitrogen and oxygen molecules at 20°C.

Using Equation 27.14, we write

_ [3(8.31451 J-mol ™ K™)(293 K)

Hems, = { 0.02802 kg-mol™*
3(8.31451 T-mol . K™)(293 K)

Hrms.0, = [ 0.03200 kg-mol ™"

172
] =5[1m-s7!

1/2
] =478 m-g”!
The speed of sound is
770 mph = 1239 km-h™ =344 m-s"

Nitrogen and oxygen molecules travel significantly faster (33% and 28% faster, respectively) than
sound in air at 20°C.

27-5. Arrange the following gases in order of increasing root-mean-square speed at the same
temperature: O,, N,, H,0, CO,, NO,, 235U1’56, and 238UFG.

The heavier the gas, the slower it will travel. (In Equation 27.14, the denominator of the root-
mean-square speed increases with increasing mass.} Thus, the arrangement of gases requested
is

PPUF, < ®UF; < NO, < CO, < 0, < N, < 1,0

27-6. Consider a mixture of H,{g} and I,(g). Calculate the ratio of the root-mean-square speed of
H,(g) and L, (g} molecules in the reaction mixture.

In the mixture, the two components have the same temperature, so (using Equation 27.14)

172 1/2 :
Uomst, _ (3RT /My, _ M, _ (25338 ”:112
e 3RT/M, My ) 2.016 '

27-7. The speed of sound in an ideal monatomic gas is given by

SRT\'?
I ={—
sound ( I )

Derive an equation for the ratio u_/u . Calculate the root-mean-square speed for an argon atom
at 20°C and compare your answer to the speed of sound in argon.

Using Bquation 27.14 and the definition of u above, we find

sound

wo.  (3RT/MN /9N 3
usnund - 5RT/3M B 5 B “\/__g
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The root-mean square speed of an argon atom at 20°C is
3RT\'?
= <m——) =428 m-s"'
M
1

and, using the relation between u__and u_ , given above, the speed of sound in argonis 319 m-s™.

u s

27-8. Calcuolate the speed of sound in argon at 25°C.

The speed of sound in argon at 25°C is (using the equivalence given in Problem 27-7)

T 1/2
U = —-~——5R = 321 m'571
ms 3M

27-9. The speed of sound in an ideal polyatomic gas is given by

yRT\?
usound = M

where y = C,/C,,. Calculate the speed of sound in nitrogen at 25°C.

Recall from Chapter 17 that_fv = 5R/2 for a diatomic ideal gas (neglecting the vibrational
contribution), and that C, — C,, = R (Equation 19.43). Then

B (CPRT)”Z B [7(8.3145 J-mol K™)(298.15 K)

1/2
L = ] =352m-s”
sound CVM 5(002802 kg -mol™)

27-10. Use Equation 27.17 to prove that du/du_=u_/u.

Begin with Equation 27.17:

a 4 9 2 2 2
—p = —{u u, +u
8u1u au = H i Z)
d
w2 —
du, *
du  u,
du.  u

27-11. Give a physical argument why y in Equation 27.24 must be a positive quantity.

Recall that f(u;) represents the probability distribution of the jth component of the velocity. As

u . increases, the probability of finding any molecule moving with speed 1, decreases, so that as

H; — 00, flu) — 0.If y were negative f(u ) in Equation 27.24 would diverge as u; — 00, 50 y
must be positive.
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27-12. We can use Equation 27.33 to calculate the probability that the x-component of the velocity of
a molecule lies within some range. For example, show that the probability that —u , < u_ < wu_is
given by '

. Y2 pug 2
Prob{—u_ <u <u = f e—mux/ZkBTdu
(Pl = s 5 tah (2;:ka) s x

M 172 Mo 2
— 2 L f e—muz/ZkBTdu
wmk, T}, x

Now let mu? / 2k, T = w? to get the cleaner-looking expression

2 IL'U N
_— —_— — —u
Prob{—n,=u =u, ,}= 7 fo e " dw

where w, = (m/2k, 7).

It so happens that the above integral cannot be evaluated in terms of any function that we have
encountered up to now. It is customary to express the integral in terms of a new function called the
error function, which is defined by

2 [,
el’f(Z) = W e dx (1)
0

The error function can be evaluated as a function of z by evaluating its defining integral numerically.
Some values of erf(z) are

erf(z) erf(z)

0.22270 0.91031
(.42839 0.95229
0.60386 0.97635
0.74210 ~0.98909
0.84270 0.99532

Now show that ‘
Prob{—u, <u, <u,} = erf(w)

Calculate the probability that —(2k, T/m)'? < u_ < (2k,T/m)'”.

m 172

Amuz

f(u")z(znk T) e T (27.33)
B

Since f(u,) is the probability that a molecule has velocity «,

Fi 11 172 Y0 2
—muy 2k, T
Pmb{_”m <u, = “10} = (ZTrkBT) j_u PRLTL d“x

0

m 172 pu,
=2 j e;mug/ZchTdu
2wk, T o *

Now let mu? 2k, T = w”*. Then

mu _du
kT

B

2
du, = 2k T wdw _ (219;‘)” Ju

g3 71 43

X

X

= 2wdw
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Letting w, = (m/2k, T)'u_, and substituting into the probability expression above,
P b{ - - } 2 fw(] _wzd
TOD —1 i i = —F 4
20— Tx — Tx0 JT]/Z 0 w
From the definition of an error function, it is easy to see that
2 “o _.2
Prob{—u g, <u <u_,}= % e dx = erf(w,)
T 0
To find the probability that —(2k,T/m)'? < u_ < (2k,T/m)'?, we first find w,:
muiu 1/‘2.. m(szT) 1/2
wO = —_— fove _ = 1
2k, T m2k,T)

