Peter Debye (left) was born in Maastricht, the Netherlands, on March 24, 1884 and died
in 1966, Debye was originally trained as an electrical engineer but turned his attention to
physics, receiving his Ph.D. from the University of Munich in 1908. After holding positions in
Switzerland, the Netherlands, and Germany, he moved to the University of Berlin in the sarly
1930s. Although he had been assured that he would be able retain his Dutch citizenship, Debye
found that he would be unable to continue his work in Beilin unless he became a German
citizen. He refused and left Germany in 1939 for Cornell University, where he remained for the
rest of his life, becoming an American citizen in 1946. Debye was awarded the Nobel Prize
for chemistry in 1936 “for his contributions to our knowledge of molecular structure through
his investigations on dipole moments and on the diffraction of X rays and electrons in gases.”
Erich Hiickel (right) was born in Gét‘tingen, Germany, on August 19, 1896 and died m 1980.
He received his Ph.D. in physics from the University of Géttingen in 1921. He later worked
with Peter Debye in Zurich, and together they developed a theory for the thermodynamic
properties of solutions of strong electrolytes that is now known as the Debye—Hiickel theory.
Hiickel also develeped Hiickel molecular orbital theory, which we learned in Chapter 10 applies
to conjugated and aromatic molecules. Hiickel was appointed professor of theoretical physics
at the University of Marburg in 1937 where he remained until his retirement.

CHAPTER

Solutions 1I: Solid-Liquid Solutions

In the previous chapter, we studied binary solutions, such as ethanol/water solutions,
in which the two components were miscible in all proportions. In such solutions, either
component can be treated as a solvent. In this chapter, we will study solutions in which
one of the components is present at much smaller concentrations than the other, so that
the terms “solute” and “solvent” are meaningful. We will introduce a solute standard
state based upen Henry’s law such that the activity of the solute becomes equal to its
concentration as its concentration goes to zero. In the first few sections, we will study
solutions of nonelectrolytes, and then solutions of electrolytes. Unlike for solutions
of nonelectrolytes, we will be able to present exact expressions for the activities and
activity coefficients in dilute solutions of electrolytes. Tn Sections 25-3 and 25-4, we
will discuss the colligative properties of solutions, such as esmotic pressure, as well as
the depression of the freezing point and elevation of the boiling point of a solvent by
the addition of solute.

25-1. We Use a Raoult’s Law Standard State for the Solvent and a
Henry’s Law Standard State for the Solute for Solutions of Solids
Dissolved in Liquids

In Section 248, we considered solutions in which one of the components is only
sparingly soluble in the other. In cases such as these, we use the terms solufe for the
sparingly soluble component and solvent for the component in excess. We customarily
denote solvent quantities by a subscript 1 and solute quantities by a subscripi 2. The
activities we defined for the solvent and solute are such that ¢, — x, as x; — 1 and
a, — x, as x, — 0. Recall that a, is defined with respect to a Raoult’s law standard
state (Equation 24.39)

P
a, = — (Raoult’s law standard state) (25.1)
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and that a, is defined with respect to a Henry’s law standard state (Equation 24.43)

P
a, = k—2 (Henry’s law standard state) (25.2)
H,x
where the subscript x emphasizes that ¢, and k;; . are based on a mole fraction scale
(P, = ky  x,). Evenif the solute does not have a measurable vapor pressure, defining the
activity by Equation 25.2 is nevertheless convenient because the ratio is still meaningful;
even though £, and k, , may be exceedingly small, the ratio P,/k,, , is finite.
Although we have defined the activitics of the solvent and solute in terms of mole
fractions, the use of mole fractions to express the concentration of a solute in a dilute
solution is not numerically convenient. A more convenient unit is molality (m), which
is defined as the number of moles of solute per 1000 grams of solvent. In an equation,
we have
n’Z
m=-—7=: (25.3)
1000 g solvent
where n, is the number of moles of solute (subscript 2). Note that the units of molality
are mol-kg . We say that a solution containing 2.00 moles of NaCl in 1.00 kg of water
is 2.00 molal, or that it is a 2.00 mol-kg™! NaCl(aq) solution. The relation between the
mole fraction of solute (x,) and molality (m) is
f, m .
X, = = — (25.4)
n -+ n, 1000 g-kg
i b
M

1

where M, is the molar mass (g-mol™'} of the solvent. The term 1000 g-kg™ /M, is
the number of moles of solvent (n,) in 1000 g of solvent and m, by definition, is the
number of moles of solute in 1000 g of solvent. In the case of water, 1000 g-kg™ /M |
is equal to 55.506 mot-kg !, so Equation 25.4 becomes

"
*2 = 55506 =
. mol-kg™" +m

(25.5)

Note that x, and m are directly proportional to each other if m <« 55.506 mol-kg™*,
which is the case for dilute solutions.

EXAMPLE 25-1

Calculate the mole fraction of a2 0.200 mol-kg™* C i, 0, (ag) solution,

SOLUTION: The solution contains 0.200 moles of sucrose per 1000.0 g of water.
The mole fraction of sucrose is ’

n 0.200 mol
X, = —F— = = 0.000359
! 2 = 4 0.200 mol
18.02 g-mol

25=1. Raoult's and Henry's Standard State Laws
We define the solute activity in terms of molality by requiring that

a, ——>m as m — 0 (25.6)

21

where the subscript m emphasizes that a,  is based on a molality scale. We can express
Henry’s law in terms of the molality rather than the mole fraction by P, =k, m,
where once again the subscript m emphasizes that &, - is based on a molality scale. In
terms of k,, . the activity of the solute is defined by

o =2 (25.7)

2m k]-]: ,

Another commen concentration unit is moelarity (¢), which 1s the number of moles
of solute per 1000 ml of solution. In an equation,
n

c= E - (25.8)
1000 mL solution

Note that molarity has units of mol-L~'. We say that a solution containing 2.00 moles
of NaC1 in 1.00 liter of solution is a 2.00-molar solution, or that it is a 2.00 mol -L.™
NaCl{(aq) solution.

We define the solute activity in terms of molarity by requiring that

a, —c a ¢—>0 -(25.9)

where the subscript ¢ emphasizes that a,_is based on a molarity scale. We can express
Henry’s law in terms of the molarity rather than the mole fraction of solute by P, =
k, ¢, where once again the subscript ¢ emphasizes that k, = is based on a molarity

H,
scale. In terms of km, the activity of the solute is defined by
P
a,, = k—z- (25.10)

Converting from molarity to molality is easy if we know the density of the solution,
which is available for many solutions in handbooks. For example, the density of a
2.450 mol-L™' agueous sucrose salution at 20°C is 1.3103 g-mL™". Thus, there are
838.6 g of sucrose in 1000 mL of solution, which has a total mass of 1310.3 g. Of
these 1310.3 g, 838.6 g are due to sucrose, so 13103 g — 838.6 g = 471.7 g are due
to water. The molality then is given by

2.450 mol sucrose 1000 g H,O

= = 5.194 mol kg
"TTMIemn0 kgHO HonEe

EXAMPLE 25-2
The density (in g-mL ™"} of an aqueous sucrose solution can be expressed as

p/g-mL™ = 0.9982 + (0.1160 kg-mol™ ym — (0.0156 kg -mol~>)m’
+ (0.0011 kg’ -mol~*)m’

0<m =< 6mol-kg™
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Calculate the molarity of a 2.00-maolal aqueous sucrose soiution. Table 25.1 summarizes the equations for the activities we have defined for the var-
ious concentration scales. In each case, the activity coefficient y is defined by dividing
the activity by the appropriate concentration. Thus, for example, y, = a,, /m. Prob-
lem 25-12 asks you to derive a relation between the various solute activity coefficients
in Table 25.1.

