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Chapter 27
For an ideal gas, nN, = PV/k,T andso N = PV/k,T.If T and V are held constant, we find
dN _d (PV\_V 4P
dt — dt \k;T ] ¥,T dt
Use the first equation for rate of effusion to write
Vv dP PA
k, T dt — (2mmk,T)"

12
_ﬁz kBT éP:U{P
dt 2mm v

The solution to this equation is (as in the derivation of Equation 27.53)

P(t) = P(0)e™

27-53. How would you interpret the velocity distribution

352
h(v,.v,v) = (anT) exp [_ ZIZ:T {(ux —a) + (v, —~ by + (v, — c)z}}

This is the velocity distribution relative to an overall translational motion of the system with velocity
ai + bj+ ck

CHAPTER 2 {

Chemical Kinetics I: Rate Laws

PROBLEMS AND SOLUTIONS

28-1. Por each of the following chemical reactions, calculate the equilibrivm extent of reaction at
298.15 X and one bar. (See Section 26-4.)

a. H,(g)+ClL(g) = 2HCKg) A G° =~190.54 kI-mol™"

b. N,(g) +0,(2) = 2NO(g)

Initial amounts: one mole of H,{(g) and CL,(g) and no HCI(g).
A,G° = 173.22kJ-mol™*

Initial amounts: one mole of N, (g) and G,(g) and no NO(g).

A

At equilibrium, there will be {1 — {feq) moles of H,(g) and Cl,(g), and Z’g‘eq moles of HCI(g).
We can write the partial pressures of each species at equilibrium as

(1-£,) 28,
Py =Py = T""‘P and Py, = T‘*

P=£ P
where P is the total pressure. We can then write X ,, by definition, as

U T ¢ )
d PH2 Pc]1 (1 - gﬂq)z

Equating In K, to —A_G°/RT (BEquation 26.11) atlows us to write

190.54 kJ-mol?

Ink, = == 76.862
P (83145 x 107 kJ-mol - K71)(298.15K) ‘
K, =2.40 x 10% ‘
(26,)°
— — =240 x 10”
(=5

Solving this equation for £, gives a valueof §, =1 mol.
At equilibrium, there will be (1 — £, )} moles of N, (g) and O,(g), and 2§, moles of NO(g). We
can write the partial pressures of each species at equilibrium as

1- 2
Sl Y 'S“q)P and P =$eqp=geqp

N2 O1 2 NG 2
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where P is the total pressure. We can then write X ,, by definition, as

o L By O8)
PR P, (1-8)

Equating In K, to —A G°/RT (Equation 26.11) allows us to write

—173.22 kJ-mol
= ~ — = —69.87
(8.3145 x 107" kI mol " -K ") (298.15K)
K, =450x 107"
(26’
(1 -§

Solving this equation for £ gives Va valueof § = 3.3 x 107 mol.

InX

=450 x 107"

28-2. Dinitrogen oxide, N, O, decomposes according to the equation

2N,0(g) — 2N,(g) + 0,(g)

-1

Under certain conditions at 900 K, the rate of reaction is 6.16 x 107° mol-dm>-s™'. Calculate the

values of d[N,0]/dt, d[N,]/dt, and 4]0, ]/dr.

Using Equation 28-7, we see that for this reaction,

_ 14N} 1dIN,O]  d[O)]
T2 dt T 2 dt T dt

6.16 x 10~ mol-dm *.s!

We find that d[N,01/dt = —1.23 x 107 mol-dm™-s7", d[N,]/d? = 1.23 x 107° mol-dm™ 5™,
and d[0,]/dt = 6.16 x 107° mol-dm™-s~". .

28-3. Suppose the reaction in Problem 28-2 is carried out in a 2:67 dm’ container. Calculate the value
of d& /dt corresponding to the rate of reaction of 6.16 x 107 mol-dm ™5,

From Problem 28-2, we know that d[0,]/d¢ = 6.16 x 107 mol-dm™-s™*. Using Equation 28.5

gives
1df _ dIO)]
Vd:  dt
d&

- = (6.16 X 10°® mol-dm -5 1)(2.67 dm*) = 1.64 x 10~° mol-s~}

28-4. The oxidation of hydrogen peroxide by permanganate occurs according to the equation
2KMnO, (aq) + 3 H,80, (aq) + 5H,0,(aq) — 2MnS0,(aq)
+ 8H,0() + 50,(2) + K,50,(aq)

Define v, the rate of reaction, in terms of each of the reactants and produocts.
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Using Equation 28.6, we write

o) = —LGEMnO] _ 1d[F,SO} _  1d[H,0,] _ 1d[MnSO,]
2 4t T 3 4t 5 dt 2 dr
_ 1d[H0]  14d[0,] d[K,50,]

8 dt 5 dit dt

28-5. The second-order rate constant for the reaction

O(g) + O,(g) — 20,(g)

-1

is 1.26 x 107" ¢m® molecule™ -s7'. Determine the value of the rate constant in units of

dm®-mol™ g7,

_15 3
(1.26 x 10 cm3) (6.022 x 10% molecule) (110(1[11 ) 750 % 10° di®mol=" ¢!
: cm

molecule-s mol

28-6. The definition of the rate of reaction in terms of molar concentration (Equation 28.5) assumes
that the volume remains constant during the course of the reaction. Derive an expression for the
rate of reaction in terms of the molar concentration of a reactant A for the case in-which the volume
changes during the course of the reaction. -

From the definition of molar concentration, we know that » . = [A]V, and so
dn, = VdA[A] +{AldV (H

The rate of reaction is defined as

1 dnA
v,V dt

and substituting dr, from Equation 1 gives

1 dA] _ [A] aV

T ow, dt v,V dt

28-7. Derive the integrated rate law for a reaction that is zero order in reactant concentration.

The rate law for a zero-order reaction is v(r) = k, or —d[A]/d¢ = k. Integrating gives the integrated

rate law
f —d[A] = / kdt

[Al-[A], = —kt

28-8. Determine the rate law for the reaction described by

NO(g) + H,(g) — products
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from the initi ' '
rom the initial rate data tabulaicd below. _ To determine mg, , , we use Eguation 28.19 and the second and third entries in the data table to
P(H)/tor  P,(NO)/torr v, /torr-s™! _ : find © i
400 159 24 n(8.29 x 10°6/1.71 x 107%)
400 300 125 2L 1n(0.37/0.76)
289 400 160 Assuming the order is integer valued gives the rate law
205 400 110 '
147 400 79 A v = k[SO,CL,]

Calculate the rate constant for this reaction. We can substitute the data given in the table into the rate law to calculate the average rate constant.