Since Prob{—u  <u_ < u } = erf(w), from the table of values of erf(z) we find that

Prob{— 2k, T/m)"? < u_ < (2, T/m)"*} = exf(1) = 0.84270

27-13. Use the result of Problem 27-12 to show that

Prob{lu, | > u ,} =1 —erf ()

Prob{ju | = u } = 1 — Prob{lu | < u }

=1 wProb{—uIO <u, =< um}
In Problem 27-12 we found that Prob{—u , <u_ =< u_} =Ierf(w0), 50
Probflu,| = u} = 1 — erf(w,)

Notice that Prob{u, > u ,} = %[1 — erf(w,)] (see Problem 27-14).

27-14. Use the result of Problem 27-12 to calculate Prob{u, > +(k;T/m)'”*} and Prob{u_ >
+(2he, T /m)2).

We can write
Prob{u, > +(k,T/m)"*} = 1 — Prob{u, < +(k,T/m)"*}

Following the procedure used in Problem 27-12, this becomes

: " /2 (kBT/m)Uz ,
Prob{uxzﬂkﬂ/m)”z}ﬂ(znkgr) f_m ety

Letting w = (mn/2k,T)?u_and w, = (m/2k,T)"?u_,, this becomes

x0°

O

- [2 ) +5(35)]

=0.159

i 0 ) i wn:I/ﬁ )
Prob{u, > +(kBT/m)1’2} =1- Tﬂf e dw+ W[ eV dw
g _ w o
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Likewise,

0

1 2 1
Prob{u > +(2k.T 1/2=1——[—f g —[
{u, = +2k,T/m) '} v 7006 w-f-”l/2 A

| S ANTE |
=1 (9)" + ger o]

= 0.0786

mnzl

e’w2dw]

27-15. Use the result of Problem 27-12 io plot the probability that —u , <u_<u,
u /e, T /m)'2.

o Against

We found in Problem 27-12 that the above probability is given by erf(w,), where w, =
u o/ (2k, T /m)"*. The required plot will be a plot of erf(w,) against w, and thus identical to the
plot in the following problem.

27-16. Use Simpson’s rule or any other numerical integration routine to verify the values of erf(z)
given in Problem 27-12. Plot erf(z) against z.

1.0

0.6+

erf (z)

0.2+

27-17. Derive an expression for the average value of the positive values of u .

" 172

2

f(u”‘)z(Z:rrk T) gl (27.33)
B

As in Equation 27.34, we can write the average value of the positive u_as

oo /2 poo
" 2
— d — —mus 2k Td
wh= [ s, (stkBT) [, e,

B m \"2%,T (kTN
T \2mk, T 2m  \2wm
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27-18. This problem deals with the idea of the escape velocity of a particle from a body such as the
Earth’s surface. Recall from your course in physics that the potential energy of two masses, m, and
m,, separated by a distance r is given by

Gm m,

V(r) = —

(note the similarity with Coulomb’s law) where G = 6.67 x 107" J.m kg™ is called the gravitional
constant. Suppose a particle of mass m has a velocity » perpendicular to the Earth’s surface, Show
that the minimum veloeity that the particle must have in order to escape the Earth’s surface (its
escape velocity) is given by

2eM N\
“TATR

easth

Given that M = 5.98 x 10% kg is the mass of the Earth and R__ = 6.36 x 10° m is its mean
radius, calculate the escape velocity of a hydrogen molecule and a nitrogen molecule. What
temperature would each of these molecules have to have so that their average speed exceeds their
escape velocity?

The kinetic energy of the particle is equal and opposite to the potential energy between the two
bodies when the particle has the minimum velocity required to escape the Earth’s surface, so0

1 GmM
m ,UZ — ke carth
2 escape Remh
26M, N\
3] = —
e Rearth

where we can consider the distance between the particle and the circumference of the earth
negligible compared with the distance between the circumference of the earth and its center of
mass. Since the escape velocity is independent of particle size, for both hydrogen and nitrogen

. [2{6.67 x 107" Jom-kg™)(5.98 x 10* kg)
escape

1/2
: } =11200m-s™"
636 x 10°m

From Equation 27.42,
M2

escape
2wes::£11:|e,l~l1 - &R
0.002016 kg-mol™ (11 200 m-s~1)?
- gmol JU1Z0mS )" _119x10°K
8(8.3145T. X" -mol ™) .

7 M2

escape
Test:a[:!e.N2 - 3R

0.02802 kg-mol™)(11 200 m-s™'’
- gmol JAT200ms7) _ 166 10°k
8(8.31451-K"-mol ™)

27-19. Repeat the calculation in the previous problem for the moon’s surface. Take the mass of the
moon to be 7.35 x 10% kg and its radius to be 1.74 x 10°m.