SOLUTION: A 2.00-molal aqueous sucrose solution contains 2.00 moles (684.6 g)
of sucrose per 1000 g of H,0, or 2.00 moles of sucrose in 1684.6 g of solution. The
density of the solution is given by
p/g-mL " = 0,9982 + (0.1160 kg-mol ") (2.00 mol-kg™")
— (0.0156 kg mol=2)(4.00 mol kg™)

(00011 kg’ mol *)(2.00 mof kg ) 25-2. The Activity of a Nonvolatile Solute Can Be Obtained from the

Vapor Pressure of the Solvent

=1.177
so the volume of the solution is : The equations for the solute activities in Table 25.1 are applicable to nonvolatile as
mass' 1684.6 g well as volatile solutes. The vapor pressure of a nonvolatile solute is so low, however,
= density ~ 7177 .mL*] = 1432 mL that these equations are not practical to use. Fortunately, the Gibbs—Duhem equa-
e tion provides us with a way to determine the activity of a nonvelatile solute from a
Thercfore, the molarity of the solution is measurement of the activity of the solvent. We will illustrate this procedure using an
2.00 mel sucros
— SOVMOLSUCIOSe L g ol 1!
1.432L
Prcblem 255 asks you to derive a generai relation between ¢ and m. TABLE 25.1
| J A summary of the equations for the activities used for the various concentration scales for

dilute solutions.

| ‘ Solvent—Raoult’s law standard state

P
EXAMPLE 25-3 o X . . a]:—i Ca, > x as xl%*]
Given the density (o) of the solution in g-mL ™", derive a general relation between x, P,
and . _ al * H
¥, = o P — Plx as x, — 1 (Raoult’s law)
SOLUTION: Consider exactly a one liter sample aof the solution. In this case, ¢ = #,, !
the number of moles of solute in the one-liter sample. The mass of the sofution is Solute—Henry’s law standard state :
given by ' ]
; Mole {raction scale
mass of the solution per liter = (1000 mL.L™)p b
i a, == a, —»x, as x, >0
s0 the mass of the solvent is kux -
a 3 2
mass of the solvent per liter = mass of the solution — mass of the solute _ Vor = JTb Py— ik, x, as x, =0 {Henry’s law)
2
= (1000 mL-L™) 0 — cM, Molality scale
where M, is the molar mass {g-mol™") of the solute. Therefore, n,, the number of P
moles of solvent, is ' = T : a, —m as m—+0
: H,m
1000 mL-L™Ye —eM a
n, = ( i )0 — cM, Vyp == % Py~ ky,m oas m-—>0  (Henry’s law)
50 i
L T ¢ Molarity scale
P ong+n, (1000mLoL e — oM, te ;
M, a, = —* a, —c as ¢— 0
CMl kH,[‘ i
= — (25.11) - ‘ a
(1000 mL-L™)p + (M, — M) Yy = == P, — k. c as ¢ 0 (Henry’s law)
c i
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aquecus solution of sucrose. According to a Raounlt’s law standard state, the activity
of the water is given by P,/P;". Now let’s consider a dilute solution, in which case
a, = x,. We now want to relate a, to the molality of the solute, . For a dilute solution,

m < 55.506 mol-kg ', so we can neglect m compared with 55.506 mol-kg™" in the
denominator of Equation 25.5 and write
m
X, ™ ——————————
* 55506 mol-kg™
Therefore, for small concentrations,
m
na =hx =In{l—x,)~ —x (25.12)

27 55,506 mol-kg !

where we have used the fact that In{l — x,) = —x, for small values of x,.

Table 23.2 and Figure 25.1 give experimental data for the vapor pressure of water
in equilibrium with an agueous sucrose solution at 25°C as a function of molality and
mole fraction, respectively. The equilibrium vapor pressure of pure water at 25°C 15
23.756 torr, so a, = P,/ P{" = P, /23.756 is given in the third column of Table 25.2.

Equation 25.12 relates a, to the molality m for only a dilute solution. For example,
Table 25.2 shows that a, = 0.93276 at 3.00 molal, whereas Equation 25.12 gives
Ing, = —0.054048, or a, = 0.9474. To account for this discrepancy, we now define a
quantity ¢, called the osmotic coefficient, by

me

—_— (25.13)
55.506 mol-kg~

lIluCl',l = —

Note that ¢ = 1 if the solution behaves as an ideal dilute selution. Thus, the deviation
of ¢ from unity is a measure of the nonideality of the solution.

24
)
s 22f
Q}’ 20 -
| |
1.00 0.95 0.90
xWater

FIGURE 25.1

The vapor pressure of water in equilibrivm with an aqueous sucrose solution at 25°C plotted

against the mole fraction of water. Note that Raoult’s law (the straight line in the figure) holds

from x
Wi

= 1.00 to about 0.97, but that deviations occur at lower values of x

ater water”

oo

TABLE 25.2

The vapor pressure of water {P) in equilibrium with an agueous sucrose solution at
25°C as a function of molality (m). Additional data are the activity of the water (a,
the osmotic coefficient (¢), and the activity coefficient (3, ) of the sucrose.

m/mol-kg™' P fiorr @, ¢ Vo Iny,
0.00 23.756 1.00000 1.0000 1.000 0.0000
0.10 23.713 0.99819 1.00356 1.017 0.0169
0.20 23.669 0.99634 1.0176 1.034 0.0334
0.30 23.625 0.99448 1.0241 1.051 (1.0497
(.40 23.580 0.99258 1.0335 1.068 0.0658
0.50 23.534 0.99067 1.0406 1.085 0.0816
0.60 23.488 0.98872 1.0494 1.105 0.0998
0.70 23.441 0.98672 1.0601 1.125 0.1178
0.80 23.363 (0.98472 1.0683 1.144 0.1345
0.90 23.344 0.98267 1.0782 1.165 0.1527
1.00 23.295 0.98059 1.0880 1.185 0.1723
1.20 23.194 0.97634 1.1075 1.233 0.2095
1.40 23.089 097193 11288 1.283 0.2492
1.60 22.982 0.96740 1.1498 1.335 0.2889
1.80 22.872 0.96280 1.1690 1.387 0.3271
2.00 22.760 0.95807 1.1888 1.442 0.3660
2.50 22.466 0.94569 12398 1.590 . 0.4637
3.00 22.159 0.93276 1.2879 1.751 0.5602
3.50 21.840 0.91933 1.3339 1.924 0.6544
4.00 21.515 0.90567 1.3749 2.101 (.7424
4.50 21.183 . 0.89170 1.4139 2.310 0.8372
5.00 20.848 0.87760 1.4494 2.481 0.9087
5.50 20511 0.86340 1.4823 2.680 0.9858
6.00 20.176 0.84930 15111 3.878 1.3553

EXAMPLE 25-4
Using the data in Table 25.2, calculate the value of ¢ at 1.00 mol-kg™*.

SOLUTION: We simply use Equation 25.13 and find that

_ (35.506 mol kg™ In(0.98059)
1.00 mol-kg~'

¢ = = 1.0880

in agreement with the entry in Table 25.2.
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1.4}
¢
1.2
1.0 i | J
0.0 2.0 4.0 6.0
m/ mol-kg™!
FIGURE 25.2

The osmotic coefficient () of an aqueous sucrose solution at 25°C plotted against the molality
(). The magnitutde of the deviation of the value of ¢ from unity is a measure of the nonideality
of the solution. -

Figure 25.2 shows ¢ for an aqueous sucrose solution at 25°C plotted against .
Note that the solution becomes increasingly nonideal as m increases.

The fifth column in Table 25.2 gives the activity coefficient of the sucrose calculated
from the activity of the water, or from the osmotic coefficient, by means of the Gibbs—
Duhem equation,

ndna, +n,dna, =0

In terms of molality, m, R, = 55.506 mol and n, = m, 80 the Gibbs—Duhem equation
becomes

(55.506 mol-kg™)d Ina, + mdlna, = 0 (25.14)

Using Equation 25.13, we see that (55.506 mol-kg ")d Ina, = —d(m¢). If we substi-
tute this result and @, =y, m (Table 25.1) intc Equation 25.14, we obtain

d(m¢) = md In(y, m)
or
mde + ¢pdm = m(dIny, +dnm)

We can rewrite this equation as

dm

dln yZm = dﬁb + ¢

We now integrate from m = 0 (where y, = ¢ = 1) to arbitrary m to get

Iny, =¢—1+ f ' ("’—_—]) dm’ (25.15)
0 it

25-2. The Activity of a Nonvolatile Solute

Equation 23.13 allows us to calculate the activity coefficient of the solute from the data
on the vapor pressure of the solvent. The vapor piessure of the solvent gives us the
activity of the solvent from Equation 25.1; then the osmotic coefficient ¢ is calculated
from Equation 25.13, and In y,  is determined from Equation 25.15.

The data for ¢ in Table 25.2 can be fit with a polynomial in the molality. If we
choose (arbitrarily) a Sth-degree polynomial, we find that (Problem 25-18)

¢ = 1.00000 + (0.07349 kg mol "ym + (0.019783 kg -mol ?)m”
| — (0.005688 kg®-mol *)m® + (6.036 x 10~* kg*-mol *)m*

— (2,517 x 107 kg°-mol *)m’ 0<m<6mol-kg'

We can substitute this expression into Equation 25.15 to obtain in p, .

EXAMPLE 25-5
Use the above polynomial fit for ¢ and Equatien 25.15 to calculate the value of y,
for a 1.00-molal aqueous sucrose solution.

SOLUTION?: First, we need to evaluate the integral in Equation 25.15 (neglecting
to write the units in the coefficients of the powers of m):

1 _ 1 |
f (L) dm = f [0.07349 4 0.019783m — 0.005688m”
0 m i

+6.036 x 107%m® — 2.517 x 10 m"|dm
0.019783  0.005688

= 0.07349 + 3
6.036 x 107*  2.517 % 107°
4 5
= 0.08163

50

Ll —1
ln}/gm:gzﬁ—l—}—f (¢ )dm
- 8 Fil

=0.08816 + 0.08163 = 0.1698

or y, = 1.185, in agreement with the entry in Table 25.2.