Below is a table of the rate constant found for each tabulated v,

We do this problem in the same way as Example 28-2. The rate law has the form : v /mol-dm -5~ | 2.24 % 107° ll8 70 % 107 1.71 x 107° 2.75 x 1073
) . . . )
v = kNOJ™o[H,]™ - '_ ks 224% 107 224x 1077 225x 107 2.25x 107
To determine m,,, we use Equation 28.19 and the first two entries in the data table to find The average value of k is 2.25 x 10 57",
In(34/125
NO = %—;——) = 205 ~ 2
n(155/300) 28-10. Consider the reaction described by
Likewise, using the third and fourth entsies in the data table, we find that :
(160110 Cr(H,0)3* (aq) + SCN~(aq) —> Cr(H,0),(SCNY**(aq) + H,0()
n ) '
Ma, = =1.09~1 for which the following initial rate data were obtained at 298.15 K. ’
In(289/205) g
Assuming the orders are integer valued gives the rate law _ [Cr(H,0);7],/mol-dm™ [SCN~},/mol-dm ™’ vy/mol-dm™.s7!
v = k[NOT[H,] 121 x 10°* 1.05x10°7° 2.11 x 107"
- 1.46 x 107* 2.28 x 107° 5.53 x 1071
We can substitute each set of data given in the table into the rate law to calculate the average rate : 1.66 x 107 1.02 % 107° 2.82 x 1071
constant. Below is a table of the rate constant found for each v, in the table. : 1.83 x 107* 3.11 x 107° 9.44 x 1071
v, /torr-s™? 34 125 160 110 79 Determine the rate law for the reaction and the rate constant at 268.15 X. Assume the orders are
0

-2 -1 -6 5 & integess.
k/torr s |3.36 x 107" 347 x107° 346x107% 335x10°% 3.36x10°¢

The average value of k is 3.40 x 107° torr2.s7".

The rate law has the form

v = ]«c[Cl‘(}IzO)24'}mcra':2c’)g1L [SCNf]msc:N'
28-9. Sulfuryl chloride decomposes according to the equation
The first and third entries in the data table are for an essentially constant concentration of [SCN ],

50,CL(g) — 50,(g) + Cl,(g) so, proceeding as in Example 28-2,
Determine the order of the reaction with respect to SO,Cl,{(g) from the following initial-rate data : In(2.82 x 107" /2.11 x 1071) -
. m 3y = =0917~=1
collected at 298.15 K. _ Cr(H,0)? n(1.66 x 104 /1.21 x 10749
[S0,CL],/mol-dm™ | 0.10 0.37 0.76 1.22 : ; Using this result and the first two entries of the data table, we have the rate equations
vy/mol-dm=-s™ | 224 % 107 829 10° 171x 1077 2.75 x 107 ' 2.11 x 107" mol-dm~*-s~! = k(1.21 x 107" mol-dm~)(1.05 x 10~° mol-dm™>)"sx"
Calculate the rate constant for this reaction at 298.15 K. 5 5.53 x 107" mol.dm™?.s7! = k(1.46 x 107 mol-dm™)(2.28 x 1073 mol-dm“:’)’"sm;

Taking the ratio of these two equations gives
‘We do this problem in the same way as Example 28-2. The rate law has the form
0.460 = (0.460)"son"
v = k[SO,CL, "%
from which we find mg., = 1. The rate law is first order in each reagent and second order overall:

v = k[Cr(H,0);"][SCN ]
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We can substitute the data given in the table into the rate law to calculate the average rate constant.

The four sets of data give rate constants of

vo/mol-dm‘s-s_1|2.11xlO'“ 553 x 107" 282 x 107" 944 x 107"

k/dm3-mol‘1-s“| 1.66 x 1077 1.66x 107  1.67x 107>  1.66x 107

and the average value of k is 1.66 x 1072 dm’ mol ' -5

28-11. Consider the base-catalyzed reaction

OCI (aq) + I (ag) —> OF (aq) + CI (aq)

Use the following initial-rate data to determine the rate faw and the corresponding rate constant for
the reaction.

[OCI~]/mol-dm™ [17]/mol-dm™ [OH~1/mol-dm™ v,/mol-dm™ s

1.62 x 1073 1.62 x 1073 0.52 3.06 x 107
1.62 x 107? 2.88 x 1077 0.52 5.44 x 107
2.71 % 1073 1.62 x 107? 0.84 3.16 x 1074
1.62 x 1073 2.88 x 1072 0.91 311 x 107

Because the reaction is base-catalyzed, the rate will depend on the basicity of the solution, or on
the concentration of CH™ present. Therefore, the rate law has the form

v = k[OCI ] oo [I71™ [OH]"on

The first two entries in the data table hold [QOC17] and [OH ] constant, so we write (as in
Example 28-2)

n(3.06 x 1071/5.44 x 10~
m._ = =
T 7 In(1.62 x 107%/2.88 x 107%)

The second and fourth entries in the data table hold [OC17] and [I7] constant, so we write

In(5.44 x 107%/3.11 x 107
= = —0.9991 ~ —1
Mor In(0.52/0.91)

Using these results and the first and third entries of the data table, we have the rate equations

_ (162 x 107 mol-dm™*)"eer (1,62 x 107 mol-dm™)
- 0.52 mol-dm™>
Do 271 x 10~ mol-dm™)"ea (1.62 x 10~ mol-dm™)
0.84 mol-dm™

3.06 % 107* mol-dm™ 571

3.16 x 107 mol-dm™> s~

Taking the ratio of these two equations gives
(.599 = (0.598)va-

from which we find m = 1. The rate law is therefore

Qcl™

_ k[ocr][r]
7 [OHT]
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We can substitute the data given in the table into the rate law to calculate the average rate constant.
The four sets of data give rate constants of

vo/mol-dnrfg‘-s*1 I 3.06 x 107 544 x 107* 316 x 107" 3.11 x 107*

ks | 606 60.6 60.5 60.7

and the average value of k is 60.6 57"

28-12. The reaction

50,CL{(g) — SO,(g) + Cl,(g)

is first order and has a rate constant of 2.24 x 107° 57! at 320°C. Calculate the half-life of the
reaction. What fraction of a sample of SO,Cl,(g) remains after being heated for 5.00 hours
at 320°C? How long will a sample of SO,Cl,(g) nced to be maintained at 320°C to decompose
92.0% of the initial amount present?

The integrated rate law for a first order reaction is

I —[SOZCIZ] kt (28.22)
n = - .
[SO,CL], .
Att =1t PE [SC,CL] = %[SOZCIZ]O, and substituting into Equation 28.22 gives

Ini=—(224 x 107 sy
3.09 x 10* 5 =1,

1/2
2
After being heated for 5.00 hours at 320°C, the amount of 50, Cl, present can be found by solving
the equation
[SO,CLJ
n———— =
[SC,CL],
[SO,CL] = 0.668[SO,CL],

1 —(2.24 % 107° s7')(5.00 hr) (3600 s - hr™*)

In other words, 68.8% of the sample will remain. The time it takes to decompose 92.0% of SO,Cl,
can be found by sclving

, _

n 150 LL1 —(2.24 x 1073 s7ly¢
[SO,CL ],

In(1 — 0.920) = —(2.24 x 107% sz

L13x 1P s =t

It takes 31.3 hours to decompose 92.0% of the intial amount of 5O,Cl, present.

28-13. The half-life for the following gas-phase decomposition reaction

HoC — CHCH,CH,CH;
| | > H,C == CHCH,CH;CH; + H,C=—=CH,
H,C — CH,

is found to be independent of the initial concentration of the reactant. Determine the rate law and
integrated rate law for this reaction.

899
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This is a first-order reaction, because the half-life is independent of the initial reactant concentration.
The rate law and integrated rate law for the reaction are v = k[A] and [A] = [A]Oe"k’, respectively,
where A represents the reactant.

