joel Hildebrand was born in Camden, NI, on November 16, 1881, and died in 1983, He
received his Ph.D. in chemistry from the University of Pennsylvania in 1906. After spending a
year at the University of Berlin with Nernst, he returned to the University of Pennsylvania as
an instructor, In 1913, he joined the Department of Chemistry at the University of California at
Berkeley, where he stayed for the remainder of his life. Although he officially retired in 1952,
he remained professionally active until his death, publishing his last paper tn 1981. Hildebrand
made significant contributions to the fields of liquids and nonelectrolyte solutions. He retained
a long interest in deviations from ideal solutions (Raouit’s law) and the theory of regular
solutions. His books, The Solubility of Nonelectrolytes and Regular Solutions, published with
Robert Scott, were standard references in the field. Hildebrand was a famed, excellent teacher of
general chemistry at Berkeley. His general chemistry text, Principles of Chemistry, influenced
other schools to place greater emphasis on principles and less on the memorization of specific
material in the teaching of general chemistry. Hildebrand was a great lover of the outdoors and
especiaily enjoyed skiing and camping. He managed the U.S. Olympic Ski Team in 1936, was
President of the Sierra Club from 1937 to 1940, and wrote a book on camping with his daughter
Louise, Camp Catering or, How to rustle grub for hikers, campers, mountaineers, canoeists,
hunters, skiers, and fishermen.

CHAPTER

Solutions I: Liquid-Liquid Solutions

In this and the next chapter, we will apply our thermodynamic principles to solutions.
This chapter focuses on solutions that consist of two volatile liquids, such as alcohol—
water solutions. We will first discuss partial molar quantities, which provide the most
convenient set of thermodynamic variables to describe solutions. This discussion will
lead to the Gibbs—Duhem equation, which gives us a relation between the change in
the properties of one component of a solution in terms of the change in the properties
of the other component. The simplest model of a solution is an ideal solution, in which
both components obey Raoult’s law over the entire composition range. Although a few
solutions behave almost ideally, most solutions are not ideal. Just as nonideal gases
can be described in terms of fugacity, nonideal solutions can be described in terms of a
quantity called activity. Activity must be calculated with respect to a specific standard
state, and in Section 24-8 we introduce two commonly-used standard states: a solvent,
or Raoult’s law standard state, and a solute, or Henry’s law standard state.

24--1. Partial Molar Quantities Are Important Thermodynamic
Properties of Solutions

Up to this point, we have discussed the thermodynamics of only one-component sys-
tems. We will now discuss the thermodynamics of multicomponent systems, although,
for simplicity, we will discuss only systems of two components. Most of the con-
cepts and results we will develop are applicable to multicomponent systems. Let’s
consider a solution consisting of #, moles of component 1 and », moles of compo-
nent 2. The Gibbs energy of this solution is a function of T and P and the two mole
numbers n, and n,. We emphasize this dependence of G on these variables by writing
G = G(T, P, n,,n,). The total derivative of G is given by

oG G
dG = (— dr + | — drP
I aT P,nl,n2 aP T‘nt.n2

G aG :
+ | — dn, +1{ _— dn, (24.1)
anl P,T.n2 BHZ P,'.",n1
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If the composition of the solution is fixed, so that dn| = dn, = 0, then Equation 24.1
is the same as Equation 22.30, and we have

oG
o), T O m)

2

and

aG
ﬁ - = V(P, T,n],nz)

R
As in the previous chapter, the partial derivatives of & with respect to mole numbers
are called chemical potentials, or partial molar Gibbs energies. The standard notation

for chemical potential is p, so we can write Equation 24.1 as

dG = —SdT + VdP + pdn, + p,dn, (24.2)
where
G —
LA 8.5 :

+J

We will see that the chemical potential of each component in the solution plays a
central role in determining the thermodynamic properties of the solution. '
Other extensive thermodynamic variables have associated partial molar values,
although only the partial molar Gibbs energy is given a special symbol and name. For
example, (3.5/0n ), Piny, is called the partial molar entropy and is denoted by Ej, and

@Vion ), Py, is called the partial molar volume and is denoted by VJ Generally,

it ¥ = ¥(T, P,n,n,)is some extensive thermodynamic property, then its associated
partial molar quantity, denoted by Y;, is by definition

Y, =Y(T,P,n,n,) = (g%) (24.4)
7/ T Py £
Physically, the partial molar quantity YJ 1s a measure of how Y changes when n_ is
changed while keeping T', P, and the other mole numbers fixed.

Partial molar quantities are intensive thermodynamic quantities. In fact, for a
pure system, the chemical potential is just the Gibbs energy per mole. We can use
the intensive property of partial molar quantities to derive one of the most important
relations for solutions. As a concrete example, we will consider a binary solution,
that is, one composed of two different liquids. The Gibbs energy of a binary solution

(Equation 24.2) is

dG =-—8dT + VdP + p dn, + p,dn,

24-1. Partial Molar Quantities Are Important Thermodynamic Properties of Solutions

At constant T and P, we have

dG = pdn, + p,dn, (24.5)

Now, imagine that we increase the size of the system uniformly by means of a scale
parameter A such that dn, = r,dX and dn, = n,d).. Note that as we vary A from Oto 1,
the number of moles of components 1 and 2 varies from O to », and 0 to n,,, respectively.
Because G depends extensively on n, and n,, we must have that dG = GdA. Therefore,
the total Gibbs energy varies from 0 to some final value  as A is varied. Introducing
d) into Equation 24.5 gives

1 1 1
fo Gdl:]; nluldl-l-j; Py fby A

Because G, r, and n, are final values (and so do not depend upon A) and , and .,
are intensive variables (and so do not depend upon the size parameter A), we can write

the above equation as
1 )] 1
Gf dl:nl,u,]f dl-l-nzf.sz di
0 g 0

or, upon integration,

G(T, P,n,n)=p.n, + pn,n, (24.6)

Note that &G = pn for a one-component system, which shows once again that ¢ is the |

Gibbs energy per mole for a pure system, or more generally, that the partial molar
quantity of any extensive thermodynamic quantity of a pure substance is its molar
value.

Partial molar quantities have a particularly nice physical interpretation in terms of
volume, for which the equivalent equation to Equation 24.6 would be

V(T,P,n,n)=Vn +Vn (24.7)

Now, when 1-propanol and water are mixed, the final volume of the solation is not equal
to the sum of the volumes of pure 1-propanol and water. We can use Equation 24.7
to calculate the final volume of a solution of any composition if we know the partial
molar volumes of 1-propanol and water at that composition. Figure 24.1 shows the
partial molar volumes of 1-propanol and water as a function of the mole fraction of
1-propanol in 1-propanol/water solutions at 20°C. We can use this figure to estimate
the final volume of solution when 100 mL of 1-propanol is mixed with 100 mL of
water at 20°C. The densities of I-propanol and water at 20°C are 0.803 g-mL~" and
0.998 g-mL™', respectively. Using these densities, we see that 100 mL each of 1-
propanol and water corresponds to a mole fraction of 1-propanol of 0.194. Referring
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FIGURE 241
The partial molar volumes of 1-propanol and water in a l-propanol/water solution at 20°C
plotted against the mole fraction of 1-propanol in the solution.

to Figure 24.1, we see that this corresponds to roughly Vl_pwpmwl =72 mL-mol ' and

V =18 mL mol . Thus, the final volume of the solution is

water

V=nY, v

-proparnol + By ¥ water
803 ¢
228 )72 mLemol™) +
60.09 g-mol

= 196 mL

99.8 ¢
18.02 g-mol™’

) (18.mL.-mol ™)

" compared with a total volume of 200 mi. before mixing. Problems 248 through 2412

involve the determination of partial molar volumes from solution data.

24-2. The Gibbs-Duhem Equation Relates the Change in the
Chemical Potential of One Component of a Solution to the
Change in the Chemical Potential of the Other

Most of our thermodynamic formulas for single-component systems (pure substances)
have analogous formulas in terms of partial molar quantities. For example, if we start
with G = H — T'§ and differentiate with respect to n, keeping T, P,and n, fixed,

we obtain
G _ dH T a5
on. Ry on.
J LR 2P, i TP,

+i

or

p, =G, =H ~TS (24.8)

24-2. The Gibbs-Duhem Equation Relates the Change in the Chemical Potential Oh7

Furthermore, by using the fact that cross second partial derivatives are equal, we get

g_(m*) K ( BG) . (86} B (auj)
j Einj v, anj ar P aT 3nj rp,, aT P,
and
~ fav 9 Gy 0 [8G _/u
i\ an, Con, \OP /., 8P \onm S \ar/,
Tr e, J S e, i

If we substitute these two results into

L. AL
du, = ilar] dT +{ — dpP
! arT P ar Tt

di, = —5,dT + V.dP (24.9)

we obtain

which is an extension of Equation 22.30 to multicomponent systems.

EXAMPLE 24-1
Derive an equation for the temperature dependence of 11, (T, P) in analogy with the
Gibbs-Helmholtz equation (Equation 22.60). '

SOLUTION: The Gibbs—Helmholiz equation is (Equation 22.60)

aG/T H
T j,, T

Now differentiate with respect ton, and interchange the order of differentiation on the
left side to get
(3%/ N __58
_ ar J, 7’

where ﬁj is the partial molar enthalpy of component j.

We will now derive one of the most useful equations involving partial mofar
quantities. First we differentiate Equation 24.6

dG = pdn, + p,dn, +n dp, +n,dp,

and subtract Equation 24.5 to get

nd, +nydp, =0 (constant T and P) (24.10)
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If we divide both sides by #, -+ n,, we have

x,dp, +x,dp, =0 (constant T and P) (24.11)

where x, and x, are mole fractions. Either of Equations 24.10 or 24.11 is called the
Gibbs--Dithem equation. The Gibbs—Duhem equation tells us that if we know the
chemical potential of one component as a function of compeosition, we can determine
the other. For example, suppose we were to know that

ty =3+ RT Inx, 0<x, =1

over the whole range of x, (0 to 1). A superscript * is the [UPAC notation for a property
of a pure substance, so in this equation, u; = u,(x,=1) is the chemical potential
of pure component 2. We can differentiate 4, with respect to x, and substitute into
Equation 24.11 to get

X
du, = ——zd;,gz = —RTﬂdlan
%y x
d d
= rr2h_ _prfh O=<x,<1)
X, X, X,

Butdx, = —d}él (because x, + x, == 1), s0

. dx

a,’,u1=RTx—1 0=<x <1

1

where 0 < x, < 1 because 0 < x, < 1. Now integrate both sides from x, = 1 (pure

component 1) to arbifrary x, to get
=@+ RT Inx, O=<x <1

where ;) =, (x, =1). We will see later in this chapter that this result says that if one

component of a binary solution obeys Raoult’s law over the complete concentration
range, the other component does also.

| | -

EXAMPLE 24-2
Derive a Gitbs—Duhem type of equation for the volume of a binary solution.