Now

R

maon

26M 172
v = (—"‘"“) = 2370 m-s!
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Again, from Equation 27.42,

TMu?
T — escape
tasu:ap(-:,H2 BR
0.002016 kg-mol ™) (2370 m-s~1)?
_ 7l gmoil)( 70m s Y _syk
3(8.3145J- K -mol ™)
T — 'TrMUgscapc
cscapc,N2 8R
7(0.02802 kg-mol™)(2370 m-s*)*

= = 7460 K
8(8.3145T-K~'-mol™) : -

27-20. Show that the variance of Equation 27.37 is given by o = vik, T/mc*. Calcuate o for the

3p”P,,, t0 35S, , transition in atomic sodium vapor (see Figure 8.4) at 500 K.

Equation 27.37 gives f(v) as

_ i _ 2
M] (27.37)

F(vy=Kexp [ ZvSkBT

Compare this equation to that of a general Gaussian curve (Example B—4), with variance o =a*

—(x - XU)Z:I

dx = cex
px)dx =c¢ p[ Y

Since we know that T (v) has the shape of a Gaussian curve (by comparing the equations), the
variance for I (v) is given by
, vk, W0RT
= e T M

me c ‘
The wavelength of the 3p P, , to 3s ’§, , transition is (from Figure 8.4) 5889.9 x 107" m. Since
Av =c, v =5.090 x 10" 57!, Substituting, we find

, (5090 x 10" s71)?(8.3145 T-mol™" - K (500 K)

(0.02299 kg-mol " e
: g-mol (2,998 x 10° m-s )

oro =7.22x10%s7.

27-21. Show that the distribution of speeds for a two-dimensional gas is given by

F(du = kf}%ue’m"zﬁkﬂlﬁdu

(Recall that the area element in plane polar coordinates is rdrd@.)

The two-dimensional version of Equation 27.3% is

Flw)du = ( "

—m(u%-lvu%)/l T
2nkBT>e P/ duxduy
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Using a two-dimensional velocity space, we replace u> + ui by u* and du _d u, with 2mudu to
obtain

Fludu = (%) e ™™ T gy

B

27-22. Use the formula in the previous problem to derive formulas for (1) and {(u*} for a two-
dimensional gas. Compare your result for {u*) to (ui) + (ui). ‘

Because u is an intrinsically positive quantity, we can write our integrals over a positive range only.
Then, using Equations B.12 and B.13 and Table 27.2 to evaluate the integrals,

(u) =[] wF(u)du = kBiTJ[o ule=m % gy

o m N\ (2T (27, TN (mk, T\Y?  (mRT\Y
S\ T/ \ 4m m S\ 2m O\ 2M

o0 m o i
uh = f W F()du = —e f e T g0
o ky T Jo

_(m\1(2kT\" 2T 2RT
T\KT)2\m ) T 0m M

From EHguations 27.5 and 27.6,

_ PV _RT kT

“Nm Nm  m

So (u?) = () + (uh).

* ¥y

27-23. Usethe formula m Problem 27-21 to calculate the probability thatu > u, for a two-dimensional
gas.

The probability that u > u, for a two-dimensional gas is given by

0

PI'Ob{u = MO} = f Fluydu = _nl.] ue-—mul/zkﬂ'rdu
; T /.,

Let x = (m/2 T)u, so

oo e TN 12 . , /2
Prob{u = uy} = ﬁf ( kg ) xe ™ (ZkBT) dx
5l Ji m

172
2k, TV Py i

= 1
= 2] xe " dx =2 (-m) e
(/2 T 2
e

?:u

[>e]

m 2k, TY Pu

2z
—mity f2k, T

27-24. Show that the probability that a molecule has a speed less than or equal to «, is given by

4 i 9 g2
Prob{u < u )} = ﬁj; xe ™ dx
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where x, = (m/2k, ™Y ®u,,. This integral cannot be expressed in closed form and must be integrated
numerically. Use Simpson’s rule or any other integration routine to evaluate Prob{u < (2k, 7'/ m)t?.

‘We use Equation 27.40 for F(u}du:

m
2nk, T

3/2 \
F(u)du = 4n ( ) whe ™ T gy

The probability that u < u, is given by [, F(u)du, so

m 2 ey 5
Prob{u < u} = 4nw (anBT) j’; wle BT g,

30 axes 12
‘ 2k T 2 {2k, T

=4 n ) f ’ L B ) dx
2wk T) m m

4 o 2
= 13 xze_x dx
e 0

where we have let x* = mu®/2k, T and x, = (m/2k,T)"?u,. To evaluate Prob{u < (2k, T/m)"*},
weletx, =1, s0 '

1

4
Prob{u < 2k, T/m)'?} = — x%*dx = 0.4276

T1/2

Q

27-25. Using Simpson’s rule or any other integration routine, plot Prob{u < u} againstu,/(m/2k,T) i,
(see Problem 27-24.)

We use the numerical integration package in Mathematica to. plot Prob{u < u,} against
o/ (m/ 2k, T2,

Prob {u<u,}
a
N
T

o3
3e)

| I
0 1.0 2.0 3.0

uy/ (m/2k, T2

. 2k, T
Note that Prob{u < u,} goes to unity as Py

1/2
) 1, goes 1o infinity.

27-26. What is the most probable kinetic energy for a molecule in the gas phase?