28-14. Hydrogen peroxide, H,0,, decomposes in water by a first-order kinetic process.
A 0.156-mol-dm~® solution of H,0, in water has an initial rate of 1.14 x
10~° mol-dm~>.s7!. Calculate the rate constant for the decomposition reaction and the half-
life of the decomposition reaction.

We can find the rate constant by substituting into the first-order rate law (Equation 28.21):

vy = k[H,0,],
_ L14x 107° mol-dm=>-s™!
0.156 mol-dm™

For a first-order reaction, we can use Equation 28.25 to determine the half-life of the reaction:

in2
= —Ilk— =948 x 10°s = 2.63 hr

=731 x 1073 57!

28-15. A first-order reaction is 24.0% complete in 19.7 minutes. How long will the reaction take to be
85.5% complete? Calculate the rate constant for the reaction.

To find the rate constant of the reaction, we can write (from Equation 28.22)
[A]

In E. = —k(19._7 min)

In(1 — 0.24) = =k(19.7 min)
139 x 10 min ' =k

To find the time it takes for the reaction to be 85.5% complete, we sclve the equation

[A] 2]
In— = —(1.39 x 107 min™")z
[Al, (
In{1 — 0.855) = —(1.39 x 1072 min~')z
139 min=1¢

28-16. The nucleophilic substitution reaction
PhSO,SG,Ph(sln) + N2H4(Sln) — PhSO,NHNH, (sIn) -- PhSO,H(sIn)

was studied in cyclohexane solution at 300 K. The rate law was found to be first order in
PhSQ,SO,Ph. For an initial conceniration of [PhSO,S80,Ph]; = 3.15 x 10~ mol-dm™, the
following rate data were observed. Determine the rate law and the rate constant for this reaction.

[N2H4]D/10‘2m01-dm“3| 0.5 1.0 24 56

v/mol-dm™-s7" l0.0SS 0.17 041 0.95
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We know that the rate law is first order in PhSO,50,Ph, so we can write the rate law as
v = k[PhSQ,SC,Ph] [Nz}iz}m"z“z
To determine My g > WE USE Equation 28.19 and the first two sets of data in the table to find

In(0.085/0.17)
My = e = |
N;Hy n(0.5/1.0)
This gives the rate law

v = k[PhSO,SO,Ph][N,H,]

We can substitute each set of data given in the table into the rate law to calculate the average rate
constant:

v/mol-dm .57 | 0.085 0.17 0.41 0.95

k/dm’-s™-mol ™! | 54x10° 54x10° 54x10° 54 x10°

1

The average value of k is 5.4 x 10° dm*-s™'-mol™".

28-17. Show thatif A reacts to form either B or C according to

ALB o ASC
then
[A] = [Ale &1ar
Now show that 7, Pr the half-life of A, is given by

A 0.693

s ky +k,
Show that [B}/{C] =k, /k, for all times ¢. For the set of initial conditions [A] == [Al,,
[Bl, = [C]l, =0, and k, = 4k, plot [A], [B], and [C] as a function of time on the same
graph.

If A simultaneously reacts to form B and C, we can write

diA]
= = kAl = KA,
d[A
% = —(k, +k)dt
A
In _[[A]] = —(k, + k)t
o

[A] = [A]pe™h
Now, at the half life of the reaction (t =1, /2), we have

111% =~k + &)1,
0.693
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We can write

d[B

d[C]
dt
Because [B], = [C], = 0, we integrate the above expressions to get

AN
k+k

1 2

kTA]
O] = 220
[C] k, +k,

= k,[A] = k,[A] e e

[B] — [1 . e—(kl+k2)r]
[1 _ e—(k1+k2)r]

from which we see that [B]/[C] = k, /&, for all times ¢. The plot below shows [A], [B], and [C] as
functions of time.

-
<

<
=)

Concentration/ [A],
@
=]

The following six problems deal with the decay of radioactive isotopes, which is a first-ovder
process. Therefore, if N(t) is the number of a radioactive isotope at time t, then N(t) = N(Me ™.
In dealing with radioactive decay, the half-life, t n= 0.693/k, is almost exclusively used to
describe the rate of decay (the kinetics of decay).

28-18. You order a sample of Na PO, containing the radioisotope phosphorus-32 (z, ;2 = 14.3 days).
If the shipment is delayed in transit for two weeks, how much of the original activity will remain
when you receive the sample?

The rate constant for this reaction is

_0.693  0.693
ot "~ 14.3 days

1/2

k

=4.85 x 1072 days™!

N() = N{Q)e™
NGO _
NO)

—(0485:10™ days™)(14 days) _ 0.507

50.7% of the criginal activity will remain when you receive the sample.

Chemical Kinetics |: Rate Laws

28-19. Copper—64 (¢,,, = 12.8 h) is used in brain scans for tumors and in studies of Wilson’s disease
(a genetic disorder characterized by the inability to metabolize copper). Calculate the number of
days required for an administered dose of copper—64 to drop to 0.10% of the initial value injected.
Assume no loss of copper—64 except by radioactive decay.

To find the time required, we solve the equation

N(I) —0.693t
— 00010 — . /128 h
N O ¢

to find ¢+ = 128 hour = 5.32 days.

28-20. Sulfur-38 can be incorporated into proteins to follow certain aspects of protein metabolism. If a
protein sample initially has an activity of 10000 disintegrations-min™", calculate the activity 6.00 h
later. The half-life of sulfur—38 is 2.84 h. Hint: Use the fact that the rate of decay is proportional to
N () for a first-order process.

Because the rate of decay is proportional to N (1), we can write
N(6.00h)  rate of decay (6.00h) —OEDE00 ta/284 1
N(@OB  rateofdecay (0h)
decay rate (6.00 h) = (10 000 disintintegrations-min~")(0.231)

= 2310 disintegrations-min~"

28-21. The radioisotope phosphotus-32 can be incorporated into nucleic acids to follow certain aspects
of their metabolism. If a nucleic acid sample initially has an activity of 40000 disintegrations
.min "', calculate the activity 220 h later. The half-life of phosphorus—32 is 14.28 d. Hins: Use the
fact that the rate of decay is proporticnal to N (¢) for a first-order process.

As in Problem 28-20, we can write
rate of decay (220 h) — o—(059H220 W/G&272 by
rate of decay (0 h)
deéay rate (220 h) = (40 000 disintegrations - min){0.64)

= 26 000 disintegrations-min ™'

28-22. Uranium-238 decays to lead--206 with a half-life of 4.51 x 10° y. A sample of ocean sediment
is found to contain 1.50 mg of uranium—238 and 0.460 mg of lead-206. Estimate the age of the
sediment assuming that lead-206 is formed only by the decay of uranium and that lead-206 does
not itself decay.

The amount of U238 which must have decayed to form 0.460 mg of Pb—206 is

1 mol Pb 1 mol U 238U
0.460mg Pb —0.531mg U
(0.460meg Pb) (206 ng) (1 mol Pb) (1 moIU) me

903
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Att = 0, therefore, there are 1.50 mg + 0.531 mg = 2.03 mg of uranium in the sediment. Then
1 50 mg In2 ;
1203 mg  451x10°y
197 x 100y =1t

28-23. Potassium-argon dating is used in geology and archeology to date sedimentary rocks.