SOLUTION: We start with Equation 24.7, which is the analog of Equation 24.6
V{T, P, 1, nz) s HIVI + RQ_VZ
and differentiate (at constant T and P) to obtain
dV = nldvl + Vldnl + ndeZ + Vzdnz
Subtract the analog of Equation 24.5

dV = Vidn, + Vdn, (constant T and P)

24-3. At Equilibrium, the Chemical Potential of Each Component Has the Same Value in Each Phase

to obtain

ndV, +ndV,=0 (constant T and P)

This equation says that if we know the change in the partial molar volume of one
component of a binary system over a range of composition, we can determine the
change in the partial molar volume of the other component over the same range.

24-3. At Equilibrium, the Chemical Potential of Each Component Has
the Same Value in Fach Phase in Which the Component Appears

Consider a binary solution of iwo liquids that is in equilibrium with its vapor phase,
which contains both components. Examples are a solution of 1-propanol and water
or a solution of benzene and toluene, each in equilibrium with its vapor. We wish to
generalize our treatment in the previous chapter, in which we treated a pure liquid in
equilibrium with its vapor phase, and develop the criterion for equilibrium in a binary
solution. The Gibbs energy of the solution and its vapor is

G = Gsln + Gvap

Letni™ a3 and n}", ny" be the mole numbers of each component in each phase. For
generality, let j denote either component 1 or 2, 5o #, denotes the number of moles of
component j. Now suppose that dn, moles of component j are transferred from the
solution (o the vapor at constant T and P, so that nf.ap == +dn, and d njll“ = —dnj. The

accompanying change in the Gibbs energy is
dG = dG™ +dG™

(BGSIH) i (aG""‘P) I
= : ; oA '
anfln T P.n ’ an} ’ I.rp ’

P Mg j

— Mjlud”jln + 'ul}fﬂpdn}fap — (M;ap _ Mjln)dn;’ap
I the transfer from the solution to the vapor occurs spontaneously, then dG < 0.
Furthermore, dn; > 0, so p;" must be less than /.L;‘“ in order that 4G < 0. Therefore,
molecules of component j move spontanecusly from the phase of higher chemical
potential (solution) to that of lower chemical potential (vapor). Similarly, if 1w it
then molecules of component j move spontaneously from the vapor phase to the
solution phase (dn;® < 0). At equilibrium, where dG = 0, we have that

W = (24.12)

Equation 24.12 holds for each component. Although we have discussed a solution in
equilibrium with its vapor phase, our choice of phases was arbitrary, so Equation 24.12
is valid for the equilibrium between any two phases in which component j occurs.
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The important resuli hexe is that Equation 24.12 says that the chemical potential of
each component in the liquid solution phase can be measured by the chemical potential
of that component in the vapor phase. If the pressure of the vapor phase is low enough
that we can consider it to be ideal, then Equation 24.12 becomes

wi" =" = u(T) +RTIn P, (24.13)

where the standard state is taken to be P° = 1 bar. For pure component j, Equa-
tion 24.13 becomes

W) = pivap) = p3(T) + RTmE* (24.14)

where the superscript * represents pure (liquid} component j. Thus, for example,
w; (1) is the chemical potential and B” is the vapor pressure of pure j. If we subtract
Equation 24.14 from Equation 24.13, we obtain

p = ui(ly + RT In }% (24.15)
. J
Equation 24.15 is a central equation in the study of binary solutions. Note that ,uj.ln =
as P, — £ Strictly speaking, we should use fugacitics (Section 22-8) instead of
pressures in Hquation 24.15, but usually the magnitudes of vapor pressures are such
that pressures are quite adequate. For example, the vapor pressure of water at 293.15 K
i8 17.4 torr, or 0.0232 bar.

24-4. The Components of an ldeal Solution Obey Raoult’s Law
for All Concentrations

A few solutions have the property that the partial vapor pressure of each component is
given by the simple equation

P =x5 : (24.16)
Equation 24.16 is called Raowit’s law, and a solution that obeys Raoult’s law over the
entire composition range is said to be an ideal solution.

The molecular picture behind an ideal binary solution is that the two types of
molecules are randomly distributed throughout the solution. Such a distribution will
occur if (1) the molecules are roughly the same size and shape, and (2) the intermolec-
ular forces in the pure liquids 1 and 2 and in a mixture of 1 and 2 are all similar.
We expect ideai-solution behavior only when the molecules of the two components
are similar. For example, benzene and toluene, o-xylene and p-xylene, hexane and
heptane, and bromoethane and iodoethane form essentially ideal solutions. Figure 24.2
depicts an ideal solution, in which the two types of molecules are randomly distributed.
The mole fraction X; reflects the fraction of the solution surface that is occupied by

FIGURE 24.2

A molecular depiction of an ideal solution. The two types of
molecules are distributed throughout the solation in a random
Imanner.

- j molecules. Because the j molecules on the surface are the molecules that can escape

into the vapor phase, the partial pressure Iy 18 just X, B
According to Raoult’s law (Equation 24.16) and Equation 24.15, the chemical
potential of component j in the solution is given by

ui" = uih + RT Inx, (24.17)

Equation 24.17 also serves to define an ideal solution if it is valid for all values of x,

(0= X, < 1). Furthermore, we showed in Section 24-2 that if one component obeys
Equation 24.17 from x, = 0 to x, = 1, then so does the other.
The total vapor pressure over an ideal solution is given by

P

total

=P + P =x P +x,P={0—-x)P +x,P/
= P74, (P — PP - (24.18)

Therefore, aplotof P againstx, (or x,) will be a straight line as shown in Figure 24.3.

otal

200
=
—
2
S D10k Total
[
T
o
w 100 i
@ 0¥
E- ?’6‘\’1’
Z 50| |
g- Toluei’le ’
>
0 | | L |
0.0 0.2 0.4 0.6 0.8 1.0
) Fhenzene
FIGURE 24.3
Aplot of P againstx, . for a solution of benzene and toluene at 40°C. This plot shows

that a benzene/toluene solution is essentially ideal.
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| 1

EXAMPLE 24-3 :

1-propanol and 2-propanol form essentially an ideal solution at all concentrations at
25°C. Letting the subscripts 1 and 2 denote 1-propanol and 2-propanol, respectively,
and given that P = 2009 torr and P} = 45.2 torr at 25°C, calculate the total vaper
pressure and the composition of the vapor phase at x, = 0.75.

SOLUTION: We use Equation 24.18:

P (%, =0.75) = x PP+ x, Py
= (0.25)(20.9 torr) + (0.75)(43.2 torr)
= 39.1 torr

Let y, denote the mole fraction of each component in the vapor phase. Then, by
Dalton’s law of partial pressures,

PP (025)(20910r)

N = 0.13
l P[maI P total 39.1 torr
Similarly,
), = F, _ x, Py _ (0.75)(45.2 torr) .
: Pw:al leal 30.1 torr ’

Note that y, + y, = 1. Also note that the vapor is richer than the solution in the more
volatile component.

Problem 24-15 has you expand Example 243 by calculating P, as a function of
%, (the mole fraction of 2-propanol in the liquid phase) and as a function of y, (the mole
fraction of 2-propanol in the vapor phase), and then plotting P_ | against x, and y,. The
resulting plot, which is shown in Figure 24.4, is called a pressure-composition diagram.
The upper curve shows the total vapor pressure as a function of the composition of
the liquid phase {the liquid curve), and the lower curve shows the total vapor pressure
as a function of the composition of the vapor phase (the vapor curve). Now let’s see
what happens when you start at the point P, x_in Figure 24.4 and lower the pressure.
At the point P, x_, the pressure exceeds the vapor pressure of the solution, so the
region above the liquid curve consists of one (liquid) phase. As the pressure is lowered,
we reach the point A, where lLiquid starts to vaporize. Along the ling AB, the system
consists of liquid and vapor in equilibrium with each other. At the point B, all the liquid
has vaporized, and the region below the vapor curve consists of one (vapor) phase,
Let’s consider the point C in the liquid-vapor region. Point C lies on a line con-
necting the composition of liquid (x, = 0.75) and vapor (y, = 0.87) phases that we
calculated in Example 24-3. Such a line is called a tie line. The overall composition
of the two-phase (liquid-vapor} system is x . We can determine the relative amounts

P ./ torr

0.0 0.2 .4 0.6 0.8 1.0
x, {upper) v, (lower)

FIGURE 24.4

A pressure-composition diagram for a 1-propanol/2-propanel solution, which forms an
essentially jdeal solution at 25°C. This figure can be caicnlated using the approach in
Example 24-3. The upper curve {called the liquid curve) represents P versus x,, the mole.
fraction of 2-propanci in the liquid phase, and the lower curve (called the vapor curve) represents
P . versus y,, the mole fraction of 2-propanol in the vapor phase. The two points marked

by x represent the valves of x, and y, from Example 24-3.

of hciuid and vapor phase in the following way. The mole fractions in the liquid and
vapor phases are

Ay viap
ny ny q ny" ny
X, = e an y = — = T
2 1 1 1 2 vap vap vap
ny+n, # n, tn, n

where n'® and a' are the total number of moles in the vapor and liquid phases,
respectively. The overall mole fraction at x_ is given by the total number of moles of
component 2 divided by the total pumber of moles

i vap
_ Ryt

Xy = nl + 74P
Using a material balance of the number of moles of component 2, we have

1
x,(n' + ™) = xn' + y,n

or

1
n yZAxa

vap

n

- (24.19)
xa o x2

This equation represents what is called the lever rule because n™* (y, — xa) =n' (x, —
x,) can be interpreted as a balance of each value of “n” times the distance from each

curve to the point C in Figure 24.4. Note that #' = 0 when x, = y, (vapor curve) and
that #** = 0 when x_ = x, (liquid curve).
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EXAMPLE 24-4
Calcuiate the relative amounts of liquid and vapor phases at an overall composition of
0.80 for the values in Example 24-3.