The values of Iny, and y, given in Table 25.2 have been calculated using the
procedure in Example 25-5. Figure 25.3 shows In y,  plotted against m for an aqueous
sucrose solution at 25°C.
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0.5+

in 7,

0.4

| | |
0.0 2.0 4.0 6.0

m/ mol-kg~!

0.0

FIGURE 25.3
The logarithm of the activity coefficient (Iny, ) of sucrose in an aqueous sucrose solution at
25°C plotted against the molality (m).

25-3. Colligative Properties Are Solution Properties That Depend
Only Upon the Number Density of Solute Particles

A number of solution properties, called colligative properties, depend, at least in dilute
solution, upon only the number of solute particles, and not upon their kind. Colligative
properties include the lowering of the vapor pressure of a solvent by the addition of
a solute, the elevation of the boiling point of a selution by a ncenvolatile solute, the
depression of the freezing point of a solution by a solute, and osmotic pressure. We
will discuss only freezing-point depression and osmotic pressure.

At the freezing point of a solution, solid solvent is in equilibrium with the solvent
in sohution. The thermodynamic condition of this equilibrium is that

(T = i (T,)

where as usual the subscript 1 denotes solvent and 7, is the freezing point of the
solution. We use Equation 24.35 for w, to obtain

ui=p) +RTIna, = i+ RTIna,
We have written j¢; for 4} simply to compare it with ;5. Solving for Ina , we get

By — Mll

25.16
B (25.16)

Ena1 =

Now differentiate with respect to temperature and use the Gibbs—Helmholtz equation

[3(M1/T) i
T L. T

(Example 24-1),

25-3. Colligative Properties Are Solution Properties

to obtain

dlna, ﬁll —ﬁ; Afuﬁ ’
= 5 = — (25.17)
T /., RT RT

where we have used the fact that ﬁ: - ﬁf = A, H for the pure solvent. If we integrate
Equation 25.17 from pure solvent, where ¢, = 1, T = T, to a solution with arbitrary
values of ¢, and 7, we obtain '

fus?

T Aﬁmﬁ
Ina, =[ 4T (25.18)
T RT

Equation 25.18 can be used to determine the activity of the solvent in a solution
{Problem 25-20).

You may have calculated freezing-point depressions in general chemistry using
the formula

AT, = Km (25.19)
where K is a constant, called the freezing-point depression constant, whose value de-
pends upon the solvent. We can derive Equation 25.19 from Equation 25.18 by making a
few approximations appropriate to dilute solutions. If the solution is sufficiently dilute,
thenlna, =Inx, =In(l —x,) &= —x,, and if we assume that Amﬁ is independent of
temperature over the temperature range (7, , 7 ), we obtain

tus?

ALH ff ar Aﬁwﬁ( 1 1 }
Cx, = st 47 _ et -
T

R o RO,
fus us )
Y (25.20)
R \ T, T, /)

Because x, and A, _H are positive quantities, we see immediately that 7, — 73 < 0,
or that T, < T . Thus, we find that the addition of a solute will lower the freezing

point of a solution. We can express x, in terms of molality by using Equation 25.4,

m M m
x,} — — =~ —
P1000g-kg! 1000 g-kg™!
——— - .

M,

(25.21)

for small values of m (dilute solution). Furthermore, because 777, — 7, _is usually only
a few degrees {dilute sohution once again), we can replace T,  in the denominator of

Equation 25.20 by 7}, to a good approximation to get finally (Problem 25-23)

fas

AT, =15 — T, =Km (25.22)

us i

1021




1022 Chapter 25 / Solutions Il: Solid-Liquid Solutions

where

M, RIL
= e (25.23)
1000gkg ' A H

K,

We can calculate the value of & ; for water.

_ {18.02g-mol ™"\ (8.314J. K™ -mol)(273.2K)*
A 1000 gkg ! 6.01 kJ-mol™
= 1.86 K-kg-mol !

Equation 25.22 tells us that the freezing point of a 0.20-molal solution of sucrose in
water is —(1.86 K-kg-mol ")(0.20 mol-kg ') = —0.37 K.

EXAMPLE 25-6
Calculate the value of X for cyclohexane, whose freczing point is 279.6 K and molar
enthalpy of fusion is 2.68 kI.mol ™'

SOLUTION: Weuge Equation 25-23 with M, = 84.16 g mol™! and the above values
of Ty, and A, H.

_ (84.16 g-mol™Y (8.314 J. K~ -mol™")(279.6 K)?
~\ 1000 g-kg™t 2680 J-mol ™!
=204 K-kg-mol™!

f

Thus, the freezing point of a 0.20-molal solution of hexane in cyclohexane is 4.1 K
lower than the freezing point of pure cyclohexane, or 7, = 275.5 K.

We can derive an expression for the boiling-point elevation of a solution containing
a nonvolatile solute. The analog of Equation 25.22 is (Problem 25-25)

AT =T —T" =FKm (25.24)

vap vap yap b

where the hoiling-point elevation constant ts given by

_ M, R(T;)’
K, = — e (25.25)
1000 g-kg™ A A

The value of K, for water is only 0.512 K-kg-mol ™', so the boiling point elevation is
a rather small effect for aqueous solutions.

25-4, Osmotic Pressure Can Be Used to Determine the Molecular
Masses of Polymers

Figure 25 .4 illustrates the development of osmotic pressure. In the initial state, we have
pure water on the left and an aqueous sucrose solution on the right. The two liquids are
separated by a membrane containing pores that allow water molecules but not solute
molecules to pass through, Such a membrane is called a semipermeable membrane.
(Many biological cells are surrounded by membranes semipermeable to water.) The
levels of the two liquids in Figure 25.4 are initially the same, but water will pass
through the semipermeable membrane until the chemical potentials of the water on the
two sides of the membrane are equal. This process results in the situation shown in
the equilibrium state, where the two liquid levels are no longer equal. The hydrostatic
pressure head that is built up is called csmotic pressure.

Because the water is free to pass through the semipermeable membrane, the chem-
ical potential of the water must be the same on the two sides of the membrane at
equilibrium. In other words, the chemical potential of the pure water ai a pressure £
must equal the chemical potential of the water in the solution at a pressure P - Il and
an activity a;. In an equation,

Wi, P) = ™, P+ T, a)

= ui (T, P+ 1)+ RT ng, (25.20)
)
Diluted ’
:(l,lﬁlrt(i}ii Hydrostatic
Sucrose pressure
soluticn \ head =11

Rigid semipermeable
membrane

Initial state Equilibrinm state

FIGURE 25.4

Passage of water through a rigid, semipermeable membrane separating pure water from an
agqueous sucrose solution. The water passes through the membrane until the chemical potential
of the water in the aqueous sucrose solution equals that of the pure water. The chemical
potential of water in the sucrose solution increases as the hydrostatic pressure above the solution
increases.
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where a, = P,/ P;". We can rewrite Equation 25.26. as

pi(T, P+ 10) = pi(T, P) + RT Ina, =0 (23.27).

The first two terms in Equation 25.27 are the difference in the chemical potential of
the pure solvent at two different pressures. Equation 23.8

il W R v 23.8
(BP)T : (238)

where T/—l* is the molar volume of the pure solvent, tells us how the chemical potential
varies with pressure. We can use Equation 23.8 to evalvate p (T, P + IT) — uj(T, P)
by integrating both sides from P to P 4 [T to get

P4 8“‘* P -
L1 ap = j[ v, dP’ (25.28)
3P ], »

pu T, P +1I1) — wi(T, P) :f

£

If we substitute Equation 25.28 into Equation 25.27, we obtain
P+II o
f V dP' +RTIng, =0 (25.29)
P

Assuming Vl* does not vary with applied pressure, we can write Equation 25.29 as

¥, + RTIna, =0 (25.30)

Furthermore, if the solution is dilute, then a, # x, = 1 — x,, with x, small. Therefore,
we can write Ina, asIn(l — x,) = —x,, so that Equation 25.30 becomes

Hﬁ* = RTxl

Furthermore, because x, is small, 7, < nr, and

) A
nl + 7’1‘.2 ﬁ'.1

Substitute this into the above equation to get

n,RT  n,RT
N=—+— =~
n, v v

where we have replaced nij‘ by the total volume of the solution, V' (dilute solution).
The above equation is usually written as

[l =cRT (25.31)

25-5. Solutions of Electrolytes Are Nonideal at Relatively Low Concentrations

where c is the molarity, n,/ V', of the solution. Equation 25.31 is called the van’t Hoff
equation for osmotic pressure. Using this equation, we calculate the osmotic pressure
of a 0. 100-molar agneous solution of sucrose at 20°C 1o be

TT = (0.100 mol-L™")(0.08206 L-atm-K™' -mol~)(293.2 K)
= 2.40 atm
Thus, we see that osmotic pressure is a large effect. Because of this, osmotic pressure

can be used to determine molecular masses of sobutes, particularly solutes with large
molecular masses such as polymers and proteins.