Potassium—40 decays by two different paths
WK — 3Ca+ %e  (89.3%)
K — QAr+%  (10.7%)

The overall half-life for the decay of potassium—40is 1.3 x 1¢° y. Estimate the age of sedimentary
rocks with an argon—40 to potassium-40 ratio of 0.0102. (See Problem 28-17.)

From Problem 28-17, we have the expressions

- In2
e ki -k,

(K] = [K],e ®th" and

We can substitute the overall half-life of potassinm—40 into the second equation to find &, + 4,

In2
k k= = =533 x 1070y

t1/2

For every mole of potassium which decays, 0.107 moles of argon are formed. Assuming that the
only source of argon is potassium decay, we can find the ratio of potassium present at time ¢ to
potassium orginally present:

0.0102mol Arat? 1 mol K decayed |  0.0953 mol K decayed
1 mol K at ¢ 0.107 mol Aratz/) Il molKatt

There were 1.0953 mol of potassium originally present for every mole present at time ¢. Now
subsitute this value into Equation 1:

[K] = [K]yeme20e0 7
1
In e = (533 x 107y )¢t
" Toess = O30Ty

171 x 100y =

28-24. In this problem, we will derive Equation 28.32 from the rate law (Equation 28.31)

d [A]
dr

Use the reaction stoichiometry of Equation 28.30 to show that [B] = [B], — [A], + [A]. Use this
result to show that Equation 1 can be written as '

d[A]

——; = HANBL, — [Al, +[A]}

= k[A]IB] ey

Chemical Kinetics |: Rate Laws

Now separate the variables and then integrate the resulting equation subject to its initial conditions
to obtzin the desired result, Equation 28.32:

1 0 [Al[B],

kt =

The amount of [B] present is equal to the amount of B reacted subtracted from [B],. Because one
mole of A reacts with one mole of B, we can express the amount of B reacted as [A], —[A] s0
[B] = [B], — ({A], — [A]) = [B], — [A], + [A]. Substituting intc Equation 1 gives

d[A]
——g; = MANIB, — [Al, +[Al)
- el = kdt
[ANIBI, — [Al, + [AD
[A]
! | LAl =kt

- 1
B, — [Al, " [Blo— [Al, + [Al |,
1 [AIB] _
[Al,— [Bl, [ALB]

28-25. Equation 28.321s indeterminateif [A], = [B],. Use L'Hopital's rule to show that Equation 28.32

reduces to Equation 28.33 when [A]) = [B],. (Hin#: Let [A] = [B] 4 x and [Al, = [B]; + x.).

We begin with Equation 28.32,

1 N [Al[B],
[Al, — (B}, [BIA],

Let [A] = [B] + x and [A], = [B], + x. Then we can write Equation 28.32 as

_ 1 In (B1+ 0B, _ 1. ({B] + x)IB],
[Bl,+x—B,] [BI(Bl,+x x [BI(B], +x)

kt =

Now, as x — 0,
llmkt = lim 1 ~——-~—--~—~—--~—([B] + 2B,
=0x  [BI([B], + x) _

x—0 X

"This fraction is indeterminate, so we use 1.'Hopital’s rule to write

1 1
hm kt =lim —
x50 20 ([B] +x  [B],+ x)
1 1

" B] [Bl,

28-26. Uranyl nitrate decomposes according to

1
UO,(NO,),{aq) — UO,(s) + 2NO,(g) + 3 O,(g)
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The rate law for this reaction is first order in the concentration of uranyl nitrate. The following data
were recorded for the reaction at 25.0°C.

t/min ] 0 20.0 60.0 180.0 360.0

[UOZ{NO3)2]/m01-dm*3‘0.01413 0.01096 (.00758 0.00302 0.00055

Calculate the rate constant for this reaction at 25.0°C.

Because the reaction is first-order, a plot of In[UO,(NQ,),] versus time should give a straight line
of slope —k.

4.5 y=-4.299-0.8822x

-5.5

-6.5

-71.5

| !
1 2 3 4
t/100 min

in {[UOZ(N03)21/m01-dm‘3}

The slope of the best-fit line is —8.82 x 107> min ™', s0 & = 8.82 » 107 min™".

28-27. The data for the decomposition of uranyl nitrate (Problem 28-26) at 350°C are tabulated below
t/min ‘ 0 6.0 10.0 17.0 30.0 60.0

[UOZ(NOE)Z]/mOI-dm‘3|0.03802 0.02951 0.02089 0.01259 0.00631 0.00191

Calculate the rate constant for this reaction at 350°C.

Again, because the reaction is first-order, éplot of In[UO, (NO,),] versus time should give a straight
line of slope —k.

-3.5 y=-3.358-0.05050x

-4.5

-5.3

-6.5

In {[UQ,(NO;},]/mol-dm™*}

10 30 50 70
t/min

The slope of the best fit line is —-0.0505 min~', so k = 5.05 x 1072 min .

28-28. The following data are obtained for the reaction

2N,0(g) —> 2N,(2) + O,(2)

Chemical Kinetics I: Rate Laws o7

at 900 K.
t/s 1 0 3146 6494 13933

[NZO]/mol-dm”slo.SZI 0.416¢ 0.343 0.246

The rate law for this reaction is second order in N, O concentration, Calculate the rate constant for
this decomposition reaction.

Because the reaction is second-order in N, O, a plot of 1/[N, O] versus time should give a straight
line of slope k.

oy =1. 1

On 40 y=1.920+0.1540x

Z.

- 3.5F

T L

,.S 3.0

- 2.5F

]

g8 [T R R N R B
2 [ 10 14

t/10%s

The slope of the best-fit line is 1.54 x 10" mol-dm=-s~, so this is the value of k for the
decomposition reaction.

28-29. Consider a chemical reaction

A—products
that obeys the rate law
d[A] '
——— =k[A]"
dt LA]

where 1, the reaction order, can be any number except n = 1. Separate the concentration and time
variables and then integrate the resulting expression assuming the concentration of A is [A], at time
f = 0 and is [A] at time ¢ to show that

1 1 1
kt = - 1 1
1 ([A]"-1 [A]g-‘) "7 “
Use Equation 1 to show that the half-life of a reaction of order » is ‘
ki -1 +# 1 2)
= T AL " (
Show that this result reduces to Equation 28.29 whenn = 2.
Separating the varizbles in the rate law and integrating gives
d[A
~AT _
Al
11 ™
—_— =kt
n—1[A}!

(Al

1(1—1)—k: (1).
n—L\IAI"" JALY)
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where 7 =# 1 (if n = 1, the infegration is incorrect). At ¢ = ¢, Py [A]l=[A],/2, so Equatioﬁ H

becomes

kt1/2= 1 [ 1 1 I 1—1:|
n—11GAD? [Al
o2t —1
T a-1 (AR
where, again, n 5¥ 1. When n = 2, this result becomes

1
kt,, = E (28.29)

28-30. Show that Equation 1 of Problem 28-29 can be written in the form
([A]U)" ~—1
A
AAL = k[Al;¢
X

where x = n — 1. Now use L'Hopital’s rule to show that
[A]

In— = —kt
LAl

for n = 1. (Remember that da* /dx = a" Ina.)