The Kinetic Theory of Gases

The most probable kinetic energy for a molecule can be found by setting the derivative of F(e)
equal to zero. Using Equation 27.44, we find

dF 2?[ E—lfze—s/kai" e—a/kBT&,l/Z
de  (mhk,T)"? 2 kT
ZEB_E/kBT 1 81/2
T (k, T) [28”2 B ﬁ]
Y
2

27-27. Derive an expression for o} = (¢%} — (¢)” from Equation 27.44. Now form the ratio o,/ (s).
What does this say about the fluctuations in &7

F(e)de = e 5T g (27.44)

T
(e, TY*
Using Equations B.12 and B.13,

__ 2
T (kT

2 3 n 3
_ k)" = 2k, T
ek, T)" [(z/kBT)2:| (k)" = 3y

2 o

— 2 . 15 172 _ E 2
= T [(2/k3 T)3] Griy Y = = T)

15-9 3
of = () ~ (&) = TUCBT)2 = 5(kBT)Z

[» &)
ie) f eV2esikgT g
4]

(%)

This says that the fluctuations in ¢ are large compared to &.

27-28. Compare the most probable speed of a molecule that collides with a small surface area with
the most probable speed of a mclecule in the bulk of the gas phase.

From Figure 27.6, we can see that the most probable speed of a molecule that collides with a small
surface area is greater than the most probable speed of a molecule in the bulk of the gas. We have
found (Equation 27.43) that o for a molecule in the bulk of a gas is (2k, T/ m}'2, For a molecule
colliding with a small surface area, we must find the i for which the probability of the molecule

hitting the surface area is at a maximum, which is the # for which d{u F (u)]/du = 0.
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uF(u) = we ™ T

d[HF(H)] 3% — mu4 o /2T
du ZkBT

q
2miey,,

%, T

(3kBT)”2
1A =
mp m

The ratio of the most probable speeds is
i, (bulk) 2)”2
,,,(small area) N (3

27-29. Use Equation 27.48 to calculate the collision frequency per unit area for heliom at 100 K and
107% torr

)
= 3ump

This is much like Example 27-6. The number density is
N,P  (6.022 x 107 mol™)(10™° torr/760 atm-torr™")
T RT T (0.082058 dm*-atm-mol™"- K (100 K)
=9.656 x 10® dm* = 9.656 x 10" m ™

and (u) is (Equation 27.42)

8RT\"> [8(83141-K " mol™)(100K) ]m
w=\7) = 77(4.0026 x 107 kg)
=727 m-s~! '

Then, from Equation 27.48,

2y = pi’;‘_) =176 x 10 m~2.57!

27-30. Calculate the average speed of a molecule that strikes a small surface area. How does this value
compare to the average speed of all the molecules?

The distribution of the speed of molecules that strike a small surface area goes as ude ™ /%7 This
is not necessarily normalized, so to find the average speed of all the molecules we must divide the
integral | whe=™ 2T gy by the integral over all space of the speed of molecules that strike a small

surface area:

00 - 12kT
fo whe™™ Pk T gy

3 —me f2k Tdu
-1
3 2k T erkBT 2 1(21«1,:1">2
g m m 2 m
3 {9k, T\
4 m o 8m

(u) =

The Kinetic Theory of Gases 881

This is larger than the average speed of the molecules in the bulk of the gas, given in Equation 27.42
as (8k, T /mm)"/?, The ratio is
)y (9Jr2)m _ 3z
{8}y 0 64 8
27-31. How long will it take for an initially clean surface to become 1.0% covered if it is bathed by

an atmosphere of nitrogen at 77 K and one bar? Assume that every nitrogen molecule that strikes
the surface sticks and that a nitrogen molecule covers an area of 1.1 x 10° pn®.

As in Example 27-6,

o 10" Pa = 9.406 x 10% m">

BT (13806 x 1021 KO(TTK) - oxem
8RT\*  [88314J-mol™ - K)77K) 71"

uy={——1 = — =2412m-s"!
T w{0.02802 kg-mol™)

Then

= p%«z =567 %107 m?.s7!

This is the rate at which particles hit a surface of one square meter. For 1.0 % of the surface to be

covered, 0.010 square meter must be covered. Since each molecule covers an area of 1.1 x 10° pm’,

0.010 m*
1T x 1071¥ m?

must collide within the square meter.

=9.09 x 10" molecules

9.09 x 10" molecules
5.67 x 10%" molecule-s!

=1.60x 107"y

or 1.60 x 107" s for 1.0% of each square meter of surface to be covered.

27-32. Calculate the number of methane molecules at 25°C and one tort that strike 2 1.0 em? surface
in one millisecond.

First find z_:

p P (1 torr) (101325 Pa/760 torr) 324 % 102 m-?
= — = = J. X
kT (13806 x 10-2 1K 1)(298.15 K) "
| SRT\'®  [8(8.314J-mol™-K")(298.15 K)
v = ( ) N [ : T ) =627 mes!
T 7(0.01604 kg)
Zoop = p(—? =508 x 10¥* m 257!

The number of methane molecules striking a1 cm? surface in 1 ms is given by

Zn{1 x 107 m™2)(1.0 x 107 s71) = 5.08 x 10" molecules
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27—

27—

33. Consider the velocity selector shown in Figure 27.9. Let the distance between successive disks
be £, the rotational frequency be v (in units of Hz), and the angle between the slits of successive
disks be & (in degrees). Derive the following condition for a meolecule traveling with speed  to
pass throngh successive slits: :

360vh
=
0

Typical values of & and 6 are 2 cm and 2°, respectively, so u = 3.6v. By varying v from 0 to about
500 Hz, you can select speeds from 0 to over 1500 m-s~.