SOLUTION: Inthiscase, x, = 0.80, x, = (.75, and y, = 0.87 (see Example 24 -3),
S0

n' 0.87-080
P 080 —0.75

1.6

According to Example 24-3, the mole fraction of 2-propanol in the vapor phase
in equilibrivm with a 1-propanol/2-propanol solution is greater than the mole fraction
of 2-propanol in the solution. We can display the composition of the solution and
vapor phases at various temperatures by a diagram called a temperature-composition
diagram. To construct such a diagram, we choose some total ambient pressure such as
760 torr and write

760 torr = x P + x, P = x P+ (1 —x )P}
= Pl —x (P} — P)

or

P — 760 torr
X =
1 P; o Pl*

We then choese some temperature between the boiling points of the two components
and solve the above equation for x|, the compositon of the solution that will give a total
pressure of 760 torr. A plot of temperature against x, shows the boiling temperature
(at P, = 760 torr} of a solution as a function of its composition (x,). Such a curve,
labeled the solution curve, is shown in Figure 24.5. For example, at 1 = 90°C, P;* (the
vapor pressure of 1-propanol) = 575 torr and P, (the vapor pressure of 2-propanol)
— 1027 torr. Therefore,

Py —T60torr 1027 torr — 760 torr
X. — = il
: P — P/ 1027 torr — 575 torr

0.59

The point corresponding to 7 = 90°C and x, = 0.59is labeled by point a in Figure 24.5.
We can also calculate the corresponding composition of the vapor phase as a function of
temperature. The mole fraction of component 1 in the vapor phase 1s given by Dalton’s
faw

P X Pl

1

T 760 torr | 760 torr

4!

98 - -
94 -
&
S 90|
86
Solution
32 | | | |
0.0 0.2 - 04 0.6 0.8 1.0
mole fraction of l-propanol
FICURE 24.5

A temperature-composition diagram of a 1-propanol/2-propancl solation, which is essentiafly
an ideal solution. The boiling point of 1-propanol is 97.2°C and that of 2-propanol is 82.3°C.

because the total pressure is taken (arbitrarily) to be 760 torr. We saw above that
x, = 0.59 at 90°C, so we have that -

¥, = (0.59)(575 torr}/ (760 torr) = 0.45

which is labelled by peint b in Figure 24.5.

EXAMPLE 24-5
The vapor pressures (in torr) of [-propanol and 2-propanol as a function of the Celsius
temperature, {, are given by the empirical formulas

3452.06
In P* = 18.0609 — =0
P = 180099 — T ed
and
©3640.25
0 Pr o= 18,6919 — =
In £ f+219.61

Use these formulas to calculate x; and y, at 93.0°C, and compare your results with the
values given in Figure 24.5.

SOLUTION: At 93.0°C,

3452.06
Pr=180699 - —— """ —§g472
In Py ? 93.0 + 204.64

or P = 647 torr. Similarly, P = 1150 torr. Therefore,

Py —760torr 1150 torr — 760 torr 077

X, —

! Pr— P 1150 torr — 647 torr
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and

x, Py _ (0.77)(647 o) _

_ _ 0.65
YT 760 torr 760 torr

in agreement with the values shown in Figure 24.5.

The temperature-composition diagram can be used to illustrate the process of
fractional distillation, in which a vapor is condensed and then re-evaporated many
times (Figure 24.6). If we were to start with a 1-propanol/2-propanol solution that has
a mole fraction of 0.59 in 1-propanol (point a in Figure 24.5), the mole fraction of 1-
propanol in the vapor will be (.45 (point &). If this vapor is condensed (point ¢) and then
re-evaporated, then the mole fraction of 1-propanol in the vapor phase will be about
0.30 (point d). As this process is continved, the vapor becomes increasingly richer in
2-propanol, eventually resulting in pure 2-propanol. A fractional distillation column
differs from an ordinary distillation column in that the former is packed with glass beads,
which provide a large surface area for the repeated condensation-evaporation process.
© We can calculate the change in thermodynamic properties upon forming an ideal
solution from its pure components. Let’s take the Gibbs energy as an example. We
define the Gibbs energy of mixing by '

A G =G"™T, P n, n)—G(T, P,n)—GyT, P,n,) (24.20)

Pure liquid to
collection flask

Column packed
with glass rings

: |«— Insulation

Glass wool

‘I B — plug
FIGURE 24,6
- Distillation A simple fractional distillation column. Because
flask repeated condensation and re-evaporation occur along
the entire column, the vapor becomes progresively

Heating

- richer in the more volatile component as it moves up
mantle

the column.

24-5. Most Solutions Are Not Ideal

where G| and G7 are the Gibbs energies of the pure components. Using Equation 24.17
for an ideal solution gives

AmixGid = nzujln + ”zl@“ — Ry = Nyl
= RT{n Inx +n,lnx) (24.21)

This quantity is always negative because x| and x, are less than one. In other words,
an ideal solution will always form spontaneously from its separate components. The
entropy of mixing of an ideal solution is given by

id aAmixGid
A S =— (T)p = —R(n Inx, +n,lnx) 24.22)
Ty
Note that this result for an ideal solution is the same as Equation 20.26 for the mixing of
ideal gases. This similarity is due to the fact that in both cases the molecules in the final
solution are randomly mixed. Nevertheless, you should realize that an ideal solution
and a mixture of ideal gases differ markedly in the interactions involved. Although
the molecules do not interact in a mixture of ideal gases, they interact strongly in an
ideal solution. In an ideal solution, the interactions in the mixture and those in the pure
liquids are essentially identical.
The volume change upon mixing of an ideal solution is given by

: 3A, _ GH -
A Vld —_ _tnix =10 (2423)
mE aP T .0

and the enthalpy of mixing is (see Equations 24.21 and 24.22)
A HY= AmiXGid + TAml.XSici =0 (24.24)

Therefore, there 1s no volume change upon mixing, nor is there any energy as heat
absorbed or evolved when an ideal solution is formed from its pure components. Both
Equations 24.23 and 24.24 result from the facts that the molecules are roughly the same
size and shape (hence AmVid == (1} and that the various interaction energies are the
same (hence A __H' = 0). Equations 24.23 and 24.24 are indeed observed to be true
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experimentally for ideal solutions. For most solutions, however, A . H and A . V do

not equal zero. -

24-5. Most Solutions Are Not Ideal

Ideal solutions are not very common. Figures 24.7 and 24.8 show vapor pressure
diagrams for carbon disulfide/dimethoxymethane [(CH,0),CH,] solutions and tri-
chloromethane/acetone solutions, respectively. The behavior in Figure 24.7 shows
so-called positive deviations from Raoult’s law because the partial vapor pressures
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FIGURE 24.7

The vapor pressure diagram of a carbon disulfide/dimethoxymethane solution at 25°C. This
system shows positive deviations from ideal, or Raoult’s law, behavior. "
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FIGURE 24.8

The vapor pressure diagram of a trichloromethane/acetone solution at 25°C. This system shows
negative deviations from ideal, or Raoult’s law, behavior.

of carbon disulfide and dimethoxymethane are greater than predicted on the ba-
sis of Raoult’s law. Physically, positive deviations occur because carbon disulfide~
dimethoxymethane interactions are more repulsive than either carbon disulfide—carbon
disulfide or dimethoxymethane—dimethoxymethane interactions. Negative deviations,
on the other hand, like those shown in Figure 24.8 for a trichloromethane/acetone solu-
tion, are due to stronger unlike-molecule interactions than like-molecule interactions.
Problem 24-36 asks you to show that if one component of a binary sotution exhibits
positive deviations from ideal behavior, then the other component must do likewise.

fﬂ - s -
Al 1
= ’/ ___--“'//
a, e
= | ,/ o P - |
(=] .
a7 K
= i ) )
= R Raoult's law ]
1,
9
” | | | |
0.0 0.2 0.4 0.6 0.8 1.0
*uleonol

FIGURE 24.9

The vapor pressure diagram of aicohol/water solutions as a function of the number of carbon
atoms in the alcohols, showing increasing deviation from ideal behavior. The dashed line
corresponds to methanol, the dotted line to ethanol, and the dashed-dotted line to 1-propanol.

Figure 24.9 shows plots of methanol, ethanol, and 1-propancl vapor pressures in
alcohol/water solutions. Note that the positive deviation from ideal behavior increases
with the size of the hydrocarbon part of the alcohol. This behavior occurs because the
water—hydrocarbon (repulsive) interactions become increasingly prevalent as the size
of the hydrocarbon chain increases.

There are some important features to notice in Figures 24.7 and 24.8. Let’s focus
on component 1. The vapor pressure of component 1 approaches its Raoult’s law value
as x, approaches 1. In an equation, we have that

P—x Pl a x —>1 : (24.25)

Although we deduced Equation 24.25 from Figures 24.7 and 24.8, it is generally true.
Physically, this behavior may be attributed to the fact that there are so few component-2
molecules that most component-1 molecules see only other component-1 molecules, so
that the solution behaves ideally. Raoult’s law behavior is not observed for component 1
as x, — 0in Figures 24.7 and 24.8, however. Although not easily seen in Figures 24.7
and 24.8, the vapor pressure of component 1 as x, — 0 is linear in x, but the slope is
not equal to P, as in Equation 24.25. We emphasize this behavior by writing

P —> kyyx, as x —0 . (24.26)

In the special case of an ideal solution, ky , = P/, but ordinarily &, # P[". Equa-
tion 24.26 is called Henry's law, and ky; is called the Henry’s law constant of
component 1. As x, — 0, the component-1 molecules are completely surrounded
by component-2 molecules, and the value of &, , reflects the intermolecular interac-
tions between the two components. As x, — 1, on the other hand, the component-1
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molecules are completely surrounded by component-1 molecules, and P;" is what re-
flects the intermolecular interactions in the pure liquid. Although we have focussed
our discussion on component 1 in Figures 24.7 and 24.8, the same situtation holds for
component 2. Equations 24.25 and 24.26 can be written as

—>xjfj’.* as x, — 1

(24.27)

My Ry

! — xj.kH‘j as x, —> 0

Thus, in a vapor pressure diagram of a solution of two volatile liquids, the vapor pressure
of each component approaches Raoult’s law as the mole fraction of that component
approaches one and Henry’s law as the mole fraction approaches zero.