EXAMPLE 25-7

It is found that 2.20 g of a certain polymer dissolved in enough water to make 300 mkE
of solution has an osmotic pressure of 7.45 torr at 20°C. Determine the molecular mass
of the pelymer.

SOLUTION: The molarity of the solution is given by

IT 7.45 torr/760 torr-atm ™!
= — =
RT (0.08206 L-atm-K™' -molfl)(293.2 K)
=4.07 x 107 mol. L™!

Therefore, there are 4.07 x 10™% moles of polymer per liter of solution, or
(0.300)(4.07 % 107%) = 1.22 » 10~ moles per 300 mL of solution. Thus, we find that
1.22 x 107" moles corresponds to 2.20 g, or that the molecular mass is 18,000

If a pressure in excess of 26 atm is applied to seawater at 15°C, the chemical
potential of the water in the seawater will exceed that of pure water. Consequently,
pure water can be obtained from seawater by using a rigid semipermeable membrane
and an applied pressure in excess of the osmotic pressure of 26 atm. This process is
known as reverse osmosis. Reverse osmosis units are commercially available and are
used to obtain fresh water from salt water using a variety of semipermeable membranes,
the most common of which 1s cellulose acetate.

25-5. Sclutions of Electrolytes Are Nonideal at Relatively
Low Concentrations

When sodium chloride dissolves in water, the solution contains sodium ions and chlo-
ride ions and essentially no undissociated sodium chloride. The ions interact with
each other through a coulombic potential, which varies as 1/r. We should compare
this interaction with the one between neutral solute molecules {nonelectrolytes) such
as sucrose, where the interaction varies as something like 1/r°. Thus, the interaction
between ions in solution is effective over a much greater distance than the interaction
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between neutral solute particles, so solutions of electrolytes deviate from ideal behavior
more strongly and at lower concentrations than do solutions of nonelectrolytes. Fig-
ure 25.5 shows In y, for sucrose, sodium chloride, and calcium chloride plotted versus
molality. Note that CaCl,(aq) appears to behave more nonideally than NaCl(aq), which
in turn behaves more nonideally than sucrose. The charge of +2 on the calcium ion
leads to a stronger coulombic interaction and hence a stronger deviation from ideality
than for NaCl. At 0.100 mok-kg ', the activity. coefficient of sucrose is 0.998, whereas
that of CaCl,(aq) is 0.518 and that of NaCl(aq) is 0.778.

Betore we discuss the determination of activity coefficients for electrolytes, we
must first intfroduce notation needed to describe the thermodynamic properties of
solutions of electrolytes. Consider the general sait C, A, , which dissociates into v,
cations and v_ anions per formula unit as in o

H,00) _
C, A (8) — v _C(ag) + v_A"(aq)

where v, z_+v_z_ =0 by electroneutrality. For example, v, =1 and v_ =2 for
CaCl, and v = 2 and v_ = 1 for Na,50,. Therefore, CaCl, is called a 1-2 electrolyte
and Na,SO, is called a 2-1 electrolyte. We write the chemical potential of the salt in
terms of the chemical potentials of its constituent ions according to

MZ = U+H’+ —E_ V_H_ (2532)
where
ty, =5 + RT Ina, (25.33)
3.0
CaCl,
2.0
C e 1.0 sucrose
=
0.0
-1.0 I l |
0:0 2.0 4.0 6.0
m/ molkg™!
FIGURFE 25.5

The logarithm of the activity coefficient (Iny, ) of agueous solutions of sucrose, sodivm
chloride, and calcium chloride plotted against molality (#:) at 25°C. Note that the electrolyte
solutions deviate from ideality (Iny, = 0) much more strongly than does sucrose at small
concentrations.

25-5. Solutions of Electrolytes Are Nonideal at Relatively Low Concentralions
and

=pi +RT 1na+
* (25.34)
u_=p + R na_

The superscript zeros here represent the chosen standard state, which we can leave
unspecified at this point but is usually taken to be the solute or Henry’s Jaw standard
state. If we substitute Equations 25.34 into Equation 25.32 and equate the result to
Equation 25.33, we obtain

v, Ina_+v_lna_=lIna,
where we have used the relation w5 = v _u7 +v_p’ in analogy with Equation 25.32.
We can rewrite the above equation as

a, =aja- (25.35)

For many of the formulas that occur in the thermodynamics of solutions of elec-
trolytes, it is convenient to define a quantity a_, called the mean ionic activity, by

v

a,=a’ =ata (25.36)

where v = v+ 1v_. Note thata, israised to the same power as the sum of the exponents
in the last term in Equation 25.36, For example, we write

TR
Aoy = O = 4,0

and

. 2
oy, = a3 = 07
Even though we cannot determine activities of single ions, we can still define single-ion

activity coefficients by
a,=m,y, and a_=m_y

where m, and m_ are the molalities of the individual ions, which are given by
m,=v.m and m_ = v_m. If we substitute these expressions for a, and a_ into
Equation 25.36, we get

+

a,=al = (mim ) y) (2537

In analogy with the definition of the mean ionic activity a_ in Equation 25.36, we
define a mean icnic molality m__ by

m, =mim_ ' (25.38)
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and a mean ionic activity coefficient v, by

vl= iyl (25.39)

Again, notice that the sum of the exponents on both sides of Equations 25.38 and 25.39
are the same. Given these definitions, we can now write Equation 25.37 as

a, =al =mLy, (25.40)

2

EXAMPLE 25-8
Write out Equation 25.40 explicitly for CaCl,.

SOLUTION: Inthis case, v, =1 and v_ = 2. Farthermore, according to the equa-

>t
tion
wow . B
CaCl, (s} — Ca*"(ag) + 2 Cl (aq)
we see thatm = m and m_ = Zm. Thus,

a, = ai = (m)(2m}2yi = 4m3yi

The relations between a,, m, and y, for other types of electrolytes are given in
Table 25.3.

TABLE 25.3
The relations between the activity of a strong electrolyte, its molality, and its mean ionic
activity coefficient for various types of strong electrolytes.

Type

1-1 _
KClaq) ay =a.a_=al =miyl=(m)(m_ )yl =myi
1-2
CaCl, (aq) a,=a at =al =miyl = (nu)(ntg)zyi = (m)(2m)*yd = dm’y}
1-3
~ LaCl,(aq) a,=a,a =ay=miyl=(m)m Vyi=mGmiyl=2Im"y]
2-1
Nz, SO, (aq) a,=ala_=a, = (m+)_2(m_)yj; = (2m)?(m)yy] = 4m*y.
22
ZnS0, (aq) a,=a.a_ = al =wmiyl = (m+)(m7)yi = mzyi
3-1
Na,Fe(CN), (aq) azztﬁq_:cﬁzzmixi:(m+ﬁ@n)K;=(3mﬁonn¢==27m%ﬁ

25-5. Solutions of Elecirolytes Are Nonideal at Relatively Low Concentralions

Mean ionic activity coefficients can be determined experimentally by the same
methods used for the activity coefficients of nonelectrolytes. We will illustrate their
determination from the measurement of the vapor pressure of the solvent as we did
for an aqueous sucrose solution in Section 25-2. In analogy with Equation 25.13, we
define an osmotic coefficient for aqueous elecirolyte solutions by

m%:mwwiﬁg—j (25.41)
55.506 mel-kg

Notice that this equation differs from Equaticn 25.13 by the inclusion of a factor of v
here. Equation 25.41 reduces to Equatien 25.13 for nonelectrolyte solutions because
v = 1 in that case. Problem 25-34 asks you to show thai with this factor of v, ¢ — 1
asm — 0 for solutions of elecirolytes or nonelectrolytes. Starting with Equation 25.41

and the Gibbs—-Duhem equation, you can derive the analog of Equation 25.15 straight-
forwardly: -

ny, =¢ — l+f (—7) dm’ (25.42)
: o |

m

Table 25.4 gives the vapor pressure of an agueous solution of NaCl as a function
of molality. Also included in the table are activities of the water (calculated from

TABLE 25.4
The vapor pressure (P o), activity of the water (@), osmotic coefficient (¢),
and logarithm of the mean ionic activity coefficient (In 3, ) of the NaCl in an

aquecus solution of Na(ll at 25°C as a function of molality (m).

m/mol kg™ P ftorr a, b Iny,
)

(.000 23.76 1.0000 1.6000 0.0000
0.200 23.60 0.9934 0.9245 —0.3079
0.400 23.44 0.9868 0.9205 —-0.3685
0.600 23.29 0.9802 0.9227 —0.3977
0.800 23.123 0.9736 0.9285 —0.4143
1.000 22.97 0.9669 0.9353 —0.4234
£.400 22.64 0.9532 0.9502 —0.4267
1.800 22.30 0.9389 06.9721 —0.4166
2.200 21.96 0.9242 (.9944 —0.3972
2.600 21.59 0.9089 £.0196 —0.3709
3.000 21.22 0.8932 1.0449 —0.33%6
3.400 . 20.83 0.8769 1.0723 —-0.3046
3.800 2043 0.8600 1.1615 —0.2666
4.400 19.81 0.8339 1.1457 —0.2053

—0.1389

5.000 18.17 0.8068 1.1916
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a, = P,/ P), osmotic coefficients (calculated from Equation 25.41), and mean ionic
activity coefficients {calcufated from Equation 25.42).