Let & = ut, so that ¢ is the time it takes for the molecule to travel between two disks. In order for
the molecule to pass through both slits, the disks must have rotated by # in time ¢. Since v measures
the number of revolations per second of the disks, and there are 360° in one revolution, we can
write § = 360vt, where 0 is measured in degrees. Then

h g ' _ 360vh

. 360, Gndso u P

34. The figure below illustrates another method that has been used to determine the distribution of
molecular speeds. A pulse of molecules collimated from a hot oven enter a rotating hollow drum.

Let R be the radius of the drum, v be its rotational frequency, and s be the distance throngh which
the drum rotates during the time it takes for a molecule to travel from the entrance slit to the inner
surface of the drum. Show that

4w R*v
5 =
[£3
where u is the speed of the molecule,
Molecules
R deposited on
Pulse of [ drum surface

molecules

(a) ' (b)

Use Equation 27.46 to show that the distribution of molecular speeds emerging from the oven
2 . .y = .

is proportional to u’e ™ /" du. Now show that the distribution of molecules striking the inner

surface of the cylinder is given by

A 202 2
I(S)dS — _Se—m(4nR v) /2kBTs dS
3

where A is simply a proportionality constant. Plot [ versus s for various values of 47 R*v/ Q2 T/ my2,
say 0.1, 1, and 3. Experimental data are quantitatively described by the above equation.

The Kinetic Theory of Gases

The molecule travels the length of the drum, 2R, in time ¢, so 2R = ut. The distance s that the
drum rotates in time ¢ is given by R@, where 8 is the degree to which the drum has been rotated.
Since v measures the number of revolutions per second of the disks, and there are 27 radians in
one tevolution, we can write 0 = 27v?, where 0 is measured in degrees. Then
2R\  4mR%
s = RO =2Rmavi =2Rwv (?) =

u

Bquation 27.46 gives an expression for the number of collisions per time perunit area for molecules
having speeds ranging from u to u + du. Therefore it is proportional to the distribution of molecular
speeds in a pulse of molecules hitting a small onit area, and (defining this distribution as  (u}du)

10)du o e T dy
Using the expression found for s, we can write

47 R*y

MZ

ds = du

Now we can express T {u)du in terms of s, as

5

U 2
i ds o — g /ZkBTdS
($)ds 4w R*v

A7 RN 1 ot R 2
I{s)ds ,_( - ) ymrentd R TS g

I(S}ds — éev—m(tin)?zu)zﬂkg'[.rzds
s

where A is a proportionality constant.

Rl 0.8 5L
< <4
o6l <06 S
il — —12—
—~ 4 2 0.4) =
= =~ =L
Tmuy
2 02k h
| | ] |
0 0.1 0.2 0 1 2 0 1 2 3 4 5
& & 5

Note the different scales on the x and y-axes needed for different values of 47 R*v/(2k, T/m)!.

N

27-35. Use Equation 27.49 to calculate the collision frequency of a single hydrogen molecule at 25°C

and (a) one torr and (b) one bar.

Use Equation 27.49, substituting o == 0.230 x 107 m* from Table 27.3:

SRT\Y*
ta=po (W)

= (0.230 x 107" m?) [

8(8.3145T-mol™! . K~1)(298.15 K)
(0.00202 kg-mol )

12
j| = p(4.070 x 107 m’-s71)

883




884 Chapter 27
At 1 torr, |
P 1t 101325 P
p=— = (Ltom) ( a) =324 % 102 m™
kT (1.3806 x 1077 . K7)(298.15K) \ 760 torr
7, = p(4.070 x 10 m’-s7") = 1.32 x 10" 5™
At 1 bar,
b 1x10°P
p= 4 ) _ ( At a) =2.43 % 10% m™
ke, T~ (1.3806 x 1072 I.K 1)(298.15K) 1 bar
7, = p(4.070x 107 m*s7") = 9.89 x 10° s~

27-36. On the average, what is the time between collisions of a xenon atom at 300 K and (a) one torr
and (b) one bar. ‘

Use Equation 27.49, substituting o = 0.750 x 107"* m* from Table 27.3:

SRT\"*
=P (W)

= p(0.750 x 10 ® m?) [

8(8.3145 J-mol~L-K"")(300 K)}”2
7(0.13130 kg-mol ™)
= p(1.650 x 107 m*.s7")

At 1 torr,

P {1 torr) (101325 Pa
0

T kT (13806 x 102 1K ')(300K) \ 760 torr
2, = p(1.650 x 107 m*-s ™) = 5.31 x 10° 57!
2 =1.88x 107

) =322 x 10? m™

{Recall that z;l is the measure of the average time between collisions.) At 1 bar,

P (1 ban) (1 x 10° Pa
P

T kT (13806 x 1072 1K )(300K) \ 1 bar
7, = p(1.650 x 1079 m"-s7") = 3.98 x 10° s
i =251x 10"

) =241 x 10 m?

27-37. What is the probability that an oxygen molecule at 25°C and one bar will travel (a} 1.00 x
107° mm, (b) 1.00 x 107 mm, and (c) 1.00 mm without undergoing a collision?