EXAMPLE 24-6
The vapor pressure (in torr) of component 1 over a binary solution is given by

P, = [80x %55 0<x <1

1

Determine the vapor pressure (P;) and the Henry’s law constant {k, ,) of pure com-
ponent 1.

SOLUTION: In the limit that x, — 1, the exponential factor — 1 because x, — 0
as x, — 1. Therefore, )

P — ]80x1 as xl‘>1

so P" = 180 torr. As x, ~> 0, on the other hand, the exponential factor approaches

2 because x, — 1 as x, — 0. Thus, we have

2 i

Pl — 180e™%x = 807x,  as x, —> 0

and kH‘1 = 807 torr.

We will now show that the Henry’s law behavior of component 2 as x, — 0

is a thermodynamic consequence of the Raouli’s law behavior of component 1 as
x, — 1. To prove this connection, we will start with the Gibbs—Duhem equation

(Equation 24.11)

xdp, +x,du, =0 (constant T dnd P)

Now, assuming that the vapor phase may be treated as an ideal gas, both chemical

potentials can be expressed as

(T, Py = ti(T)+ RT In P

- 24-6. The Gibbs-Duhem Equation Relates the Vapor Pressures of the Two Components

(Recall that the argument of the logarithimn is actually P,/ P®, where P? is one bar.) Now
this form of ,qu(T, P allows us to write

dln P,
du, = RT dx,
axl rrF

and

p RT dln P, d
= X
u’z 8x2 T.P ?

Substitute these two expressions into the Gibbs-Duhem eguation to get

dln P oln P
%, ( = ‘) dx, +x, (#) dx, =0 (24.28)
9% Jrp dx, Jyp
But dx, = —dx, (because x, -+ x, = 1), so Equation 24.28 becomes
dln P dln P
%, ( 1) =x, ( ! 2) (24.29)
axl T,P 8x2 TP

which is anather form of the Gibbs-Duherm equation. If component 1 obeys Raoult’s
law as x, — 1,then P, — x P and (31n P /8x ), , = 1/x, so the left side of Equa-
tion 24.29 becomes unity. Thus, we have the condition

dln P,
x, 2 =1 a x, —>lorx,—0
axZ T.F

We now integrate this expression indefinitely to get
InP, =Inx, +constant as x, — 1 or x, =0

or

Thus, we see that if component 1 obeys Raoult’s law as x, — 1, then component 2
must obey Henry’s law as x, — 0. Problem 24-32 has you prove the converse: if
component 2 obeys Henry’s law as x, — 0, then component 1 must obey Raoult’s law
asx, — L.

24-6. The Gibbs—Duhem Equation Relates the Vapor Pressures of the
Two Components of a Volatile Binary Solution

The following example shows that if we know the vapor pressure curve of one of the
components over the entire composition range, we can calculate the vapor pressure of
the other component. '
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EXAMPLE 24-7
The vapor pressure curve of one of the components (say component 1) of a nonideal
binary solution can often be represented empirically by (sec Figure 24.10)

2 3
Po=x Pleatfn gy <

where o and 8 are parameters that are used to fit the data. Show that the vapor pressure
of comyponent 2 is necessarily given by

2 3
* P XT HEx
PZ—JCQPEe 17 O<x2<l

where ¥y =« + 38/2 and 8 = — 8. Notice that the parameters o and 8 must in some
manner reflect the extent of the nenideality of the solution because both Poand £,
reduce to the ideal solution expressions when o = 8 = . Furthermore, note that
P — x Pl asx, — 0 (x, — 1), so the Henry’s law constant of component 1 is
ky, = P{e*™. Similarly, we find that k,, , = P} e™*#/2,

SOLUTION: We use the Gibbs-Duhem equation

x
du, = ,xl du,
2

along with (Equation 24.13)

My =pS +RTIn P
=py+RTInP’+ RT1nx,
+oRT (1 —x) + fRT(1 — x,)°

160

80

P, {torr)

FIGURE 24.10 s
A plot of P, = x, P12 for P! = 100 torr and various values of o and 3. The values of «

and § for the five curves, {op to bottom, are 1.0, 0.60; 0.80, 0.60; 0.60, 0.20; 0,0 (ideal solution);
and —0.80, 0.60.

24-6. The Gibbs—Duhem Equation Relates the Vapor Pressures of the Twe Components

Differentiale this equation with respect to x; and substitute the result into the above
Gibbs—Duhem equation to obtain

du, = MRt [% — 200(1 =~ x)dx, —3F(1 —x)dx ]
2 X, : . 1744 . i 1

dx
=RT|-— 4 2ax,dx, +38x,.(1 — x)dx,

)
Now change variables from x, to x,

dx,

du, = RT |: —2a(1 —x,)dx, —38x,(1 — xz)dx2i|

2

and integrate from x, = 1 to arhitrary x, and use the fact that 4, = uj when x, =1
to get

3
i, - i = RT |:J_nx2 +o(l—x) — 7'8(15 — 1)+ Bl — 1)}

3
= RT |:lnx2 - otxf + T'Bxf — ﬂxf}

Using the fact that g, = g3 + RT In P, and that p = p5 + RT In P, we see that

, 3
h1P2=lnP2"+Lnx2+otx12+?'Bxf‘—,Bx?

or

P2 _ xzpz*e(oHr]ﬁ/?.Jx%—ﬁxf

We could also have nsed Equation 24.29 to do this problem (Problem 24--33}.

Figure 24.11 shows the boiling-point diagram of a benzene/ethanol system, in
which the boiling points of benzene/ethanol solutions (at one atm) are plotted against
the mole fraction of ethanol. Figure 24.11 shows that if you were to start with a
solution with an ethanol mole fraction of 0.2, for example, then repeated evaporation—
condensation would lead to a mixture consisting of a mole fraction of about 0.4 that
cannot be separated by further fractional distillation.

Such a mixture, for which there is no change in composition upon boiling, is called
an azeotrope. Thus, it is not possible to achieve a separation of a benzene/ethanol
solution by distillation into pure benzene and pure ethanol. If we start out at an ethanol
mole fraction of 0.2, we would obtain a separation of pure benzene and the azeotrope.
Similarly, if we started out with an ethanol mole fraction of 0.8; we would achieve a
separation of pure ethancl and the benzene/ethanol azeotrope.

As our final topic in this section on nonideal solations, let’s censider the case in
which the positive deviations from ideal behavior become increasingly large, as often
occurs as the temperature is lowered. Figure 24.12 illustrates typical vapor pressure
behavior for a series of temperatures, where 7, > T > T, > T,. The vertical axis is
P,/ P}, soeach curve is “normalized” by the vapor pressure of pure component 2 at each
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FIGURE 24.11

The boiling-point diagram of a benzene/ethanol solution, showing the occurrence of an
azeotropic solution at an ethanol mole fraction of about 0.4. The quantity x, is the mole fraction
of ethanol.

Coexistence
/ curve

FIGURE 24,12

An illustration of the critical behavior of a
X, binsry solution as a function of temperature
(IL>T,>T,>T)

temperature. Therefore, all the curves meet at P,/ P =1 at x, = 1. For temperature
T,. which is greater than 7, the slope of the P, versus x, curve is everywhere positive.
At T, the curve has an inflection point, where d P, /dx, = O and 8*P,/dx; = 0. For the
temperatures 7, and 7, which are less than T, the curves have a horizontal portion that
becomes wider as the temperature is lowered. The temperature 7, is called the critical
temperature or consulate temperature, and as we will now discuss, the consulate
temperature is the temperature below which the two liquids are not miscible in all
proportions. :

Let’s follow the T, curve in Figure 24.12 as we start with pure component 1
(x, = 0) and add component 2. Up to the point x;, the added component 2 simply

24-6. The Gibbs-Duhem Equation Relates the Vapor Pressures of the Two Campanents

dissolves in component 1 to form a single solution phase. Above the concentration
x5, however, two separate or immiscible solution phases form, one of composition
x5 and one of composition x;. As x, is increased from x; to xj, the two phases must
maintain a constant mole fraction of component 2 (x; and x;) and therefore, the relative
proportions of the two phases change, with the volume of the phase of composition
x; increasing and the volume of the phase of composition x; decreasing. The overall
composition of the two phases together is given by the value of x,. When x, > xJ, we
obtain a single solution phase.

We can derive a lever rule to calculate the relative amounts of the two phases in
the following way. Consider some overall composition x,, which lies between x;, and
x,. Letn], ny and ny, nj be the number of moles of the two components in the phases
of composition x, and x; , respectively. Then, the mole fraction of component 2 in each
phase is

/ "
n H
x; = ’ j ! and xg = " __{f "
ny+n, ny 4+ n,
and the overall mole fraction of component-2 is
Ry + Ry

Xy

e

Using material balance of the number of moles of component 2 allows us to write
X ] ) = )+

We can rearrange this material balance equation to give

! f ! "
n n,+n, X, — X

S - 2 (24.30)’

] G !
n n+n, X, —Xx

Equation 24.30 gives the relative total nuinber of moles in each phase. Note that if
x, = x5, then »' = 0, and if x, = x;, then n” = 0. As Equation 24.30 shows, when x,
reaches x5, the phase of composition x; disappears, and there is a single sclution phase
of composition x, = x;. For x, = x7, there is a single solution phase of composition x,.
Thus, at a temperature T, the two liquids are immiscible when x, is between xé
and x; but are miscible for x, < x; and x, > x,. Similar behavior occurs at other
temperatures less than T, and Figure 24.12 summarizes this behavior. The heavy
curve in Figure 24.12 is called a coexistence curve. Points inside the coexistence curve
represent two solution phases, whereas points below the coexistence curve represent
one solution phase. Problem 2443 has you determine the coexistence curve for a
simple model system. ' '

We can display the results illustraied by Figure 24.12 in a temperature-composition
diagram (Figure 24.13a). The curve separating the one-phase region from the two-phase
region is the coexistence curve. The temperature T, the temperature above which the
two liquids are totally miscible, is the consulate ternperature. The coexistence curve in
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FIGURE 24,13
(a) A temperature-composition diagram for the system illustrated in Figere 24.12.
(b) A temperature-composition diagram for a water/phenol system.