Starting with Equation 1 of Problem 28-29, we can write

1 ( | 1 )
ki = n—1 n—1
n—1\[AI . [AL
(AL — [A]
{A n—1 [A](]_l
AL
AT

If we let x = n — 1, then we have the desired result. We can now use I Hopital’s rule to find the

(n— Dkt =

(n— DE[AL 't =

value of kf as x — 0 (n — 1)
() - (@)
Al AL,
p
i < im [ i () L] A
15‘3““1‘33[([AJ A ([A]O) tn [A]D] ="
[A]

—kt =In ———

LA

limkt =1lim
x~+0 x=0

28-31. The foliowing data were obtained for the reaction

1
N,0(g) — N,(@) + 5 0,(z)
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(N0l /mol-dm™ | 1.674x 107 4458 x 107 9300x 10 1155 x 10
| 1200 470 230 190

hnls .
Assume the rate law for this reaction is
d[N,0]
dit

and use Equation 2 of Problem 28-29 to determine the reaction order of N,O by plotting Inz, ,
against In[A],. Calculate the rate constant for this decomposition reaction.

= k[N,OT

We can take the natural logarithm of both sides of Equation 2 of Problem 28-29 to write the

eguation as

1
Ik +nt,, = (1 —n)InfAl, +In [ - (27 - 1)]
n —_—

The slope of a plot of In?, , versus In[A], will be (1 — #). The data provided are plotted in this

form in the following graph.

y=0.9665-0.9579x

-6 -5 -4
In ([NZO]O/moledm‘S)

The slope of the plot of In¢, 12 Versus In[N, 0], is —1, so n = 2 and the reaction is second-order in
[N,O]. We use Equation 28.29 and the data provided to find the value of the rate constant:

[N, O},/mol-dm™ | 1.674 x 107 4.458 x 107 9.300 x 10 1.155 x 107
0.46

k/dm*-mol st | 0.50 0.48 0.47

The average value of the rate constant is k = 0.47 dm®-mol™'-s7".

28-32. We will derive Equation 28.39 from Equation 28,33 in this
_ to become

problem. Rearrange Equation 28.38

w o,
(kl + k_;)[A] - k_] [A]o B

and integrate to obtain

In{(k, +k&_DA] —k_ [Al} = —(k, +%_,)t + constant

or

k, +k_DIA]—k_[A], = ce W)

where ¢ is a constant. Show that ¢ = k,[A], and that

(k, + & DAl —k_[Al, =K, [A]Oe—(k, ) W
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Now let ¢t — 00 and show that

E+k A
ag = & 1+k“1)[ I
1

k{A] k [A
AL~ AL, = 24— = kll—E— k}:

Use these results in Equation | to obtain Equation 28.39.

We begin by separating the variables in Equation 28.38:
d[A]. '
- (k, +k_DIA] —k_ [A],

dr
d[A] —
(k, +k_ AL - k_ [A],

We then integrate to find
dlA
[A] B f at

f (b, +k_DIAT— k_,[A],
In{tk, +k_DIA] - k_ [A] )} = —¢ + constant

ky ko
In{(k, + &_)[A] —k_,[A])} = ~(k, +k_,}f + constant

(ky +k_DIA] - k_ [A], = ce— %

where c is a constant. Atz = 0, [A] = [A],, so Equation a becomes
k,+k, kDAL, =c
kAL, =c

Substituting this result back into Equation a gives Equation I:
(k, +k_DIA] — k_ [A], = &, [Al et

Now let ¢ — co, in which case [A] — [A]_ . The exponential term in Equation 1 then goes to zero,
cq p q

and s0
ey +k_DIAL, ~ k_,[A], =0
K +EDIAL,

(A, p
-1

Subtracting [Al, from both sides gives
(k, +k_) —k_pIAL, _ ki[Al, kA,
ok, k tk

[A], — [A), = p

Substituting into Equation 1 gives
(k, +k_DIA]—k_[A], =k, [A]D.e‘“"l’“"—l’r
[A] — k*] [A]O kl [A]O e-*(f(lv-h'c_l)!
ko +k,  k+k

[A] =[A], + (IA], - [A], )e &

which is Equation 28.39.

ey
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28--33. Consider the general chemical reaction

A+B P

1

(1)

If we assume that both the forward and reverse reactions are first order in their respective reactants,

the rate law is given by (Eguation 28.52)
d[P]
—— =k [Al[B] — &_,[P]

dt
Now consider the response of this chemical reaction to a temperature jump. Let [A] = Al +

A[A], [B] = [B]Z,eq + A[B], and [P] = [P],;,'cq + A[P], where the subscript “2,eq” refers to the new
equilibrium state. Now use the fact that A[A] = A[B] = —A[P] to show that Eqguation 1 becomes

dA[P]
7, = hlAL Bl — &L [PL,
— {k, (Al + [Bl,.) +k_}AP] + O(A[PP)

Show that the first terms on the right side of this equation cancel and that Equations 28.53 and

28.54 result.
After the temperature jump to the new equilibrium state, we can write Equation 1 in terms of the

new equilibrium state and the changes in concentration:

d([Pl, ., + A[P])
=k, ([Al,,,, + ATAD(BL,,, + A[B]) — k_,([PL, + A[P])

di
Because fP]Z,Eq does not vary with time and A[A] = A[B] = —A[P], we can simplify the above

expression to
=k (AL, — AIPD([B],,, — APD - & ([P, + A[P])

d AlP]
dt :
dA[P] : 5
- = kAL, (Bl — k[P, — {k (AL, + [Bl, ) + & JAIP] + O{(A[P])
At equilibrium, d[P]/dt = 0, so :7«74[1:’]2‘eq =k, [A]Z.eq [B]z,&1 and the first terms on the right hand

side of the equation cancel. Then (disregarding second-order and higher terms in A[P])

dA[P
o AL, 1B, + AL,

dt

dA[P]

A_[Pj‘ = —dt{k] ([A]Z,Bq -+ [B]Z,eq) +‘k7]}

AlP]

n X = —t{k ([Aly, + Bl ) + %}
AP = A[Ple"

1
TR (AL,, + Bl T A,

where

Fod

28-34. The equilibrium constant for the reaction

. H,0()

I

H*(aq) + OH (aq)

| aa



912

Chapter 28

at25°Cis K, = [H,0)/H"J[OH"] = 5.49 x 10" mol~!-dm’. The time-dependent conductivity of
the solution following a temperature jump to a final temperature of 25°C shows a relaxation time
of T = 3.7 x 10~* 5. Determine the values of the rate constants k, and k_,. At 25°C, the density of

water is p = 0.997 g-cm™.