Use Equation 27.55:

4 1 d
f p(x)dx = —f e¥dx =1 — e
0 ['Jo

pix)=1—e"
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The probability of the oxygen molecule not colliding is 1 — p(x), since p(x) is the probability of
collision. We can use Equation 27.51 for I:
J— RT
2N, o P
| (8.3145 I-K~"-mol )(300 K)
= 2172(6.022 x 102 mol~)(0.410 x 107 m?)(1.00 x 10° Pa)
=7.143 x 107 m = 7.143 x 107" mm )

—1.00x 1073

a. Prob = exp (—X_S == 0.869
7.143 x 10 ‘.
—1.00 x 1073

b. Prob = exp (0—X5) — 832 x 1077
7.143 x 10

~1.00

c. Prob =exp| —w———= | =0

7.143 % 10

27-38. Repeat the calculation in the previous problem for a pressure of one torr.

Again, we can use Equation 27.51 for {:

o R
2Y*N,o P
_ (8.3145 1-K™'-mol "}(300 X) 760 torr
2%(6.022 x 107 mol™*)(0.410 x 107"* m*)(1.00 torr) (101325 Pa.)

=536x 107 m=5.36 x 107 mm

~1.00 x 107
. Prob = T )~ 1.00
a o eXp( 5.36 x 1072 )
—1.00 x 107
b, Prob = e} =0.982
0 CXP( 5.36 x 107 )
~1.00
c. Prob =exp —-_—5) =7.84x 107"
536 % 10

27-39. At an altitude of 150 km, the pressure is about 2 x 1076 torr and the temperature is about
500 K. Assuming for simplicity that the air consists entirely of nitrogen, calculate the mean free
path under these conditions. What is the average collision frequency?

Using Equation 27.51,

,_ BT
- 2’N,oP ,
(8.3145 J-mol*-K™)(500 K) 760 torr
~ 27(6.022 x 107 mol )(0.450 x 10 m)(2 x 107 torr) (101325 Pa)
=40.7m

Then

) (SRT)‘” L_6lsms' o

WETTFAGM) 1T 407m
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27-40. The following table gives the pressure and temperature of the Earth’s upper atmosphere as a
function of altitnde:

altitude/km P /mbar T/K

20.0 56 220
40.0 3.2 260
60.0 0.28 260
80.0 0.013 180

Assuming for simplicity that air consists entirely of nitrogen, calculate the mean free path at each
of these conditions.

Again, use Equation 27.51 to express [ in terms of T and P:
R T
==\
2N, o \ P

B 8.31453 - mol . K 1Pa T
T 2Y2(6.022 % 107 mol 7" )(0.450 x 107 m*) \ 100 mbar / \ P

T
= (2.1699 x 10~ K-mbar‘l)F

‘We can substitute the values given in the table to calculate the mean fTee path for each altitude:

altitude/km  [/m

200 8.52x 1077
400 176 x 1073
60.0 2.01x 107
80.0 3.00x.107°

27-41, Interstellar space has an average temperature of about 10 K and an average density of hydrogen
atoms of about one hydrogen atom per cubic meter. Compute the mean free path of a hydrogen
atom in interstellar space. Take the diameter of a hydrogen atom to be 100 pm.

We defined o = md? in Section 27-6, 50 0 = 7 (100 x 107 m)* = 3.142 x 167 m*. The density
of hydrogen atoms is 1 m , so, from the equations directly preceding Equation 27.51,
L 1

T 226 T 23314 x 107 mB)(1 m™)

=2x10"m

27-42. Calculate the pressures at which the mean free path of a hydrogen molecule will be 100 pem,
1.00 mm, and 1.00 m at 20°C.

Using Equation 27.51 and o from Table 27.3, we find

p_ _RT _ (8.314 J.mol - K™)(293.15 K) »
T 22N ol 27(6.022 x 107 mol ) (0.230 x 107" m?)
0.0124
P/Pa=—"—"—

I/m

The Kinetic Theory of Gases

i/m P/Pa P /bar

1.00x 107 124 124 x107?
1.00x 107 124 12410
1.00 0.0124 124 % 1077

27-43. Derive an expression for the distance, d, at which a fraction f of the molecules will have been
scattered from a beam consisting initially of »;, molecules. Plot d against £ ‘

The probability of one of the n; molecules colliding between 0 and d is (Equation 27.55)
d d 1
Prob=f =j p(x)dx =f —edx =1~
: o o !
Solving for d in terms of f gives

d=-lIn(l— f)

Below is a plot of d versus f.

27-44. Calculate the frequency of nitrogen—oxygen collisions per dm”® in air at the conditions given in
Problem 27—40. Assume in this case that 80% of the molecules are nitrogen molecules.

We use Equations 27.58 to find On 0,0 Pr and o, interms of P and T":
M 2

dy +dy \*
Ono, =T\ T 7

_. (380 x 107 m 4360 x 107" m
Bl 2

) — (SkBT)”Z _ [8(8.3145 J-K~F-mol™)(0.06002 kg)T:II/Z

2
) =430 % 1079 m?