Figure 24.13a looks “uﬁside down” compared with the one in Figure 24.12, but note that
the temperature decreases as you go up in Figure 24.12, whereas they decrease as you
go down in Figure 24.13. Figure 24.135 shows a coexistence curve for a water/phenol
systeni.

24-7. The Central Thermodynamic Quantity for Nonideal Solutions Is
the Activity

The chemical potential of component j in a liquid solution is given by (Equation 24.15)
9t RT d (24.31)
M=+ 1 "P—,I; :

g

if we assume, as usual, that the vapor pressures involved are low enough that the vapors
can be considered to behave ideally (otherwise, we replace the partial pressures by
partial fugacities). An ideal solution is one in which P = ij"f* for all concentrations,
so that Equation 24.31 becomes

" = e + RT In x,  (ideal solation) (24.32)

Equation 24.31 is still valid for a nonideal solution, but the relation between P /B
and composition is more complicated than simply F, = x; £*. For example, we saw in
Example 247 that partial vapor pressure data are often fit by an expression like

P, =xPf GXp(dezz + ﬁx;’ 4.9 (24.33)

24-7. The Central Thermodynamic Quantity for Nonideal Solutions Is the Activity

The exponential factor here accounts for the nonideality of the system. The chemical
potential of component 1 in this case is given by

i, = 1)+ RT Inx, +oRTx: + BRTx] + - (24.34)

In Section 22-8, we introduced the idea of fugacity to preserve the form of the thermo-
dynamic equations we had derived [or ideal gases. We will follow a similar procedure
for sclutions, using an ideal solution as our standard.

To carry over the form of Equation 24.32 to nonideal solutions, we define a quantity
called the activity by the equation

W = i+ RT na, (24.35)

where u is the chemical potential, or the molar Gibbs energy, of the pure liquid.
Equation 24.35 is the generalization of Equation 24.32 to nonideal sohutions. The first
of Bquations 24.27 says that F = xjf?*, as x, — 1. If we substitute this result into
Equation 24.31, we obtain

,u;}":uj—i—RTlnxj (asxf—>1)

If we compare this equation with Equation 24.35, which is valid at all concentrations,
we can define the activity of component j by

£ ‘
a, = };’: (ideal vapor) . (24.36)
J ) '

such that a; — x, as x, = 1. In other words, the activity of a pure liquid is unity (at
a total pressure of one bar and at the temperature of interest). For an ideal selution,
F=x £ for all concentrations, and so the activity of component # in an ideal solution
is given by a, == x,. In a nonideal solution, a; still is equal to P/ £, but this ratio is no
longer equal to x, atthough 4, — X as X, — 1.

According to Equations 24.33 and 24.36, the activity of component 1 can be
represented empirically by

a, = xlew.rzz b

Note that @, — 1 as x, — 1 (x, — 0). The ratio a /xj can be used as a measure of
the deviation of the solution from ideality. This ratio is called the activity coefficient of
component j and is denoted by ¥,

o,

R (24.37)
g x.
J
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Ify, =1 for all concentrations, the solution is ideal. If y,# 1, the solution is not
ideal. For example, the partial vapor pressures of chlorobenzene in equilibrium with a
chlorobenzene/1-nitropropane solution at 75°C are listed below:

X, 0.119  0.289 0460 0691 1.00 -
P jtorr 19.0 419 624 36.4 119

According to these data, the vapor pressure of pure chlorobenzene at 75°C is 119 torr,
so the activities and activity coefficients are as follows:

x, 0.119 0289 0460 0.691 1.00
a(=P/P7) 0160 0352 0.524 0.726 1.00
y(=a/x) 134 122 114 105 1.00

Figure 24.14 shows the activity coefficient of chlorobenzene in 1-nitropropane at 75°C
plotted against the mole fraction of chlorobenzene.

Activity is really just another way of expressing chemical potential because the
two quantities are directly related to each other through p1, = #;+ RTIna,. Therefore,
just as the chemical potential of one component of a binary solution is related to the
chemical potential of the other component by way of the Gibbs-Duhem equation, the
activities are related to each other by

xdina, +x,dma, =0 (24.38)

For example, if @, = x, over the entire composition range, meaning that component 1
obeys Raoult’s law over the entire composition range, then
x, dx, dx dx

dlna, = —-1 = 1=

42 A *; Xy

Integrate from x, = 1 to arbitrary x, and use the fact thata, — Lasx, — 1 to get

Ina, =1Inx,

- -
1.3+ -
=
N
[~}
o
£lab 4
z
=
=1k .
FIGURE 24.14
1.0 ' ‘ The activity coefficient of chlorobenzene in
0.0 x 1.0 i-nitropropane at 75°C plotred against the
chiorobenzens

mole fraction of chlorobenzene.

24-8. Activities Must Be Calculated with Respect to Standard States

or a, = x,. Thus, we see once again that if one component obeys Raoult’s law over the
entire composition range, the other component will also.

EXAMPLE 24-8
Show that if

then

SOLUTION: We firsi differentiate Ina, with respect to x,:

dx
dina, = =+« 20(1 — x )dx,
*)

and substitute into Equation 24.38 to obtain

X, afxl
a’lna:2 =—— | — —~ 2ax,dx,

x, \ X
dx,

= 4 2uijdx1
X

Now change the integration variable from x, to x,:

dx,
dlna, = i 2a(l — x;)dx,
2

and integrate from x, = 1 {where a, = 1) to arbitrary x,:
o, =Inx, +a(l — x2)2
or

2
a, = x,e*

24-8. Activities Must Be Calculated with Respect to Standard States

In one sense, there are two types of binary solutions, those in which the two components
are miscible in all proportions and those in which they are not. Only in the latter case are
the designations “solvent” and “solute” unambiguous. As we will see in this section,
the different nature of these two types of solutions leads us to define different standard
states.
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Although we have not said so explicitly, we have tacitly assumed both components
of the solutions we have considered thus far exist as pure liquids at the temperatures
of the solutions. We have defined the activity of each component by (Equation 24.36)

(ideal vapor) (24.39)

so that @, — x; as x, - 1l and g, = 1 when £, = P, An activity defined by Equa-
tion 24, 39 1s @ald 0 be based upon a solvent, or Raoult s law standard state. Because
of the relation (Equation 24.35) ;= wh 7+ RT In a, the chemical potential of compo-
nent j is also based upon a solvent or Raoult’s law, standard state. You need to realize
that activities or chemical potentials are meaningless unless it is clear just what has
been used as the standard state. Tf the two liquids are miscible in all proportions, there is
no distinction between solvent and solute and a solvent standard state is normally used.
If, on the other hand, one compoenent is sparingly soluble in the other, then picking a
standard state based upon Henty's law instead of Raoult’s law is moere convenient. To
see how we define the activity in this case, we start with Equation 24.31

P
p" =+ RTIn P—Q | (24.40)

I

Because component j is sparingly soluble, we use the second of Equations 24.27,
which says that P} — x].kH,j as x, — 0, where kﬂ‘j is the Henry’'s law constant of
component j. If we substitute the limiting value x,ky ; into Equation 24.40 for £, we
obtain

sin % xka,J'
Iy :,uj—Q—RTln'PT (x; = 0)

ky
+ RT ln + RT lnx (xj — 0) (24.41)

,)’

We define the activity of component j by

ke
pit =i+ RT In— o L+ RT In a (24.42)

/

so thata, — x; as x; — 0, as can be seen by comparing Equations 24.4] and 24.42.
Equatlon 24, 47 becomes equivalent to Equation 24.35 if we define a, by '

P
—L (ideal vapor) (24.43)
kH‘j

and choose the standard state such that

. ky
pi=pu+ RTIn—

T e,
i
!
!
1

24-8. Activities Must Be Calculated with Respect to Standard States

or such that &, , = £*. The standard state in this case requires that k. = A", This
standard state may not exist in practice, so it is called a hypothetical standard state.

Nevertheless, the definition of activity involving Henry’s law for dilute components

given by Equation 24.43 is natural and useful.

The numerical value of an activity or an activity coefficient depends upon the
choice of standard state. Table 24.1 lists vapor pressure data for carbon disulfide/di-
methoxymethane solutions at 35.2°C, and these data are plotted in Figure 24.15. Notice
that both curves approach Raoult’s law as their corresponding mole fractions approach
unity. The dashed lines in the figure represent the lincar regions as the corresponding
mole fractions approach zero. The slopes of these lines give the Henry’s law constant for
each component. The values come outtobe &;; s, = = 1130 torrand k ..., = 1500 torr.
We can use these values and the values of the vapor pressures of the pure components
to calculate activities and activity coefficients based upon each standard state. For
example, Table 24.1 gives P, = 407.0torrand P, = 277.8 tomr at Keg, = 0.6827.
Therefore,

® _ Tes, 4070 torr

v S ~0.7911
T py, T Slaston

TABLE 24.1
Vapor pressure data of carbon
disulfide/dimethoxymethane solutions at

35.2°C
JCCS2 Pcszftorr Pdimcm/torr
0.0000 0.000 5877
0.0489 545 5583
0.1030 109.3 520.1
0.1640 159.5 500.4
0.2710 234.8 4512
0.3470 2776 412.7
0.4536 324.8 378.0
0.4946 340,2 360.8
0.5393 357.2 342.2
0.6071 3819 . 3133
0.6827 407.0 277.8
0.7377 4243 250.1
0.7950 4423 217.4
0.8445 458.1 184.9
0.9108 481.8 124.2
0.9554 501.0 65.1
1.0000 514.5 0.000
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FIGURE 24.15

Vapor pressures of carbor disulfide and dimethoxymethane over their solutions at 35.2°C. The
solid straight lines represent ideal behavior, and the dashed lines represent the Henry’s law
behavior for each compenent as the corresponding mole fractions approach zero.

and
P 277.8 torr
(R} dimeth
a imeth = ¥ = = 04727
dmeh T pr T 587.7 torr
with
(&)
a 0.7911
(R} <5,
= —= = = 1.159
s T e 0.6827
and
(R)
®) Qioen  0.4727
e = — = = ]_490
Pmee = 5 T 03173

where the superscript (R) simply emphasizes that these values are based upon a Raoult’s
law, or solvent, standard state.
Similarly,

Mo F cs,  407.0 torr

alh = - = 0.360
2 kH,CS2 1130 torr
P 277.8 t
Qe = 1 = T o 0.185
H,dimeth torr
(H)
o _ fos 0360 o

T T 06827

24-8. Activities Must Be Calculated with Respect to Standard States

and

(H)
(H} Qaimen 0.185
= = —— = (1.583
Vaimert 0.3173

dimcth

where the superscript (H) simply emphasizes that these values are based upon a Henry’s
law, or solute, standard state. Figure 24.16a shows the Raoult’s law, or solvent-based,
activities, and Figure 24.16F shows the Henry’s law, or solute-based, activities plotted
against the mole fraction of carbon disulfide. We will see in the next chapter that a
solute, or Henry’s law, standard state is particularly appropriate for a substance that
does not exist as a liquid at one bar and at the temperature of the solution under
study.