The concentration of water at 25°C is

0.997 g-cm™ (10cm
18.015 g-mol ' \ 1dm

3
) = 55.3 mol-dm™

Let x be the number of moles of water that dissociate per liter. Then, at equilibrium, [H,0] =
55.3 mol-dm™* — x, and [H*] = [OH"] = x. We can use the K_ given in the problem and these
values to write

[H,01 553 mol-dm ™ — x

K =

¢ [H*][OH ] x*
55.3 mol -dm™* —
5.49 x 10 mol™-dm* = 2200 %
X

x = 1.00 x 1077 dm™-mol

where we have taken the positive root as x._Then [OH ] = [H*] = 1.00 x 10~ mol-dm . We also
note that K, =k /k |, 80 '

k, = 5.49 x 10° mol ' -dm’k_, 6

We can use Equation 28.54 to write
1
k_, +k (H*]+[OH]) = =

Substituting for [H'], [OH™], and &, we find
1
k= s ' 15 1 3.3 7 o
(3.7 x 1077 $)[1 + (5.49 x 10" mol™"-dm™)(2.00 x 107" mol-dm™)]
=25x107 st

and (substituting back into Equation 1) k, = 1.4 x 10" mol™-dm’ s

28-35. The equilibrium constant for the reaction

kl
DT (aq) + OD (ag) = D,00)
k
at 25°C is K, = 4.08 x 10'* mol™*-dm’. The rate constant k_, is independently found to be

2.52 % 1075 s, What do you predict for the observed relaxation time for a temperature-jump
experiment to a final temperature of 25°C? The density of D0 is p = 1.104 g-cm™ at 25°C.

The concentration of D,0 at 25°C is .

1.104 g-cm™ (10 cm

3
— = 55.13 mol-dm™
20.027 g-mol™* \ 1dm

Chemical Kinetics I: Rate Laws

Let x be the number of moles of D,0 that dissociate per liter. Then, at equilibrium, (D,0] =

55.13 mol-dm™ — x, and [D*] = [OD | = x. We can use the K given in the problem and these
values to write

[H,0] 5513 mol-dm™ —x

<= |08 —
-3
4.08 % 10" mol™!-dm® = 55.13 mOl'zdm —x
X

x=3.68 % 107% dm>-mol

where we have taken the positive root as x. Then JOD™] = [D*] = 3.68 x 1078 mol-dm >. We can
also write K as k,/k_,, so (using the given value of k)

ky =k K, = (252 x107°s7){4.08 x 10" mol™'-dm’) = 1.03 x 10" mol ' -dm? s

We can now use Equation 28.54 to write

i
Tk, +h(DITEOD)

_ 1
252 x 107% 57" + (1.03 x 10" mol ™' -dm*®.57")(7.36 % 10~® mol-dm™)
=132x10"*s

28-36. Consider the chemical reaction described by

k
2A(q) = D(aq)
k_

1

If we assuime the forward reaction is second order and the reverse reaction is first order, the rate law
is given by

d[D] )
Now consider the response of this chemical reaction to a temperature jump. Let[A] = [Al,,, + A[A]
and [D] = [D]Z'aq + A[D], where the subscript “2,eq” refers to the new equilibrium staté.qNow use
the fact that A[A] = —2A[D] to show that Equation 1 becomes

48D} gk ia
—— = —(4k (Al

Show that if we ignore the O(A[DJ) term, then

+k_)AD]1+ O(A[DP)

2.eq

A[D] = A[D],e™"
where T = [/(4k, [A]‘Z,,e,q +k ).

We let [A] = [A]Z‘cq + AlA}and [D] = [D]Z,eq + A[D] in Equation 1:

4b]
di
d(IDl,, -+ AID])

= k(AT — k_,[D]

=k (IAL,, + A[AD? — k_, (D], + A[D])

dt

913
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Now use the relation A[A] = —2A[D] to write

dAlD]
d[t =k ([Al,,, — 2A[D]Y* ~ k_ (DL, + APD

= k,[AR,, - 4k [A],, AD] - kD, —k_ AD] + O{(AD))’}

At equilibrinm, d{D]/dt = 0, so (from Equation 1) kwl[D]Z,cq = kl[A];eq. Then

2] = k1AL + KA+ OLADY)
Ignoring second-order and higher terms in A[D] and integrating gives
L A, , + ) AD]
dﬁ[][)Df = —dt(dl,[A], , +k D)
n 2[{])])}]0 = t(4k,[Al, ., + k)

A[D] = A[D]e™"

where T = 1/(4k [A],,, + &)

28-37. In Problem 28-36, you showed that the relaxation time for the dimerization reaction
kl
2A(aq) = D(aq)
k

-1
is given by v = 1/(4k[Al, , + k_,). Show that this equation can be rewritten as
. .
= =K, + 8Kk, [S],

where [S], = 2[D] + [A] = 2[D], , +[A], ..

We write the equilibrium constant in terms of the rate constants and the concentrations of D and A:

DL, &
AL, K
[ALZ,
[D], ., = ; o

-1

Because [S]; is a constant, [}, = [A]Z,aq + 2[D]2’eq. Substituting for [D]Z,eq from Equation 1 gives

[A] 12?.‘ eqkl
k

-1

k [S], = 2k,[A);, + k1AL,

(8], = [A), ., +

From Problem 28-36, we can write 1/t as
1
5= (4K, [A], ,, +k_)*
= 16K[AL ., + 8k k_ [A], . + K2,

— 8k, (2kl (AR, + kfl[A]z‘Eq) + 12,

Chemical Kinetics I: Rate Laws 915

Substituting from Equation 2, we cbtain

1
— = 8kk_,[S], + &%,

28

38. The first step in the assembly of the protein yeast phosphoglycerate mutase is a reversible
dimerization of a polypeptide,

ky

2A@9) & Deag)

—1

where A is the polypeptide and D is the dimer. Suppose that a 1.43 x 10™° mol-dm™? solution
of A is prepared and allowed to come to equilibrium at 280 K. Once equilibrium is achieved, the
temperature of the solution is jumped to 293 K. The rate constants k; and k_, for the dimerization
reaction at 293 K are 6.25 x 10° dm’-mol™ -s™" and 6.00 x 1073 577, respectively. Calculate the
value of the relaxation time observed in the experiment. {Hint: See Problem 28-37.)

From Problem 28-37, we have

1
— = 8k,k_ [S], + K,

We are given [A]0 = 1.43 % 10~° mol-dm™. Because [D], =0, [Al, = [Al,,, +2iD], g’
[Sl, = 143 x 1073 mol-dm™. Then

1
— = 8(6.25 x 10° dm®-mol™ -s 7' }(6.00 x 107° s7")(1.43 x 10~ mol-dm™?) + (6.00 x 1072 s71)?
‘a‘.'
1

- =433 x 10757

5

T=152s

28-39. Does the Arrhenius A factor always have the same units as the reaction rate constant?

Yes. The Arrhenius equation is
k= Ae 5/RT (28.57)

Because the exponential term is unitless, k and A have the same ynits.

28-49. Use the results of Problems 28-26 and 28-27 to calculate the values of E, and A for the
decomposition of uranyl nitrate.

We can use the expression from Example 28-8,

= (A5 )i
! k(L)

Tl - Tz
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In Problems 28-26 and 28-27, we found that k = 8.82 x 107° min~! at 298 X and that
k = 0.0505 min ' at 623 K for the decomposition of uranyl nitrate. Substituting into the above

equation, we find

208 K)(623 K 8.82 x 107 min™’
E = (8.315 1. K Lmol™) [(298 K)—( 3 I{)] In x mit 8290 J-mol™!

0.05050 min™’
7. Using the values at 208 K, we find that

290 J-mol
A = ke™/®T = (8.82 x 107 min ") exp[ 82901 mo’ ] — 0.250 min™?
(8315 1-mol K D(298K)

The value of A is given by Equation 28.5

28-41. The experimental rate constants for the reaction described by

OH(g) + CICH,CH,Cl(g} —> H,G{g) + CICHCH,Cl(g)

at various temperatures are tabulated below.
T/K l 297 296 321 333 343 363

k/10° dm3-m01"-s#1‘1.24 132 1.81 208 229 275

Determine the values of the Arrhenius parameters A and E_ for this reaction.