For sucrose in Section 25-2, we curve fit ¢ to a polynomial in m and then used
that polynomial to calculate the value of p, . As we will see in Section 25-6, the
osmotic coefficient of electrolytes is better described by an expression of the form (a
polynomial in m'/?)

¢ =1+am®+bm+cm™ 4.
The osmotic coetficient data for sodiom chloride given in Table 25.4 can be fit by

¢ = 1 —(0.3920 kg'* mol *ym ' 4 (07780 kg-mol ™" m
~ (0.8374 kg*-mol *)ym*” 4 (0.5326 kg®-mol2)m?
— (0.1673 kg**-mol *)m™? + (0.0206 kg* -mol Hym® _
0<m < 50mol-kg™’ (25.43)

This expression for ¢ along with BEquation 25.42 were used to calculate the values of
Iny, given in Table 25.4.

EXAMPLE 25-9
Verify the entry for Iny, at 1.00 molal i Table 25.4.

SOLUTION: We first write (neglecting the units in the coefficients of the powers of
m in Equation 25.43})

32

3

2 52 3
2m™

+ (0.5326)%—. —(0.1673) ~+ (0.0206)%

” -1
[ (gﬁi’) dm' = —(0.3920(2m"™*) + 0.7780m — (0.8374)
0 "

and add this result to ¢ — 1 to obtain

5 3/2
Iny, = —(0.3920)(3m") + (0.7780)(2m) — (0.8374) ”;
Im? T i
+ (0:5326) 7 — (0.1673) " — + (0.0206) 5 -

Thus, at 1.00 molal, In y_ = —0.4234, or y, = 0.655.

The formulas we derived in Section 253 for the colligative properties of solutions
of nonelectrolytes take on a slightly different form for solutions of electrolytes. The

25-6. The Debye—Hicke! Theory

difference lies in Equation 25.21 for x,. For a strong electrolyte that dissociates into v
cations and v_ anions per formula unit, the mole fraction of solute particles is given by

VI " vmM,
1000 g kg™

E—
1000 g-kg™! N

— = L um
M

1

(25.44)

Note that the right side here contains a factor of v. If this expression for x, is carried
through in derivations of the formulas for the colligative effects, we obtain

AT =vKm (25.45)
AT, =vKm (25.406)

and
M=vcRT (25.47)

EXAMPLE 25-10
A 0.050-molal agueous solution of K,Fe(CN}, has a freezing point of —0.36°C. How
many ions are formed per formula unit of K_Fe{CN),?

SOLUTION: We can solve Equation 25.45 for v to obtain

AT, ~036°C

Km  (1.86 °C-kg-mol '}(0.050 mol-kg ™)

v

Thus, the dissolution process of K, Fe(CN), can be written as

H,00 . o
K, Fe(CN), — 3 K'(ag) + Fe(CN); (aq)

25—6.TheDebyeinjckelTheoryGivesanExa{ftExpressionﬁnlnyi
for Very Dilute Sclutions

In the previous section, we expressed the osmotic coefficient for solutions of electrolytes
in the form ¢ = 1 +am"” + bm + - - - rather than as a simple polynomial in m as we
did for sucrose in Section 25-2. The reason we did so is that in 1925, Peter Debyve

‘and Erich Hiickel showed theoretically that at low concentrations, the logarithm of the

activity coefficient of ion j is given by

2
qu

Iny, = (25.48)

! _SJrsosrkBT
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and that the logarithm of the mean ionic activity coefficient is given by (see Prob-
lems 25-50 through 25-58)

K
Iny, =— — 25.49
ny, q.49_| s ( )

where g, =z ¢ and g_ = z_e are the charges on the cations and anions, ¢ _is the
(unitless) relative permittivity of the solvent, and « is given by

5 2
2 qj Nir
= E — | - 25.50
* ensrkBT ( v ) ( )

7=l

where s is the number cf ionic species and N,/ V is the number density of species j. If
we convert N, /V to molarity, Equation 25.50 becomes

2

5 .
q; ¢

? = N,(1000 L-m™ 25.51
“ al = )Z g,6.k, T ( )
j=1.70"¢"B
It is customary to define a quantity I, called the ionic strength, by
Ly 2552
IC = "2” zl: Z; Cj (25.52)
=

where ¢, is the molarity of the jth ionic species, in which case (Problem 25-46)

. 2621\{,\(1()()0 L-m™)
o snsrkBT

Kz

(Ljmol. L7y (25.53)

EXAMPLE 25-11
First show that « has units of m™ and then show that Iny, in Equation 25.49 is
unitless, as it must be,

SOLUTION: Westart with Equation 25.50. The units of ¢, are C, g, are 2.5 kgt om™,

ky are JJK™ =kg-m’-s7-K™', T are K, and NV are m~>, Therefore, the units of
2

K* are
2 (CZ}(mYB) 2
K~ =m
(C* s kg™ m kg -m? s KHEK)
or
i ~m

Using Equation 25,49 for Iny,,

(€H(m™)

Iny

~ = ynitless
(kg m kg m® s KK

25-6, The Debye—HUckél Thecry

Equation 25.49 is called the Debve—Hiickel limiting law because it is the exact
form that In v, takes on for all electrolyte solutions for sufficiently low concentrations.
Just what is meant by “sufficiently low concentrations” depends upon the system. Note
that Iny, goes as x in Equation 25.49, that « goes as I'/* in Equation 25.53, and
that I/ goes as ¢! in Equation 25.52. Consequently, Iny, varies as ¢'/*, This ¢'/*
dependence is typical for electrolyte solutions, so when we curve fit ¢ in Section 25-3,
we fit it to a polynomial in ¢'/? (or m'/?) instead of ¢ (or m).

Most of the experimental data for In y, are given in terms of molality rather than
molarity. In Figure 25.6, we plot Iny, versus m*/* for a number of 1-1 electrolytes.
Note that all the curves merge into a single straight line at small concentrations, in
accord with the limiting law nature of Equation 25.49. At small concentrations where
the limiting law is valid, the molality and molarity scales differ by only a muliiplicative
constant, so a linear plot in ¢'? is also linear in m'/* (Problem 25-5).

The quantity « in Equation 25.50 s a central quantity in the Debye—Hiickel theory
and has the following physical interpretation. Consider an ion with charge ¢, situated
at the origin of a spherical coordinate system. According te Debye and Hiickel (see
also Problem 25-51), the net charge in a spherical shell of radius » and thickness dr
surrounding this central ion is

pAr)dr = —q.k’re ™ dr (25.54)
If we integrate this expression from 0 to oo, we obtain

j p(r)dr = —qi..tcz.[ re dr = —q,
0 0

This result simply says that the total charge surrounding an ion of charge ¢, is equal

and of the opposite sign to ¢.. In other words, it expresses the electroneutrality of the .

In y,

FIGURE 25.6

Values of Iny, versus m'/* for aqueous alkali halide solutions at 25°C. Note that even
though the four curves are different, they all merge into one, the Debye—Hiickel limiting law
(Hquation 25.49) at small concentrations.

/2
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solution. Equation 25.54, which is plotted in Figure 25.7, shows that there is a diffuse
shell of net charge of opposite sign surrounding any given ion in solution. We say that
Equation 25.54 descr'fbes an ionic atmosphere about the central ion. Furthermore, the
maximum in the curve in Figure 25.7 occurs at ¥ = i, so we say that «~, which
Example 25-11 shows has units of m, is a measure of the thickness of the ionic
atmosphere.