The activity coefficients based upon the Raoult’s law standard state (which is
the usunal standard state for miscible liquids) are plotted in Figure 24.17. Notice that
Yos. = lasx., — landthatitgoesto2.2asx.; — 0. Both of these limiting values
maiz be deduced from the definition of ¥; (Equatiozn 24.37)

P
_
x B*

i £

a,
4
X

Y, =

Now PJ — fﬁ.* asx, — 1, and so Y, 1 as x; = 1. At the other limit, however, PJ —
ijcH‘j as x; — 0, so we see that Y, kn:,- / 13;* as x, — 0. The value of k, for CS,(I)
is 1130 torr, so Yes, = kH.CSZ/PSSZ = (1130 torr/514.5 torr) = 2.2, in agreement with
Figure 24.17. The activity coefficient of dimethoxymethane approaches 2.5as x ;. —
0 (;ccSz - 1), in agreement with p. o — koS Plen = (1500 torr/587.7 torr) =
2.5

1.0 €S, 0.5+ cs, T
> Ny
061 1 . 03} 1
< e
S | | ! i |
i N\ - i s
0.2/ (cH,0),CH, 0-11/ (cH,0),CH)
| l ] | H | | i
0.0 1.0 0.0 . 1.0
*es, Xcs,
() ()

FIGURE 24.16

{a) The Raoult’s law activities of carbon disulfide and dimethoxymethane in carbon disul-
fide/dimethoxymethane solutions at 35.2°C plotted against the mole fraction of carbon disulfide.
(b) The Henry’s law activities for the same systermn.
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FIGURE 24.17

The Raoult’s law activity coelficients of carbon disulfide (solid line} and dimethoxymethane

{dashed line) plotted against x., for carbon disulfide/dimethoxymethane solutions at 35.2°C.
2

24-9. We Can Calculate the Gibbs Energy of Mixing of Binary
Solutions in Terms of the Activity Coefficients

Recall from Equation 24.21 that

sln

ALG=nu"+ Mofhy” =R = R
But, according to Equations 24.35 and 24.37,
W' =+ RT Ina, =y + RT Inx, 4+ RT Iny, (24.44)
50
AGG/RT =n lnx, +n,Inx, +n Iny +n,Iny, (24.45)

If we divide Equation 24.45 by_ the total number of moles, n, + n,, we obtain the molar
Gibbs energy of mixing, A, G.

A G/RT = xyInx, 4+ x,Inx, +x Iny, +x,Iny, (24.46)

mix

The first two terms here represent the Gibbs energy of mixing of an ideal solution.

EXAMPLE 24-9
Use Equation 24.46 to derive a formula for Amixg for a binary solution in which the
vapor pressure can be expressed by '

2 2
. * 00, . * 0]
Pi=x,Ple™ and P, =y, Ple™

24-9. We Can Calculate the Gibbs Energy of Mixing of Binary Selutions in Terms of the Activity Coefficients

SOLUTION: According to the above expressions for P, and P,,

y = PT _ etxxzz ﬂ[ld V — PZ — euxf
Lo P ol

Substituie these expressions into Equation 24.46 to obtain
IRT — 2 2
AmixG/RT =ux, lrmci +x, In X, ooex s e,
But
2
x,xy + JCQxf = x 0, (% +x,) = xx,
50

A G/RT =x Inx +xInx, +oxx, (24.47)

™ix

Molecular theories of binary solutions show that the parameter «, which is unitless,
has the form of an energy divided by RT. Therefore, we will write e as w/RT, where
w is a constant whose value we will not need. With this substitution, Equation 24.47
can be written as

A G RT
R = —w—(xl nx, 4 x,Inx,) +xx, (24.48)

Figure 24.18 shows plots of Ama/ w for several values of RY/w. Note that the
slopes of all the curves equal zero at the midpoint, x, = x, = 1/2. The curve for
RT/w = 0.50 is special in the sense that curves for values of RT /w greater than (.50

0.00 —
-0.05

-0.10

A Glw

-0.15

~0.20 . !
0.00  0.25 0.50 0.75 1.00
*1

FIGURE 24.18
Plots of A . G/w for RT jw = 0.60 (bottem curve), RT/w = 0.50 (middle curve), and
RT/w = 0.40 (top curve). .
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are concave upward for all values of x , whereas curves for values of RT /w less than
0.50 are concave downward at x, = 1/2. In mathematical terms, 8*(A_, G/w)/8x] is
positive (a minimum) at x, = x, = 1/2 for the curves that lie below the curve with
RT jw = 0.50, whereas BZ(AW.XE/?,'J)/BJQ2 is negative (a maximum) at x, = x, = 1/2
for curves that lie above it. The region where 8*(A__ G /w)/dx] is negative is similar
to the loops of the van der Waals equation or the Redlich-Kwong equation when
T < T, (Figure 16.8), and in this case corresponds to a region in which the two liquids
are not miscible. The critical value RT /w = 0.50 corresponds to a solution critical
temperature, T, where the two liquids are miscible in all proportions at temperatures
above T, = 0.50w/R and immiscible at temperatures below T, = 0.50w/R.

Let’s consider the curve with RT/w = (.40 in Figure 24.18. The two minima
represent two immiscible solutions in equilibrium with each other. The compositions
of these two solutions are given by the values of x; at each minimum. Using Equa-
tion 24.47, we have

H A G/w) E[lnxl — (1~ x)]+ (1 —2x,) =0 (24.49)
ax, w :

as the condition for the extrema of Amﬁ/ w. First note that x, = 1/2 solves Equa-
tion 24.49 for any value of RT /w, which accounts for the fact that all the curves
in Figure 24.18 have either a maximum or a minimum at x, = 1/2. By plotting
(RT/wiInx, —In(1 —x )] + (1 — 2x,) against x, for various values of RT /w, you
can see that only x, = 1/2 satisfies Equation 24.49 for RT /w > 0.50, whereas two
other roots cccur for RT /w < (.50, The two roots give the composition of the two
miscible solutions in equilibrium with each other. For the case in which RT /w = (.40,
the two values of x, are 0.145 and 0.855. Figure 24.19 shows the mole fraction of
component 1 in each of the two immiscible solutions as a function of temperature
(RT /w). Note that Figure 24.19 is similar to Figure 24.13.

EXAMPLE 24-10
Use Equation 24.49 to calculate the composition of the two immiscible solutions in
equilibrium with each other at a temperature given by RT /1w = 0.40.

SOLUTION: We use the Newton—Raphson method that we introduced in Math-
Chapter G. The function f(x) of Equation G.1 is

flx) = %ﬂnx —In(l —x)]+1—2x

Equation G.1 becomes

RT .
—[nx, —In(t —x )] +1—2x
w

LN xn -
* LKA I S B
w fx (1—x)

with RT /w = 0.40. For one of the solutions, we start with x, = 0.100 and get

997 |
0.50 - |

0.40 |-

0.30 -

RT/w

0.20

0.00 | | !
0.00 0.25 0.50 G6.75 1.00

1

FIGURE 24.19

A temperature-composition diagram for a binary system for which A‘ma/ w =
(RTfw)(x Inx +x,Inx) +xx, (Equation 24.48), The curve gives the compositions

of the two immiscible solutions as a function of temperature. There is only one homogeneous
phase in the region above the curve, and there are two immiscible solutions in equilibrium with
each other in the region below the curve.

n x, fx) fix)
0 0.100 —(.07889 2.4444
1 0.132 —0.01695 1.4851
2 0.144 -0.001370 1.2509
3 (.145 —(.000017 1.2305
4 0.145

For the other solution, we start with x; = 0.900 and get

n x, Jix,) fix
0 0.900 0.07889 2.4444
1 0.868 0.01695 1.4851
2 (.856 0.00137 1.2509
3 0.855 0.000017 1.2305
4 0.855

in agreement with Figure 24.19.

Many sclutions can be described by the Equation 24.47, and such solutions are
called regular solutions. Problems 24—37 through 24—45 involve regular solutions.




998

Chapter 24 / Solutions I: Liquid-Liquid Solutions

To focus on the effect of nonideality, we define an excess Gibbs energy of

mixing, G*:
GF=A_G—A_G" (24.50)
We see from Equation 24 .45 that
G®/RT =n,Iny, +n,Iny,

If we divide by the total number of moles n, + n,, we obtain the molar excess Gibbs

energy of mixing, G :

G"/RT =x,Iny, +x,lny, (24.51)

For A_. G given by Equation 24.47,
G /RT = axx, (24.52)

According to Equation 24.52, a plot of G against x, is a parabola that is symmetric
about the vertical line at x, = 1/2. :
We can use y,, and y, .. that we calculated for Figure 24.17 to calculate the

value of G for a carbon disulfide/dimethoxymethane solution at 35.2°C, which is
shown in Figuare 24.20. Note that the plot of G versus Xes, is not symmetric about
Xes, = 1/2. This asymmetry implies that 8=£ 0 in the empirical vapor pressure formula
(Equation 24.33).