We can write the Arrhenius equation as

nk—InA— 2l . (28.56)
=InA—- == .
o RT

y=22.72-1.191x

ln (k/dm3.mol™'s™')

3.0 3.2
1000K/T

intercept of In A and a slope of

The best-fit line to a plot of Ink versus 1/7 will have an
—7.37 x 10° dm*-mol ™5™ and

—E,/R. Here, the best fit of the experimental data gives A
E =990 kI-mol .

28-42. The Arrhenius parameters for the reaction described by
HO,(g) + OH(g) —— H,0() + 0,
“land E, =418kl .mol~"!. Determine the value of the rate

are A = 5.01 x 10 dm® -mol s
constant for this reaction at 298 K.

Chemicai Kinetics |: Rate Laws

We can use Equaticn 28.57:

k= Ae_Eu/RT

= (5.01 % 10" dm’*-mol -5} exp [~ 4180 J-mol™* }

097 % 10° i o (8.315 F- X -mol ™)(298 K)
=7 m”-mol™ .87

28-43. At what temperature will the reacti ibed i
eaction d
43, A what lemper escribed in Problem 2842 have a rate constant that is

Again, use Equation 28.57:

_—-E 1
R n(k/A)
. ~4180 J-mol™* I
8.3145 - mol™ - K™ Inf2(9.27 x 10%)/5.01 x 10"]
=506K

28-44. The rate constants for the reaction
CHCl,(g) + CL,(g) — CHCL{(g) + Cl(g)

at different temperatures are tabulated below

T/K |357 400 458 524 533 615

7 — -
k/10" dm’-mol ™" -5~ | 172 253 382 520 5.61 7.65

Calculate the values of the i i
Arrhenius parameters A and E, for this reaction.

‘We can write the Arrbenius equation as

E
1 = — a
nk=1InA BT (28.56)

T

[7-]

~ 18.0 y=20.20-1.263x

E

o 17.5

g

o

= 17.0

E ] | |
1.8 2.2 2.6

1600K /T

ThEc ;);stgt linehtoba pli(:l)t of Ink versus 1/7T will have an intercept of In A and a slope of
—E_/R. Here, the best fit of the i i =
Tyt experimental data gives A = 5.93 x 10* dm*-mol™"-s™* and

917
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28-45. The rate constant for the chemical reaction
2N, 0. (g) — 4NO,(g) + G, (g

doubles from 22.50°C to 27.47°C. Determine the activation energy of the reaction. Assume the
pre-exponential factor is independent of temperatore.

We can use the expression for E, derived in Example 28-8:

TT T
o (5 )i
T.—1,) KT

(295.65 K)(300.62 K)} In 1

= (8.3145 T-mol - K™")
(295.65 - 30062)K | 2

= 103.1 kJ-mol !

28-46. Show that if A reacts (o form either B or C according to
kl k2
A-—DB or A-—C

then £, the ohserved activation energy for the disappearance of A, is given by
E = k E +KE,
& k, +k,
where E, is the activation energy for the first reaction and E, is the activation energy for the second
reaction.

The Arrhenius equations for each reaction are (Equation 28.57)
-E —ERT
k= A B and k= Age /R
The observed rate constant for the disappearance of A is going to be the sum of k; and k,. Therefore,
the Arrhenius equation for the net effect of both reactions can be written as (Equation 28.55}

din(k, + k) _ E,

dT RI?
Substituting for k, and k, and taking the derivative gives

1 d E

(A e EVRT LA ~E,/RTY _. __a
Ekar e T )= %1

1 A o-ERT 4 AE, o E/RT ) = E,
k, +k, \ RT* RT? RT?
1

A Ee B L AE —EJRTY _ E
k1+k2( 1 le ! + 2 26 ) 2
Bk +Ek _

T

28-47. Cyclohexane interconverts hetween a “chair” and a “boat” structure. The activation parameters
AYH® =31.38 kJ-mo!™" and

for the reaction from the chair to the boat form of the molecule are

Chemical Kinetics I: Rate Laws

A¥S° = 16,74 T. KL, Calculate the standard Gi ivati
IR standard Gibbs energy of activation and the rate constant for

We can use Equation 28.73 to find A*G":
AYG® = AYH® — TA*S®
=31.38kT-mol™! — (325 K)(16.74 T-mol ") .
= 25094 kI-mol™

The rate constant is given by Equation 28.72 (¢° = 1):
kT
= ¢
i

—AYGo/RT

k

e (677 ¢ 10]2 S—l) expl: —25 940 J'mol_l :I

(8.315T. K" -mol ™) (325 K)
=459 x 108"

28-48. The gas-phase rearrangement reaction
vinyl allyl ether — allyl acetone

has a rate constant of 6.015 x 107 s~ at 420 K and a rate constant of 2.971 x 107 s™! at 470 K
Calculate the values of the Arrhenius parameters A and E,. Calculate the values of A*H° and A*S:’
at 420 K. (Assume ideal-gas behavior.)

We can use the expression derived in Example 28-8 to find £ :

£= R (7% )t
T -1, k(T,)

= (8.315 1K -mol™) [(420 K)@E70K) 7], 6.015x 1075 57
420K — 470K | 2971 x 107 57!

= 128.0 kJ-mol™*

Using this value in the Arrhenius equation with the rate constant at 420 X gives

128 000 J-mol™!
(8.3151- K -mol ™) (426 K)

5.1 _
6.015x 1075 _Aexp[— }A:S.le O

We can write (Equation 28.55)
dlnk  E,
dt ~ RT?

and, for an ideal-gas system, we also have (Eguation 28.76)

dink 1 AU
& TV R

For a unimolecular reacti tHe = ATU° i
lar reaction, ATH® = A*U/°, and so equating these two expressions gives

E, 1  NH

a

REE T T ORI
E, = RT + A*H®
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We can solve this equation for A*H® at 420 X:
AFH® = 128.0kJ-mol ! — (8.315 x 107% kJ-mol )(420 K) = 124.5kJ-mol ™’

Because E, = A¥H° + RT for a reaction of type A — P, Equation 28.80 becomes

A= EkBTeAiS“/R

h
Solving for A*S° gives

Ah
A*S° =Rl
- . [ekBT}

(4.98 x 10" 57")(6.626 x 107 J-s)]

— (8315 3K -mol ) In
( mal™) [ (1381 x 1072 T K D){420 K)

=—32.13-mol .K!