For a 1-1 electrolyte in aqueous solution at 25°C, a handy formula for « is

(Problem 25-33)

1 304 pm

«  (c/moll )72 (25.55)

where ¢ s the molarity of the solution. The thickness of the ionic atmosphere in a 0.010
molar solutien is approximately 3000 pm, or about 10 times the size of a typical ion.
For an aqueous solution at 25°C, Equation 25.49 becomes (Problem 25-59)

Iny, = —1.173}z,z_|(Z /mol- L)' . (25.56)

According to Equation 25.52, I is related to the concentration, but the relation itself
depends upon the type of electrolyte. For example, for a 1-1 electrolyte, z, =1,
z =—1lc¢ =candc_=c¢,s0f=c Foral2 electrolyte such as CaCl,, z, =2,
z.=—le¢ =c, andc_ = 2¢.s01 = %(4c + 2¢) = 3c¢. Generally, / is equal to some
numerical factor times ¢, where the value of the numerical factor depends upon the
type of salt. Therefore, Equation 25.56 says that a plot of Iny, versus ¢/* should be a
straight line and that the slope of the line should depend upon the type of electrolyte.
The slope will be —1.173 for a 11 electrolyte and —(1.173)(2)(3"*) = —4.06 for

04 -

Krexp(—xr)
=
R
|

0.0 | |
Kr

FIGURE 25.7
A plot of the net charge in a spherical shell of radius r and thickness dr surrounding a central
ion of charge g,. This plot illustrates the ionic atmosphere that surrounds cach ion in solution,

The maximum here corresponds to r = &'

25-7. The Mean Spherical Approximation 1035

a 1-2 electrolyte. Figure 25.8 shows a plot of Iny, versus ¢ for NaCl(aq) and
CaCl, (aq). Notice that the plots are indeed linear for small concentrations and that
deviations from linear behavior occur at higher concentrations [¢'* A .05 mol. L™
or ¢ = 0.003 mol-L™' for CaCL(aq) and ¢'* =~ 0.15mol-1. ™" or ¢ = 0.02mol. L™ for
NaCl(aq)]. The slopes of the two linear portions are in the ratio of 4.06 to 1.17.

25-7. The Mean Spherical Approximation Is an Extension of the
Debye-Hiickel Theory to Higher Concentrations

The Debye—Hiickel theory assumes that the ions are simply point ions (zero radii)
and that they interact with a purely coulombic potential [{/(r) =z +Z_€2/471'808r?‘}.
In addition, the solvent is considered a continuous medium with a uniform relative
permittivity & (78.54 for water at 25°C). Although the assumptions of point ions and
a continuum solvent may seem crude, they are quite satisfactory when the ions are far
apart from each other on the average, as they are in very dilute solutions. Consequently,
the Debye—Hiickel expression for In y ', given by Equation 25.49 is exact in the limit of
small concentrations. There is no corresponding theory for solutions of nonelectrolytes
because, being neutral species, nonelectrolyte molecules do not interact with each other
to any significant extent until they approach each other relatively closely, where the
solvent can hardly be assumed to be a continuous medium.

Figure 25.8 emphasizes that the Debye-Hiickel theory is a limiting law. It should
not be considered a quantitative theory with which to calculate activity coefficients
except at very low concentrations. Nevertheless, the Debye-Hiickel theory has played
an invaluable role as a strict limiting law that all electrolyte solutions obey. In addition,
any theory that attempts to describe solutions at higher concentrations must reduce to
Bquation 25.49 for small concentrations. Many attempts have been made to construct *

In Y.

0.0 0.1 0.2 0.3 - 0.4 0.5

1 1 -1
c?fmol 2.1, "2

FIGURE 25.8

A plot of the logarithm of the mean ionic activity coefficient (In y, ) for NaCl{ag) and CaCl, (aq)
at 25°C versus ¢'/2. Note that both curves approach the Debye—Hiickel limiting law (the straight
lines) as the molarity goes to zero.
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theories for more concentrated electrolyte solutions, but most have met with only
limited success. One early attempt is called the Extended Debye-Hiickel theory, in
which Equation 25.49 is modified to be

117312,z |(L/mol- L)'

[+ (L/mol L7 (25.57)

Iny, =—

This expression becomes Equation 25.49 in the limit of small concentrations because
1172 becomes negligible compared with unity in the denominator of Equation 25.57 in
this limit.

EXAMPLE 25-12
Use Equation 25.57 to calculate In v, for 0.050 molar LiCl(aq), and compare the result
with that obtained from Equation 25.49. The accepted experimental value is —0.191.

SOLUTION: For a 1-1 salt such as LiCl, I, = ¢, 5o
Iny, = —1.173(0.050)"* = —0.262

and

1.173(0.050)**
Iy, =———————— = -0.214
e T T 005007
Although Equation 25.57 provides some improvement over the DebyeHiickel limiting
law, it is not very accurate even at ().050 molar. At 0.200 molar, Equation 25.57 gives
—0.362 for Iny_ versus the experymental value of —0.274,

Another semiempirical expression for Iny, that has been widely used to fit expet-
imental data is
1.173]z z_{({ / mol-L71y"/2
14 (1 /mol-L )"

Iny, =— + Cm (25.58)

where C is a parameter whose value depends upon the electrolyte. Although Hqua-
tion 25.58 can be used to fit experimental Iny, data up to one molar or so, C is still
strictly an adjustable parameter.

In the 1970s, significant advances were made in the theory of electrolyte solutions.
Most of the work on these theories is based on a model called the primitive model,
in which the ions are considered hard spheres with charges at their centers and the
solvent is considered a continucus medium with a uniform relative permittivity. In
spite of the obvious deficiencies of this model, it addresses the long-range coulombic
interactions between the ions and their short-range repulsion. These turn out to be
major considerations, and as we will see, the primitive model can give quite satisfactory
agreement with experimental data over a fairly large concentration range.

Problems

Most of these theories that have been developed require numerical solutions to
fairly complicated equations, but one is notable in that it provides analytic expressions
for the various thermodynamic properties of electrolyte solutions. The name of this
theory, the mean spherical approximation (MSA), derives from its original formulation,
and the theory can be viewed as a Debye~Hiickel theory in which the finite (nonzero)
size of the ions is accounted for in a fairly rigorous manner. A central result of the
mean spherical approximation is that

Iny, =y +Iny™ (25.59)

where In y{ is an electrostatic (coulombic) contribution to In y, and Iny™ is a hard-
sphere (finite-size) contribution. For solutions of 1-1 electrolytes, In y{! is given by

x(1+20072 — x — x?

In }/:E] = 4:71.'06[3

(25.60)

where p is the number density of charged particles, d is the sum of the radius of a
cation and an anion, and x = «d, where « is given by Equation 25.53. Although itis not
obvious by casnal inspection, Equation 25.59 reduces to the Debye—Hiickel limiting
law, Equation 25.49, in the limit of small concentrations (Problem 25-60). The hard
sphere contribution to Iny_ is given by '

9 3
4__2 B
Y=Y +8y

(1-3)

2
where v = mpd’ /6.

In spite of the fact that Equations 25.60 and 25.61 are somewhat lengthy, they are
easy to use because once d has been chosen, they give Iny_ in terms of the molarity c.
Figure 25.9, shows experimental values of Iny, for NaCl(aq) at 25°C and Iny, as
calculated from Equation 25.59 with d = 320 pm.

Given essentially one adjustable parameter (the sum of the ionic radii), the agree-
ment is seen to be quite good. We also show the results for the more commonly seen
Equation 25.57 in Figure 25.9.

1n 'yHS =

(25.61)

Problems
25-1. The density of a glycercl/water solution that is 40.0% glycerol by mass is 1.101 g-mL ™" at

20°C. Calculate the molality and the molarity of glycerol in the solution at 20°C. Calculate
the molality at 0°C.

25-2, Concentrated sulfuric acid is sold as a solution that is 98.0% sulfuric acid and 2.0% water
by mass. Given that the density is 1.84 g-mL ™, calculate the molarity of concentrated
suifuric acid.
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FIGURE 259

A comparison of Iny,_ from the mean spherical approximation (Equation 25.59) with
experimental data for NaCi(aq) at 25°C. The line labetled EDH is the extended Debye-Hiickel
theory result, Equation 25.57. The value of d. the sum of the radii of the cation and anton, is
taken to be 320 pm.

25-3. Concentrated phosphoric acid is sold as a solution that is 85% phosphoric acid and 15%
water by mass. Given that the molariey is 15 mol-L™', calculate the densily of concentrated
phosphoric acid.

25-4. Calculate the mole fraction of glucose in an aqueous selution that is 0.500 molal in
glucose.

25-5. Show that the relation between molarity and molality for a solution with a single solute is

(1000 mL- L. "y om
L =
1000 g-kg ' + mM,

where c is the molarity, m is the molality, p is the density of the solution in g-mL, and
M, is the molar mass (g-mol ") of the solute.

25-6. The CRC Handbook of Chemistry and Physics has tables of “concentrative properties of
aqueous solutions” for many solutions. Some entries for CsCl(s) are

A/% p/gemLt ¢/mol-L7!

1.00 1.0058 0.060
5.00 1.0374 0.308

10.00 1.0798 0.641
20.00 1.1756 1.396
40.00 1.4226 3.380

where A is the mass percent of the solute, o is the density of the solution, and ¢ is the
molarity. Using these data, calculate the molality at each concentration.

25-7. Derive a relation between the mass percentage (A) of a solute in a solution and its
molality (m). Calculate the molality of an aqueous sucrose solution that is 18% sucrose by
mass.