We will continue our discussion of solutions in the next chapter, where we focus on
solutions in which the two components are not soluble in all proportions. In particular,

0.25 - -

0.20 - . .

GE/kI-mol™!
fas]
=
T

0.05 k- A

0.00 | i | |
- 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 24.20
The molar excess Gibbs energy of mixing of carbon disulfide/dimethoxymethane solutions at
35.2°C plotted against the mole fraction of carbon disulfide.

Problems

we will discuss solutions of sclids in liquids, where the terms solute and solvent are
meaningful.

Problems

24-1. In the text, we went from Equation 24.5 to 24.6 using a physical argument mvolving
varying the size of the system while keeping T and P fixed. We could also have used a
mathematical process called Euler’s theorem. Before we can learn about Buler's theorem,
we must first define a homogeneous function. A function f(z,z,, ..., 2,7} is said to be
homogeneous if

FOZ, A2y k) = A 2y Zy)

Argue that extensive thermodynamic quantities are homogeneous functions of their exten-
sive variables.

24-2. Euler’s theorem says that if f(z,z,, ..., zN) is homogeneous, then
af af of

23 Zayenr gy =2 =tz — f iz ——

) f( 17 %2 N) 1321 s aZZ N BZN

Prove Buler’s theorem by differentiating the equation in Problem 241 with respect to A
and then setting A == 1.

Apply Buler’s theorem to G = G(n,, n,, T, P) toderive Equation 24.6. (Hin#: Because
T and P are intensive variables, they are simply frrevelant variables in this case.)

24-3. Use Euler’s theorem (Problem 24 -2} to prove that
Yir,n, .. .T.Py=> n¥
for any extensive quantity Y.
24-4. Apply Euler’s theorem to I/ = U(S, V, n). Do you recognize the resulting equation?
24-5. Apply Euler’s theorem to A = A(T, V, n). Do you recognize the resulting equation?
24-6. Apply Euler’s theorem to V = V(T, P, n , n,) to derive Equation 24.7.

24-7. The properties of many solutions are given as a function of the mass percent of the
componenis. If we let the mass percent of component 2 be A,, derive a relation between
A, and the mole fractions, x and x,.

24-8. The CRC Handbook of Chemistry and Physics gives the densities of many aqueous
solutions as a function of the mass percentage of solute. If we denote the density by o and
the mass percentage of component 2 by 4, the Handbook gives p = p(A,) (in g-mL™h),
Show that the quantity V = (n, M, + n,M,)/p(A,} is the volume of the solution containing
n, moles of component 1 and », moles of component 2, where M, is the molar mass of
component j. Now show that

- M, [1 A, dp(AQ)i|

‘/‘l=
p(A,) [ p(a) da,
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and
V= M, |:1 + (A, — 100 d,o(Az)i|
PoplAy) p{A,) d4,
Show that
V= ”|V1 + ”272

n agreement with Equation 24.7.

24-9, The density (in g-ml™") of a I-propanol/water solution at 20°C as a function of A,. the
mass percentage of 1-propanol, can be expressed as

7
p(A) =3 a Al
j=0

where
o, = 0.99823 a, = 15312 x 1077
o, = —0.0020577 a, = —2.0365 x 107
@, = 1.0021 x 107 g = 1.3741 x 107"
o, = —5.9518 x 10°° a, = —3.7278 x 107"

Use this expression to plot T/;IZO and V], propanc] VEISUS A,, and compare your values with
those in Figure 24.1.

24-10. Given the density of a binary solution as a function of the mole fraction of component 2
[ = p(x,}], show that the volume of the solution containing 7, moles of component 1 and
n, moles of component 2 is given by V = (n M, + n,M,)/p(x,}, where MJ 1s the molar
mass of component j. Now show that

v_ M [l+(x2(M2MI)+M1) x, dp(xz):|

' b)) M, ply,)  dx,
and
v _ M, [1_(x2(MZ—~M1)+M1) 1 xzdp(xZ)]
27 plxy) M, o) dx,
Show that

i agreement with Equation 24.7.

24-11. The density {in g-mL™") of a 1-propanol/water solution at 20°C as a function of x,, the
mole fraction of 1-propanol, can be expressed as

4
ple) =D ey
i=0

Problems
where
o, = 0.99823 o, = —0.17163
o, = —0.48503 o, = —0.01387
o, = 0.47518

Use this expression to calculate the values of VH o and v

|-propanol 25 & funcltlon of x,
according to the eguation in Problem 24-10.

24-12. Use the data in the CRC Handbook of Chemistry and Physics to curve fit the density
of a water/glycerol solution to a fifth-order polynomial in the mole fraction of glycerol,
and then determine the partial molar volumes of water and glycerol as a function of mole
fraction. Plot your result.

24-13. Just before Example 24-2, we showed that if one component of a binary sclution
obeys Raoult’s law over the entire composition range, the other component does also.
Now show that if 1, = pf + RT Inx, for x, = <x, <1, then u, = uy+ RTInx, for
0 <x <1-—ux, .. Notice that for the range over which 1, obeys the simple form given,
t, obeys a similarly simple form. If we let x, . =0, we obtain p, = i+ RTInx,
O=x =1

24-14. Continue the calculations in Example 243 to obtain y, as a function of x, by varying
x, from 0 to 1. Plot your result.

24-15. Use your results from Problem 24-14 to construct the pressure-composition diagram
in Figure 24 4.

24-16. Calculate the relative amounts of liquid and vapor phases at an overall composition
of 0.50 for one of the pair of valves, x, = 0.38 and y, = 0.57, that you obtained in
Problem 24-14.

24-17. TInthis problem, we will derive analytic expressions for the pressure-composition curves
in Figure 24.4, The liquid (upper) curve is just

Poa=x P+, Pl =0 —x)P' +x,P =P’ +x,(P] — Pf) {1

tptal
which is a straight line, as seen in Figure 24.4. Solve the equation
S _ X, Py

BT T P (P — P

totak

for x, in tevms of y, and substitute into Equation (1) to obtain

p PPy
owl P{ - }?Z(sz - Pl-i)

Plot this result versus y, and show that it gives the vapor (lower) curve in Figure 24.4,

24-18. Prove that y, > x
physically.

, if P> PP oand that y, < x, if Py < P[. Interpret this result
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24-19. Tetrachloromethane and trichloroethylene form essentially ideal solutiens at 40°C at all

concentrations. Given that the vapor pressure of tetrachloromethane and trichtoroethylene
at 40°C are 214 torr and 138 torr, respectively, plot the pressure-composition diagram for
this system (see Problem 24-17).

24-20. The vapor pressures of tetrachloromethane (1) and trichloroethylene (2) between 76.8°C
and 87.2°C can be expressed cmpirically by the formulas

2790.78
In( P! /torr) = 15,8401 — —————
i+ 2264
and
] 23454
In( P /1 =150124 — ————
n(F; ftorm) 1927

where ¢ is the Celsius temperature. Assuming that tetrachloromethane and trichloroethylene
form an ideal solution at all compositions, calculate the values of ¥, and y, at 82.0°C (at
an ambient pressure of 760 torr).

24-21. Use the data in Problem 24 —20 to construct the entire temperature-composition diagram
of a tetrachloromethane/trichlororethylene solution.

24-22. The vapor pressures of benzene and toluene between 80°C and 110°C as a function of
the Kelvin temperature are given by the empirical formulas

3856.6 K
ln(P;m/Kmﬂ::—————fl——Ak1755l
and
4514.6 K
In(Byftom) = === + 18,397

Assuming that benzene and toluene form an ideal solution, use these formulas to construct
a temperatnre-composition diagram of this systemn at an ambient pressure of 760 torr.

24-23. Construct the temperature-composition diagram for |-propanol and 2-propanol in Fig-
ure 24.5 by varying ¢ from 82.3°C (the boiling point of 2-propanol) to 97.2°C (the boiling
point of 1-propancl), calculating the values of (1) P, and P, at each temperature (see
Example 24-5), (2) x, according to x, = (P — 760)/(£; — P{), and (3) y, according to
¥, = x, P} /760. Now plot ¢ versus x, and y, on the same graph to obtain the temperature-
composition diagram.

24-24. Prove that Vj = V: for an ideal solution, where Vj* is the molar volume of pure com-
ponent J.

24-25. The volume of mixing of miscible liquids is defined as the volume of the solution minus
the volume of the individual pure components. Show that

Amixv = in(

at constant P and T, where V: is the molar volume of pure component {. Show that
/_\m.x—ff— = 0 for an ideal solution (see Problem 24-24).

— Vj*)

=

Prablems

24-26. Suppose the vapor pressures of the two components of a binary solution are given by
. g2
P1 = )4:J P{"exlf'
and
P, = x,Pieil’

Given that £ = 75.0 torr and P = 160 torr, calculate the total vapor pressure and the
composition of the vapor phase at x, = 0.40.

24-27. Plot y, versus x, for the system described in the previous problem. Why does the curve
lie below the straight linc connecting the origin with the point x, = I, y, = 1?7 Describe a
system for which the curve would lie above the diagonal line.

24-28, Use the expressions for P, and P, given in Probiem 24-26 to construct a pressure-
composition diagram.

24-29. The vapor pressure (in torr) of the two components in a binary solution are given by
P| _ lzoxleuzmga—um@
and
P2 — 140x2€0.35,r12—0.10x?
Determine the values of P, P/, kn, 1 and k}u.
24-30. Suppose the vapor pressure of the two components of a binary solution are given by
Pl — xl P1*ea'x§+ﬁxg
and
— * Gl 3B/ 2] —fiocd
P, =x,Ple 1754

— +8 __ pr a2
Show that k| = Ple™"” and &, , = P, g”‘ .

24-31. The ermpirical expression for the vapor pressure that we used in Examples 24—6 and
247, for example,

_ * u,v2+,ﬂ,\'3+---
P =x Pl

is sometimes called the Margules equation. Use Equation 24.29 to prove that there can be
no linear term in the exponential factor in P, for otherwise P, will nat satisfy Henry’s Jaw
as x, — 0.