- 7(0.02802 kg) (0.03200 kg)
=37.65T"*
_ NP (6.022 x 107 mol ) (0.80P) (P
P = RT T @A Tmo kLT X0 (_)
NPy (6.022 % 107 mol ™) (0.20P) (P
Po, = RT = @aasImoll Ky X 10 (_)

887
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where P is measured in Pa and 7 is measured in K. Substituting into Equation 27.57, we find

2

P 2
- 22
0, = On,0, ;1P Po, = (4.30 x 10 1 m?)(37.65T"21(5.79 x 1072)(1.44 x 10%) (?)

altitude/km  P/100Pa T/K 2,’1%-‘()2/5*1.;;(1*3

20.0 56 220 1.31 x 10*
40.0 32 260 3.32 x 10%
60.0 0.28 260 2.54 x 10¥
80.0 0.013 180 9.51 x 10*

27—45. Use Equation 27.58 to show that

() = ()" + (uy))?

Begin with Equation 27.58 and write u as m, my /(m, +my):

1/2 1/2 \ 1/2
= (SnkBT) B [SnkBT (mA+mB>] B [SﬁkﬁT - SﬂkBT] = [fuy)” + ()"

478 w m, g Tmy T,

27-46. Modify the derivation of Equation 27.49 to consider the collision frequency of a molecule of
type A with B molecules in a mixture of A and B. Derive Equation 27.57 directly from your answer.

The molecule of type A will sweep out a cylinder of diameter 2d,. Since the type B molecules
have a radius dj, the effective target radivs is given by (d, + dy)/2. The number density of
the B molecules is given by p, and we replace m by p, so the average speed is given by {u ).
Equation 27.49 then becomes

d, +d.\*
zAx:pB(u,)n( A2 B) = pglu)o,,

Since Z,, = p,2,. we find

Z,5 = O\t )0,0p (27.57)

27-47, Consider a mixture of methane and nitrogen in a 10.0 dm’ container at 300 K with partial
pressures P, = 65.0 mbarand P == 30.0 mbar. Use the equation that you derived in the previous
problem to calculate the collision ﬁ%equency of a methane molecule with nitrogen molecules. Also
calculate the frequency of methane-—nitrogen collisions per dm”. '

First find the necessary values of p, o, and {u }:

by = 5 6500 Pa = 157 x 10% m™®
o, T T (1.3806 x 1077 T-K (300 K)
Py 3000 Pa

=7.24 x 10% m™

PN, T BT T (13806 x 1072 J.K){300K)
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o,
CH,,

2

W) 8RT (n, +m) " 8 R(300 K)(0.044062 kg)
M = —_— =
d 7(0.02802 kg)(0.016042 kg)

410 x 1072 m 4 380 % 1072 m\’
N =7 ( x m} —4.90 x 107° m?

1/2
— ] =789 m.s"!
17772

Now, using the equations from the previous problem,

— - 8 o1
Zoy, = pNQO—CH‘vNZ(ur) =280 x 10° g

— _ 32 -3 -1
ZCHasz = 'OCH4ZCH4 =440 x 107" m™ s

27-48. Calculate the average relative kinetic encrgy with which the molecules in a gas collide.

We know that the normalized average kinetic energy is given by

_ [ef(eyde
) = T rede

where f (¢)de is the distribution of kinetic energy. We can substitute ¢ /"7 for f (¢} to write

e T de 2k, TY
— f € o ( B ) =2kBT -

£y = =
( K) fEre_e"/kBTdSr (kBT)l ]

The following four problems deal with molecular effusion.

27-49. Equation 27.48 gives us the frequency of collisions that the molecules of a gas make with a
surface area of the walls of the container, Suppose now we make a very small hole in the wall. If
the mean free path of the gas is much larger than the width of the hole, any molecule that strikes
the hole will leave the container without undergoing any collisions along the way. In this case, the
molecules ieave the container individually, independently of the others. The rate of flow through
the hole will be small enough that the remaining gas is unaffected, and remains essentially in
equilibrinm. This process is called molecular effusion. Equation 27.48 can be applied to calculate
the rate of molecular effusion. Show that Equation 27.48 can be expressed as

P NP

ffusion flux == = 1
effusion flux Gk D) = Qa MR H

where P is the pressure of the gas. Calcnlate the number of nitrogen molecules that effuse per
second through a round hole of 0.010 mm diameter if the gas is at"25°C and one bar.

‘We begin with Equation 27.48:

_1() 1/ P (8kT\"
o = P =\ GT ) \am

P NP

= @rmk, YR T (2w MRT)

_ (6.022 x 10” mol™)"/*(10° Pa)

T [27(0.02802 kg-mol~)(1.38 x 1072 J.K™1)(298 K)]'*

=288 x 107 m 257!
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This will be the effusion flux of the gas. For a round hole of 0.010 mm diameter,

molecules per second = z,, [(0.005 x 107> m)*] = 2.26 x 107 57t

27-50. Equation 1 of the previous problem can be used to determine vapor pressures of substances
with very low vapor pressures. This was done by Irving Langmuir to measure the vapor pressure of
tungsten at various temperatures in his investigation of tungsten filaments in light bulbs and vacuum
tubes. (Langmuir, who was awarded the Nobel Prize in chemistry in 1932, worked for General
Electric.) He estimated the rate of effusion by weighing the tungsten filament at the beginning
and the end of each experimental run. Langmuir did these experiments aronund 1913, but his data
appear in the CRC Handbook of Chemistry and Physics to this day. Use the following data to
determine the vapor pressure of tungsten at cach temperature and then determine the molar enthalpy
of vaporization of tungsten.