Problems

25-8. Derive a;relaﬁon between the mole fraction of the solvent and the molali¢y of a solution.
25-9. The volume of an aqueous sodium chloride solution at 25°C can be expressed as
v /ml = 1001.70 4 (17.298 kg-mol™"ym + (0.9777 kg*-moal *)m*
— (0.0569 kg’ -mol )’
0<m=<6 mblvkg_l

where m is the molality. Calculate the molarity of a solution that is 3.00 molal in sodium
chloride.

25-10. If x3°, m™, and c™ are the mole fraction, molality, and molarity, respectively, of a solute
at infinite dilution, show that
m= M

{ —

x:x) - =
71000 g-kg !

M,
{1000 mL-L™")p,

where M| is the molar mass (g-mol™") and o, 1s the density {g-ml. ™) of the solvent. Note
that mole fraction, molality, and molarity are all directly proportional to each other at low
concentrations.

25-11. Consider two solutions whose solute activities are @, and ¢, referred to the same
standard state. Show that the difference in the chemical potentials of these two sclutions
is independent of the standard state and depends only upon the ratio ) /a;. Now choose
one of these solutions to be at an arbitrary concentration and the other at a very dilute
concentration (essentially infinitely dilute) and argue that

f
dy  VorXy Vo VS
- e

Ho 50 0 "
ay X m C

25-12. Use Equations 25.4, 25,11, and the results of the previous two problems to show that

B (1 n mM, _ o + c[M, — M)
Vor = Yom 1000 g kg™ ) Ve o p[1000mL-L™]|

where p is the density of the solution. Thus, we see that the three different activity coefii-
cients are related to one another.

25-13. Use Equations 25.4, 25.11, and the results of Problem 25-12 to derive

_ Jo) cM,
Vo = Vau . p,[1000 mL-L '] .

Given that the density of an aqueous citric acid (M, = 192.12 g-moi’l) solution at 20°C is
given by

o/g-mL7~ = (.99823 4 (0.077102 L.mol ™ }e

0<e¢< 1,772 mol .17

plot y, /v, versus c. Up to what concentration do y, and y,_differ by 2%7
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25-14. The CRC Handbook of Chemistry and Physics gives a table of mass percent of sucrose in
an aqueous solution and its corresponding molarity at 25°C. Use these data to plot molality
versus molarity for an aqueous stcrose solution.

25-15. Using the data in Table 25.2, caleulate the activity coefficient of water (on a mole
fraction basis) at a sucrose concentration of 3.00 molal,

25-16. Using the data in Table 25.2, plot the activity coefficient of water against the mole
fraction of water.

25.17. Using the data in Table 25.2, calculate the value of ¢ at each value of m and reproduce
Figure 25.2.

25-18. Fif the data for the osmotic coefficient of sucrose in Tahle 25.2 to a 4th-degree polyno-
mial and calculate the value of v, for a 1.00-molal solution. Compare your result with the
one obtained in Example 25-5.

" 25.19, Using the data for sucrose given in Table 23.2, determine the value of n y,,, at3.00 molal
by plotting {¢ — 1)/m versus m and determining the area under the curve by numerical
integration (MathChapter G) rather than by curve fitting ¢ first. Compare your result with
the value given in Table 25.2,

25-20. Equation 25.18 can be used to determine the activity of the solvent at its freezing point.
Assuming that AC} is independent of temperature, show that

* Vis the molar enthalpy of fusion at the freezing point of the pure solvent

(¥7.) and Aaﬂ; is the difference in the molar heat capacities of liquid and solid solvent.

Using Equation 25.18, show that

— Afusﬁ(Tfﬁs) 1 AmsE(TT:S) _ AE; 92 + .-
ORMY RTLT\ T 2 |

fus

where A, _H(T;

—Ina

where 8 = Ty, — 7;l'us'
25-21. Take A,
to show that the equation for —Ina, in the previous problem becomes

—Ina, = (0.00968 K™ + (5.2 x 10K He* +---

for an aqueous solution. The freezing point depression of a 1.95-molal aqueous sucrose
solution is 4.45°C. Calculate the value of a, at this concentration. Compare your result with
the value in Table 25.2. The value you calculated in this problem is for 0°C, whereas the
value in Table 25.2 is for 25°C, but the difference is fairly small because a, does not vary
greatly with temperature (Problem 25-61).

25-22. The freezing point of a 5.0-molal agueous glycerol (1,2,3-propanetriol) solution is
—10.6°C. Calculate the activity of water at 0°C in this solution. (See Problems 25-20 and
25-21)

25-23. Show that replacing T, by 77 in the denominator of (T, — T¢,)/ T3, Ty (see Equa-
tion 25.20) gives —9 /(T3 — 02/ (T Y + - where § = Ti7 — T,

fis "

H(T:) = 6.01K)mol !, €, =75.21-K"" :mol™,and C, = 37.67-K~"-mol"’

Problems

25-24. Calculate the value of the freezing point depression constant for nitrobenzene, whose
freezing point is 5.7°C and whose molar enthalpy of fusion is 11.59 kJ-mol™".

25-25. Use ap argument similar to the one we used to derive Equations 25.22 and 25.23 to
derive Equations 25.24 and 25.25.

25-26. Calculate the boiling point elevation constant for cyclohexane given that ¥ = 354 K
and A, H = 29.97 kI-mot .

25-27. A solution containing 1.470 g of dichlorobenzene in 50.00 g of benzene boils at 30.60°C
at a pressure of 1.00 bar. The boiling point of pure benzene is 80.09°C, and the molar
enthalpy of vaperization of pure benzene is 32.0 kJ-mol™". Determine the molecular mass
of dichlorobenzene from these data.

25-28. Consider the following phase diagram for a typical pure substance. Label the region

corresponding to each phase. Nlustrate how this diagram changes for a dilute solution of a
nonvolatile solute.

1_0,‘,, S

P/ bar

Now demonstrate that the boiling point increases and the freezing point decreases as a
result of the dissclution of the solute.

25-29. A solution containing 0.80 g of a protein in 100 mL of a sclution has an osmotic pressure
of 2.06 torr at 25°C. What is the molecular mass of the protein?

25-39. Show that the osmotic pressure of an aqueous solution can be written as

RT m
H=— (ﬁ) P
v 55.506 mol kg

25-31. According to Table 25.2, the activity ot the water in a 2.00-molal sucrose solution is
0.95807. What external pressure must be applied to the solution at 25.0°C to make the
activity of the water in the solution the same as that in pure water at 25.0°C and 1 atm?
Take the density of water to be 0.997 g-mL. ™",

25-32, Show that @, = @ = m”y; for a 2-2 salt such as CuSO, and that a, = ai =27m'y}
for a 1-3 salt such as LaCl..
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25-33. Verify the following table:

Type of salt Example .
1-1 K41 m
1-2 CaCl, 3m
2-1 K,80, 3m
22 Mgs0, dm
1-3 LaCl, bm
3-1 Na,PO, om

Show that the general result for 1, is |z z_|(v, -+ v_}m/2.

25-34. Show that the inclusion of the factor v in Bquation 25.41 allows ¢ — 1 asm — 0 for
solutions of electrolytes as well as nonelectroiytes. [Hint: Realize that x, involves the total
number of moles of solute particles (see Equation 25.44)].

25-35, Use Equation 25.41 and the Gibbs—Duhem equation to derive Equation 25.42.
25-36. The osmotic coefficient of CaCl,(aq) solutions can be expresscd as

$ = 1.0000 — (1.2083 kg mol~?ym*? + (3.2215 kg-mol " )m
— (3.6991 ke*? - mol ¥m? 4 (2.3355 kg*-mol *)m’

g
— (0.67218 kg®* mol > )m*? 4 (0.069749 kg mol~)m’

0 < m < 5.00 mol-kg™:
Use this expression to calculate and plot In y, as a function of m '/,

25-37. Use Bquation 25.43 to calculate In y, for NaCl(aq) at 25°C as a function of molality
and plot it versus m /2, Compare your results with those in Table 25.4.

25-38. In Problem 25-19, you determined In y,  for sucrose by calculating the area under the
curve of ¢ — 1 versus m. When dealing with solutions of electrolytes, it is better numerically
to plot (¢ — 1)/m*/? versus m'* because of the natural dependence of ¢ on m'/. Show
that

12

m ¢_1 :
hny, =¢—14+2 Lo dm
yy=¢ -1+ J{ i

25-39. Use fhe data in Table 25.4 to calculate Iny,_ for NaCl(aq) at 25°C by plotting (¢ —
1)/m'"? against m'/* and determine the area under the curve by numerical integration
(MathChapter G). Compare your values of In y, with those you obtained in Problem 25-37

where you calculated 1n y, from a curve-fit expression of ¢ as a polynomial in mi,

Problems 1043

25-40, Don Juan Pond in the Wright Valley of Antarctica freezes at —57°C. The major solute
in the pond is CaCl,. Bstimate the concentration of CaCll, in the pond water.