24-32. Tn the text, we showed that the Henry’s law behavior of component 2 as x, - 0 is
a direct consequence of the Raoult’s law behavior of component [ as x, — 1. In this
problem, we will prove the converse: the Raoult’s law behavior of component 1 as x, 1
is a direct consequence of the Henry’s law behavior of component 2 as x, — 0. Show that
the chemical potential of component 2 as x, — 0 is

1t,(T, P) = p3(T) + RT lnk,, + RTInx, x, — 0

2

H,2
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Ditferentiate i, with respect to x, and substitute the result into the Gibbs-Duhem equation
to obtain

dx,
diu, = RT— X, —> 0
X

Integrate this expression from x, = [ to x, 7 1 and use the fact that g, (x, = 1) = u] to
obtain

w (T, P)=pj(I)+ R Inx, x 1
which 1s the Raoult’s law expression for chemical potential.
24-33. In Example 24-7, we saw that if
P = lel*e”‘gw";
then
Pg = X, P; e(a+3:5/2)xf —ps?
Show that this result follows directly from Equation 24.29.
24-34. Suppose we express the vapor pressures of the components of a binary solution by
P = x Ple™
and
* 12
P, = x, Pref
Use the Gibbs—Dubem equation or Equation 24.29 to prove that ¢ must equal 3.

24-35. Use Equation 24.29 to show that if one component of a binary seluticn obeys Raoult’s
law for all concentrations, then the other component also cbeys Raoult’s law for all con-
centrations.

24-36. Use Equation 24.29 to show that if one component of a binary solution has positive
deviations from Raoult’s law, then the other component must also.

The following nine problems develop the idea of a regular solution.
24-37. If the vapor pressures of the two components in a binary solution are given by
P =x P{“ew'@’” and P, = sz;e“”‘%””
show that

— RT
A Glw=A_ Gfa +nr)w=—/[x Inx +xInx]+xx,
w

A S/R=A

mix

5/(n, +n)R = —(x, lnx, +x,Inx,)

mix

Problems

and
A Hiw=A_ Hin +n)w=xx,

A solution that satisfies these equations is called a regular solution. A statistical thermody-
namic model of binary solutions shows that w is given by

w =N, (&), + 65 — 26,,)

where ¢, is the interaction energy between molecules of components i and j. Note that
w=0if g, = (g, +&,,)/2, which means that energetically, molecules of components [
and 2 “like” the opposite molecules as well as their own.

24-38. Prove that Amixé, Amf, and Amixﬁ in the previous problem are symmetric about the
point x; = x, = /2.

24-39. Plot P,/ P} = x ”3/%" versus x, for RT /w = 0.60, 0.50, 0.45, 0.40, and 0.35. Note
that some of the curves have regions where the slope is negative. The following problem
has you show that this behavior occurs when R /w < 0.50. These regions are similar to
the loops of the van der Waals equation or the Redlich-Kwong equation. when T < T,
{Figure 16.8), and in this case correspond to regions in which the two liquids are not
miscible. The critical value RT/w = 0.50 corresponds te a solution critical temperature.

24-40. Differentiate P, = x| P’ P ImERT ith respect to x, to prove that P, has a maximum
or a minimum at the poiats x, = é =+ %(1 — %)”2. Show that RT/w < 0.50 for either a
maximum or a minimum to occur. Do the positions of these extrema when RT /w = 0.35
correspond to the plot you cbtained in the previous problem?

24-41. Plot Amixé/w in Problem 24-37 versus x| for RT /w = 0.60, 0.50, 0.45, 0.40, and (.35,
Note that some of the curves have regions where 3*°A_ G /8x] < 0. These regions corre-
spond to regions in which the two liquids are not miscible. Show that RT/w =030 is a
critical value, in the sense that unstable regions occur only when RT /w < 0.50. (See the
previous problem.)

24-42. Plot both P,/ P} = x,e"% and P,/ P} = x,¢* for RT/w = 1/a = (.60, 0.50, 0.45,
.40, and (1.35. Prove that the loops ocenr for values of RT /w < 0.50.

24-43. Plot both P,/ Py = x,¢®% and P,/ P} = x,e” for RT/w = 1/a = 0.40. The loops
indicate regions in which the two liquids are not miscible, as explained in Problem 24
39. Draw a horizontal line connecting the left-side and the right-side intersections of the
two curves. This line, which connects states in which the vapor pressure {or chemical
potential) of each component is the same in the two sclutions of different composition,
corresponds to one of the horizontal lines in Figure 24.12. Now set P/ P} = xle‘”% equal
to P,/ Py = che”l2 and solve for « in terms of x| . Plot RT /w = 1/ against x; and obtain
a coexistence carve like the one in Figure 24,19,
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24-44. The molar enthalpies of mixing of solutions of tetrachloromethane (1) and cyclohexane
(2) at 25°C are listed below.

x, A H/T-mol™!

0.0657 37.8

0.2335 107.9

0.3495 134.9

0.4745 146.7

0.5955 141.6

0.7213 118.6

0.8529 73.6
Plot Amb‘ﬁ/)c2 against x, according to Problem 24-37. Do tetrachloromethane and cyclo-
hexane form a regular solution?

24-45. The molar enthalpies of mixing of solutions of ietrahydrofuran and trichloromethane at
25°C are listed below. '
xTHF A‘lﬂixﬁ/‘yﬂloli1

0.0568 —0.469

0.1802 —1.374

0.3301 —2.118

0.4508 —2.398

0.5702 —2.383

0.7432 —1.888

(0.8231 —1.465

0.9162 —0.802

Do tetrahydrofuran and trichloromethane form a regular solution?
24-46. Derive the equation
xdny, +xdlny, =0

by starting with Equation 24.11. Use this equation to obtain the same result as in Exam-
ple 24-8.

24-47. The vapor pressure data for carbon disulfide in Table 24.1 can be curve fit by
P, =x,(514.5 tOH)eLtt%Txg—o,ﬁswsxg

Using the results of Example 24—7, show that the vapor pressure of dimethoxymethane is
given by

2 A
P2 =z, (5877 torr)g().ﬂtl]x] +0.68175x)

Now plot P, versus x, and compare the result with the data in Table 24.1. Plot G
against x,. Is the plot symmetric about a vertical line at x, = /2?7 Do carbon disulfide
and dimethoxymethane form a regular solution at 35.2°C?

Problems 1007 B

24-48. A mixture of trichloromethane and acetone with x_ = 0.713 has a total vapor pressure
of 220.5 torr at 28.2°C, and the mole fraction of acetone in the vaporis y, ., = 0.818. Given
that the vapor pressure of pure trichloromethane at 28.2°C is 221.8 torr, calculate the activity
and the activity coefficient (based upon a Raoult’s law standard state) of trichloromethane

in the mixture. Assume the vapor behaves ideally.

24-49. Consider abinary solution for which the vapor pressure (in torr) of one of the components
(say component 1) is given empirically by

: 2.2 3
P; — 78_8:&.'60.61(2-)-0.[8)'2

Calculate the activity and the activity coefficient of component 1 when x, = 0.25 based on

a solvent and a soluie standard state.
24-530. Some vapor pressure data for ethanol/water solutions at 253°C are listed below.
Fegnanol P hane /10T P e/ tOIT
0.00 0.00 23.78
0.02 428 23.31
0.05 9.96 22.67
0.08 14.84 22.07
0.10 17.65 21.70
0.20 27.02 20.25
0.30 31.23 19.34
0.40 33.93 18.50
0.50 36.86 17.29
0.60 40.23 15.53
0.70 43.94 13.16
0.80 48.24 9.89
0.90 53.45 5.38
0.93 55.14 3.83
0.96 56.87 2.23
0.98 53.02 113
1.00 59.20 0.00

Plot these data to determine the Henry's law constant for ethanol in water and for water in
ethanol at 25°C.

24-51. Using the data in Problem 2450, plot the activity coefficients (based upon Raoult’s
law} of both ethanol and water against the mole fraction of ethanoi.

24-52. Using the data in Problem 2450, plot éﬁ/ RT against x,; . Is a water/ethanol sclution
at 25°C a regular solution? :
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24-33. Some vapor pressure data for a 2-propanol/benzene solution at 25°C are Show that these expressions are equivalent to
%5 propanol Py propancl jrorr P a/tor Y, = ) amd oy, = e(aﬂﬁ/znf—ﬂx?
0.000 0.0 94.4 : Using these expressions for the activity coefficients, derive an expression for G” in terms
0.059 12.9 104.5 of o and £. Show that your expression reduces to that for G for a regular solution.
0.146 224 109.0 —
0.362 - 278 108.4 24-58, Prove that the maxima or minima of A___G defined in Problem 24-37 occur at x| =
0.521 304 105.8 x, = 1/2 for any value of RT /w. Now prove that
0.700 36.4 99.8
0.836 305 84.0 = 0 for RT/LU > 0.50
0.924 22 66.4 PDuC 0 o RT = 0,50
1.000 44.0 44.0 ‘ o or RT/w =0
' <0 for RT/w < 0.50

Plot the activities and the activily coefficients of 2-propanol and benzene relative to a
Raoult’s law standard state versus the mole fraction of 2-propanal. atx, = x, = 1/2. Ts this result consistent with the graphs you obtained in Problem 24417

24-54. Using the data in Problem 2453, plot EE/ RT versus %) proparal” 24-59, Use the data in Table 24.1 to plot Figures 24.15 through 24.17.

24-55. Excess thermodynamic guantities are defined relative to the values the quantities would
have if the pure components formed an ideal solution at the same given temperature and
pressure. For example, we saw that (Equation 24.47)

GE
a7 b LIRS
Show that
St dny dlny
_— = — In 1 — 1 . 1 2
TR A R G f(xl T T )
24-56. Show that
GE
— = WX X
(n, +n,) 12
SE
S ———
(n, +n,)R
and
HE
(n, + 1) = WA

for a regular solution (see Problem 24-37).

24-57. Example 247 expresses the vapor pressures of the two components of a binary solution
as

2 3
@ oy +fx,
P =x Pe™m™

and

P, =x,Py o OF3B/ D]~ ]