T/X effusion flux/g-m 87"
1200 321 x 1072
1600 1.25 x 107"
2000 1.76 % 107°
2400 426 % 1078
2800 110 x 1072
3200 6.38 x 107

Note that the flux is given in units of g-m~2-57}, so we divide the flux by 1000 to have units of
kg-m™.s7*. Using Equaticn 1 of Problem 27-49 gives

effusion flux

1000 g-kg™

= AT x effusion flux

P = Qumk,TY"* x

Because we are going to plot In P against 1/ T, we can write the above equation as
In P = In A+ InTY? + In{effusion flux)

and, because A is a constant, we do not need to evaluate it. Thus we form the table of values

T/K T x effusion flux

1200 1.11 x 107%
1600  5.00 x 107"
2000 7.87 x 107°
2400 2.08 x 107"
2800 5.89 % 1072
3200 0.361

Since P ox T2 x effusion flux, the slope of the best-fit line to In P versus 1/ T will be equal to the
slope of the best-fit line to In(T"/? x effusion flux) versus 1/7. Recall (Chapter 23} that

InP=——2_ 4
=— tant
il constan

Therefore, the slope of the best-fit line to either plot described above will be equal to —A  H /R
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In (¥ flux)/ 10
&
]

I VU SR PR i, N S
3 4 5 6 7 8 9

1/10%T

The slope of this plotis —92830, andso A H = 92830R = 772 kJ-mol ™"

27-51. The vapor pressure of mercury can be determined by the effusion technigue described in the

previous problem. Given that 0.126 mg of mercury passed through a small hole of area 1.65 mm*
in 2.25 hours at 0°C, calculate the vapor pressure of mercury in torr.

effusion = ( —
200.6 g-mol 1.65 % 107 m®

o 1 1hr
2.25br 3600 s .

—1

0.126 x 1072
_f_g.) (6.022 x 10% molecule-mol ™) (—Im—>

= 283 x 10" moiecule-m™2-s

P = effusion x 2wmk,T)"/*

6.022 x 10% molecule-mol™*
]1/2

0.2006 kg mol ™!
= (2.83 x 10" molecufe-m™-571) [zx ( 006 kg-mol )

x{1.38 x 107% T.KN(273.15K)
760 tort

=251 %1073 Paf ————
. 101325 Pa

) = 1.89 x 107 torr

27-52. We can use Equation 1 of Problem 27-49 to derive an expression for the pressure as a function
of time for an ideal gas that is effusing from its container. First show that
dN PA

rate of effusion = —— = ———5
dt (2mmi, Ty
where N is the number of molecules effusing and A is the area of the hole. At constant 7 and V,

dN _d (PV V dp
dt — dt \k, T

B ~ kT dt
Now show that
P = P(0)e™

where o = (k, T/2mm)"2A/ V. Note that the pressure of the gas decreases exponentially with time.

The rate of effusion is given by dN/d¢, since this represents how many molecules effuse per unit
time. From Problem 2749, we know the rate of effusion per unit area (effusion flux), so multiplying
by the area of the hole from which effusion occurs will give the rate of effusion and

dN PA

rate of effusion= - —= ——
. dt (erm,!’cﬂif")”2
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For an ideal gas, nN, = PV/k,T andso N = PV/k,T.X T and V are held constant, we find

dN_d(ﬂ) V dP

2 a\kT) T RT dr

Use the first equation for rate of effusion to write
V dP PA
LT dt - Camk Ty
kT dt  (Qumk,T)

1/2
_ﬁ —] kBT éJP :DdP
dt 2Zmm Vv

The solution to this equation is (as in the derivation of Equation 27.53)

P(ty=P(e™

27-53. How would you interpret the velocity distribution

m v m 2 2 2

This is the velocity distribution relative to an overall translational motion of the system with velocity
ol + bj 4 ck.

CHAPTER

Chemical Kinetics I: Rate Laws

PROBLEMS AND SOLUTIONS

28-1. FPor each of the following chemical reactions, calculate the equilibrivin extent of reaction at
298.15 K and one bar. (See Section 26-4.)

A

b. N,(g) +O,(g) = 2NO(g) A G =173.22 kJ-mol™!

H(g)+ClL(g) = 2HCKg)  AG° = —190.54 kI-mol™

Initial amounts: one mole of H,(g) and Cl,(g) and no HCl(g).

Initial amounts: one mole of N,(g) and O,(g) and no NO(g).

A

At equilibrium, there will be {1 — &eq) moles of H,(g) and Cl,(g), and 2§  moles of HCI(g).
We can write the partial pressures of each species at equilibrium as

_a-g), 2%

Py =Py 5 and P = ——2—53P =&, P

where P is the total pressure. We can then write K ,, by definition, as

_ P Q&)
d PH,‘,_ PCI2 (1 - g:cq)z

Equating In K, to —A G°/RT (Equation 26.11) allows us to write

K

190.54 kJ-mol
(8.3145 x 107 kJ-mol - K1)(298.15 K)
K, =240 x 107 :
(2%,
(I-&)
Solving this equation for £, gives a value of £y 1 mol.
At equilibrium, there will be (1 —§,)) moles of N, (g) and O,(g), and 2§, moles of NO(g). We

can write the partial pressures of each species at equilibrium as

_UT8),

nk, = = 76.862

=240 x 109

Zfe
and P, = 1p — é-'eqP

N2 ()2 2 NG 2