25-41. A solution of mercury(Il) chloride is a poor conductor of electricity. A 40.7-g sample
of Hg(Cl, is dissolved in 100.0 g of water, and the freezing point of the solution is found to
be —2.83°C. Explain why HgCl, in solution is a poor conductor of electricity.

25-42. The freezing point of a0.25-molal aqueous solution of Mayer’s reagent, K, Hgl , is found
to be —1.41°C. Suggest a possible dissociation reaction that takes place when K,Hgl, is
dissolved in water.

25-43. Given the following freezing-point depression data, determine the number of ions
produced per formula unit when the indicated substance s dissolved in water t¢ produce a
1.00-meolal solution.

Formula AT/K

PICL-4NH, 558
PICL-3NH,  3.72
PCL-ONH,  1.86
KP(CL-NH, 372
K,PCl, 5.58

Interpret your results.

25-44. An aqueous solution of NaCl has an ionic strength of 0.315 mol-L™'. At what concen-
tration will an aqueous solution of K,S0, have the same ionic strength?

25-45. Derive the “practical” formula for x* given by Equation 25.53.

25-46. Some authors define ionic strength in terms of molality rather than molarity, i which
case )

1 & 2
‘[m = E szmf
4=

Show that this definition modifies Equation 25.53 for dilute solutions to be

2¢°N (1000 L m ™
S MR mol-ke™)
EOE}_kT "

K

where p is the density of the solvent (in g-mL ™'}
25-47. Show that
Iny, = —l.171|zt+zi|(1m/mo]-kg_l)“2

for an aqueous solution at 25°C, where / is the ionic strength expressed in terms of
molality. Take £ to be 78.54 and the density of water to be (h99707 gmlL™h

25-48. Calculate the value of In y, for a (0.010-molar NaCl{aq) solution at 25°C. The experi-
mental value is —0.103. Take & = 78.54 for H,O(1) at 25°C.
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25-49. Derive the general equation where

1 m 2C 2

_ ’ : q; ¢ q; N.

¢>—r+—[ m'diny RN /A L (N

m Jo i ) T zs ek, T ZgosrkBT v @)

0% e K

(erfr: See the derivation in Problem 25-335.) Use this result to show that Show that Equation 3 can be written as

In Yy 2

_ | d
=1+ | - Sl = ()
;' r -

for the Debye-Hiickel theory. Now show that the only solution for . (r) that is finite for large values of 7 is

In the next nine problems we will develop the Debye—Hiickel theory of ionic solutions -
and derive Equations 25.48 and 25.49. vy =23"
! I3

(5

where A is a constant. Use the fact that if the concentration is very small, then ¥, {r} is just
Coulomb’s law and so A = g, /4mwe e and

25-50. In the Debye—Hiickel theory, the ions are modeled as point ions, and the solvent is
modeled as a continuous medium (no structure) with a relative permittivity £ . Consider
an ion of type i (i = a cation or an anion) sitnated at the origin of a spherical coordinate

system. The presence of this ion at the origin will attract ons of opposite charge and repel e
ions of the same charge. Let N, (r) be the number of ions of type j (j = a cation or an : Y, (r) = 2 L (6)
anion) situated at a distance » from the central ion of type ¢ (a cation or an anion). We can TEET
o use a Boltzmann factor to say that _ Hquation 6 is a central result of the Debye—Hiickel theory. The factor of £™ modulates the
N, =N, oy kT resulting Coulembic potential, so Equation 6 is called a screened Coulombic potential.
) . . _ . _ 25-51, Use Equations 2 and 6 of the previous problem to show that the net charge in a spherical
where N,/ V is the bulk number density of j ions and w, {r) is the interaction energy shell of radius » surrounding a central ion of type i is
of an i lon with a j ion. This interaction energy will be electrostatic in origin, so let
w,(r) =g, ¥, (r), where g, is the charge on the ion of type j and 1, (r) is the electrostatic pr¥dr = p(r)dmridr = —qficzre“"’("dr
potential due to the central ion of type i. ;
A fundamental equation from physics that relates a spherically symmetric electrostatic as in Equation 25.54. Why is
potential ,(r) to a spherically symmetric charge density o, (r) is Poisson’s equation -
f P (r)dr = 4
14 (rz%) _ A0 (1) ; °
r? dr dr g,E, 25-52. Use the result of the previous problem to show that the mast probable value of r is 1 /x.
where ¢, 1s the relative permittivity of the solvent. In our case, p, {r) 1s the charge density 25-53. Show that
around the central ion. First, show that
: ; P I 304 pm
1 —g, 0, () kg T : = e T (¢/mol-L )72
p,(r) = VZ‘}';M;(”) = qucje e
i . i

where ¢ is the molarity of an aqueous solution of a 1-1 electrolyte at 25°C. Take 5 = 78.54

where C, is the bulk number density of species j (C, = N, / V). Linearize the exponential for H,001) at 25°C.

term and use the condition of electronentrality to show that 25-54. Show that

< =L 430
P =9, 2) T = = 430pm
J B

. § Tor a 0.50-melar agueous solution of a 1-1 electrolyte at 25°C. Take £, = 78.54 for H,O(])
Now substitute p. () into Poisson’s equation to get at 15°C. r

1 d /,dfy (3) : 25-55. How does the thickness of the ionic atmosphere compare for a 1-1 electrolyte and a
Fra =Ky () ' 2--2 electrolyte?

2 odr

dr
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25-56. In this problem, we will calculate the total clectrostatic energy of an e]ectrolyté solution
in the Debye-Hiickel theory. Use the equations in Problem 25-50 to show that the number
of ions of type j in a spherical shell of radii » and » 4 dr about a central ion of type i is

N, (r) g, (r)
duridr = Ce VOt g2y 2 C {1 — 2" Vdmridr (1
V J kT

E

The total Coulombic interaction between the central ion of type i and the ions of type j
in the spherical shell is N, (? e, (r)47rr2dr/ V where u, (r) = q.4, fAme e v To determine
the electrostatic mtcractlon energy of all the ions in the 5olul1cm with the ceniral on (of

type i), UBl sur N (riu, {f )/ V over all types of iens in a sphcncal shell and then mtegTate
over all sphem,al QheHc; to get

Ut = foo Z i L)uf’f w 4rridr
o S v
Cq.q, [ A,
:Zﬂj (l—w)rdr
— ge Jy kT

j 07y B

Use electronentrality to show that.

U = —q,.fczf ¥, (r)rdr
0

Now, using Equation 6 of Problem 235-50, show that the interaction of all ions with the
central ion (of type ) is given by

2.2 20 2
- g K _ q, K
U= e dr = —
]TEOEr 0 7":808;—

Now argue that the total electrostatic energy is

1 Vi Tk’
— NUS =8
2 Z o 87

Why is there a factor of 1/2 in this equation? Wouldn’t you be overcounting the energy
otherwise?

25-57. We derived an expression for I/ in the previous problem. Use the Gibbs—Helmholtz
equation for A (Problem 22-23) to show that

P
Vi, Tk
127

25-58. If we assume that the electrostatic interactions are the sole cause of the nonideality of
an electrolyte solution, then we can say that

a_ oA = RT ny?
Hi = an. - Vi
d TV

el aAd el
H =\ =k, Tiny;
I Al

Aei:W

or that

Prohlems 1047

Use the result you got for A® in the previcus problem to show that

2
Kq]

kT Iyt = T Bwee
07r

Use the formula

v lny, +v oy,
v, v

Iny, =— b TV £
* v v 8me,e kT

Use the electroneutrality condition v_g, +v_g_ = 0 to rewrite Iny, as

lnyiz

to show that

K
Iny, = —\61+G,!W
in agreement with Equation 25.49.
25-59. Derive Equation 25.56 from Equation 25.49.
25-60. Show that Equation 25.59 reduces to Equation 25.49 for small concentrations.

25-61. In this prohlem, we will investigate the temperature dependence of activities. Starting
with the equation 4, = x) + RT lna,, show that

dlna, H —H,
or Jp, - RT?
where ET is the molar enthalpy of the pure solvent {at one bar) and ﬁ] is its partial molar

enthalpy in the solution. The difference between -I:]—T and H] is small for dilute solutions, -+
so a, is fairly independent of temperatuse.

 25-62. Henry’s law says that the pressure of a gag in equilibeinm with a nonelectrolyte solution

of the gas in a liquid is proportional to the molality of the gas in the solution for sufficiently
dilute solutions. What form do you think Henry’s law takes on for a gas such as HCI(g)
dissolved in water? Use the following data for HCl(g) at 25°C to test your prediction,

P /107" bar  my, /107 mol-kg™!
0.147 1.81
0.238 2.32
0.443 3.19
0.663 3.93
0.851 4.47
1.08 5.06
1.62 6.25
1.93 6.84
2.08 7.12