28-49. The kinetics of a chemical reaction can be followed by a variety of experimental techniques,
including optical spectroscopy, NMR spectroscopy, conductivity, resistivity, pressure changes, and
volume changes. When using these techniques, we do not measure the concentration itself but
we know that the observed signal is proportional to the concentration; the exact proportionality
constant depends on the experimental technique and the species prcsent in the chemical system.
Consider the general reaction given by

vAA+vBBw—>vYY+vZZ

where we assume that A is the limiting reagent so that [A] — 0 as ¢t — oo. Let p, be the
proportionality constant for the contribution of species i to S, the measured signal from the
instrument. Explain why at any time ¢ during the reaction, S is given by

S() = p AL+ pgBl+ py[Y]+ p,lZ] 1
Show that the initial and final readings from the instroment are given by
S(0) = plAlLy + pe[Bly + py[Y], + P12, 2)

and
Vs Yy V2
Va Va Va

Combine Equations 1 through 3 to show that

S(#) — S(co)
[A]OS(O) 5(c0)

(Hint: Be sure to express [B], [Y], and [Z] in terms of their initial values, [A] and [A];-)

Equation 1 holds because the total measured signal is the sum of the signals from each species.
Because p,[i] is the amount of signal that species i contributes, we have Equation 1. Initially,
therefore, we have

S0) = p,lAl, + puiBly + py[Y], + p,[Z], (2)

Chemical Kinetics |: Rate Laws

As ¢t — oo (at the time of the final reading), [A] — 0. From the stbichiemetry of the reaction,
we know that at ¢ = 00, v,[A] /v, moles of B have reacted, v, [A],/v, moles of Y have been
produced, and v,[A], /v, moles of Z have been produced. We then have

v v
S(00) = py ([B]0 - —B[A]D) + py ([Y]g + —Y[A]0> + Py ([Z]O + E[A]O) (3)
vy v, v,
At time 7, when the concentration of A is [A],

v
[B] = [B]__ + ~*[A]
Va

[Y]=1[Y]_ — :—Y[A]
A

(2] = [Z) :jz [A]

A

We can combine these equations with Equations 1 and 3 to find

S(t) = p,[A] + p, ([B]O - ;E[A]o + {)’P-[A])
: A

A
+p, ([Y]D +Y[A] - “—*{A]) +p, ({Z]O +Z[A], — ﬁ{AJ)
UA VA UA ‘IJA
Then )

3(1) — S(o0) = p,lA] + o PB[A} PY[A] —PZ[A]
. S(O) - S(OO) = pA{A]U + ——'pB[A]() — “py[A}g - _pz[A]D
Va Ya Va

and

S(t) — S(e0) _ [A]
5(0) - S(c0)  [A],

28-50. Use the result of Problem 28-49 to show that for the first-order rate law, v = k[A], the
time-dependent signal is given by

S(t) == S(c0) + [S(0) — S(c0)]e™

] For the first-order rate law

[A]l =[A]l,e ™ (28.23)

We can use the final result of Problem 2849 to write this as
S =S _ Al _
S(0) — S{o0)  [A],

or

S§(t) = S(00) + [S(0) — S(c0)]e™
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28-51. Use the result of Problem 2849 to show that for the second-order rate law, v = k[AJ, the =
time-dependent signal is given by ) E
& | en
S0y -8 |
S() = S(oo) + 2 = 5(0) =ls
I+ [A] ke e
=
For the second order rate law
L _ 1 + kt (28.33)
[A]  [A], '

We can write this equation in terms of [A]/[A]:
[A]l = & E E
1+ [A] k¢ A =
[A] 1 S|z
[Al, 1-+[Alks ala

and then use the final result of Problem 2849 to write
S()—So) Al 1
S© - 5(00)  [Al, 1+ ALk

or
5(0) — S(o0)

S(0) = S(00) + = N

28-52. Because there is a substantial increase in the volume of the solution as the reaction proceeds,

the decomposition of diacetone alcohol can be followed by a dilatometer, a device that measures
the volume of a sample as a function of time. The instrument readings at various times are tabulated

below,
Time/s ! 0 244 350 480 648 758 1334

S/arbitraryunitsIS.O 200 24.0 280 320 340 400 433

Use the expressions derived in Problems 28-50 and 28-51 to determine if the decomposition
reaction is a first- or second-order process.

If the decomposition reaction is a first-order process, then

S0 =S
S(0) — 5(o0)

and a plot of InfS(z} — S(00)}]/[5(0) — S(c0)] versus ¢ will be linear. If the decomposition reaction
is a second-order process, then

S(t) — S(c0) 1!
S(0) S(OO)]

and a plot of [S{0} — S(c0)1/[S(2) — S(co0)] versus ¢t will be linear.

1+ [Alkr = [

This is a first-order process.

28-54. In Problem 28—49, we assumed that A reacted completely so that [A] - 0 as ¢t - co. Show

that if the reaction does not go {0 completion but establishes an equilibrium instead, then

Sty — S{cc)

(A} = (AL o + AL — TAL.w) 56 5 00)

where [Al], , is the equilibrium concentration of A.

Becaunse S{¢) and S(D) are the same as in Problem 28-49, we can still use Equations 1 and 2 from
that problem. If the reaction establishes an equilibrium, Equation 3 becomes

S(o0) = p,[AL,, + Py ([B]O ~ %{A}O + :—i[A]m) + Py ([Y]D + E—:[AJU - E—:[A]m)

Yz Yz
+pz ([Z]D + _[A]g - _[A]z‘ﬂq
Va Ya

. Then
$() = 5(00) = p, (IA] = [AL,,,) + Py (:—B[A] - E—B[A}z‘,q)
A A
1 v W %
_pY (i[A] - U_:[A]z‘m) - PZ (L—i[A] - i[A]Z’eq)

_ Yo, V%, V% _

= (pA bt e pz) (141 - 1a1,)
and

1, 2
SO = S(00) = p, ([A], — [AL,,) + Pe (i[A]‘) - ;i-[Alz,eq)
V. . v, v
_py (i[A]Q - i[A]Zeq) - pz (i[A]D - ;f[A]Z,Bq)

_ o W, M _
- (pA+ U_PB ) py v pz) ([A]O [A]eq)

A A A
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Dividing the first equation by the second gives

S@) —S(c0) Al -[Aly
S(0) — S(o0)  [A]y — [Aly

or
Sty — S(e0)

41= Ak + 00~ 0 50 505

CHAPTER

Chemical Kinetics lI: Reaction Mechanisms

PROBLEMS AND SGLUTIONS

291, Give the units of the rate censtant for a unimolecular, bimolecular, and termolecular reaction.

3

Since v is in units of mol-dm™-s77, the units of k are

- (mol-dm™>-s ) (dm* - mol™) = s~

unimolecular 1 3 o2
. : (mol-dm~?-s ) (dm* - mol )? = dm® mol™ s
bimolecular 3 1 3 123 6 1

ot (mol-dm™ s (dm? -mol 1Y = dm® mol ™7 -

-1

29-2, Determine the rate law for the following reaction
F(g) + D,(g) = FD() + D(g)

Give the units of k. Determine the molecularity of this reaction.

Because this is an elementary reaction, the rate law is

v = k[FI[D, ]

This is a bimolecular reaction, so the units of k are dm? -mol™!-s7*.

293, Determine the rate law for the reaction
i(g) -+ I(g) + M(g) == 1,(g) + M(2)

where M is any molecule present in the reaction container. Give the units of k. Determine the
moleculatity of this reaction. Is this reaction identical to

I(2) + 1(g) = L,(g)

Explain.

Becanse this is an elementary reaction, the rate law is

v = kM]J*
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