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: dx .
a. x(t) = ¢, coswt + ¢, sinwt P Ts) sinwt + wc, Cos wt
0 = ¢,(1) + ¢,(0) v, =0+ wc,
Y%
0= C3 ; = C4

. R . Yo .
The solution to the differential equation under these conditions is x{(z) = —2 sin wt.
1)

. X .
b. x(1) = cyeos ot e sinwt - = ey sinwt + we, cos ot
A = ¢ (1) +¢,(0) v, =0+ wc,
v
A=c L=
3 ® 4

- . Yy .
The solution to the differential equation under these conditions is x(¢) = A cosw? + — sin wt.
w

Both of these solutions can be written in the form x(¢) = A coswt + B sin wt, which (as shown in
Problem 2-3) oscillates with frequency w/2sr.

2-5. The general solution to the differential equation

2
‘:l—tf +aotx() =0

is
x(t) = c, coswt + ¢, sinwt
For convenience, we often write this solution in the equivalent forms
x(t) = Asin(wt + ¢)
or
x(t) = Bcos(wt + )

Show that all three of these expressions for x(¢) are equivalent. Derive equations for A and ¢ in
terms of ¢, and c,, and for B and ¥ in terms of ¢, and c¢,. Show that all three forms of x(¢) oscillate
with frequency w/2x. Hint: Use the trigonometric identities

sin(a + B) = sina cos B -+ cosa sin B
and

cos{a + B) = coswcos B — sina sin B

x(t) = Asin(wt + ¢)
= Asinwt cos ¢ + A coswt sing

= ¢, coswt + ¢, sinwt
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where we define ¢, = Asin¢g and c, = A cos ¢. These equations can be solved for A and ¢ in terms

of ¢, and c,:
¢l + ¢ = A’(sin’ ¢ + cos® §)
A= (Cf +C§)l/2
c c
¢ = sin™’ 2 =tan™! 2
(@ +)" 2
Likewise,
x(t) = Bcos(wt + ¢)
= Bcoswtcosy — Bsinwt sinyr
= ¢, COswt + ¢, Sin wf
where we define ¢, = Bcosy and ¢, = — B sin . Solving for B and ¢ in terms of ¢, and c, gives

¢ +¢; = B*(cos® ¢ + sin® /)
B=(c+ c§)”2
1 C2

1 _f:..l_ =tan —=
(ct+e3)"” 2
Because ¢ and y are constants, x(¢) = A sin(wt + ¢) and x(¢) = B cos(wt + ¢) oscillate with

a frequency of v = w/2m. We showed in Problem 2-3 that x(z) == A coswt + B sin et oscillates
with the frequency w/2m.

¥ = cos”

2-6. In all the differential equations we have discussed so far, the values of the exponents « that we
have found have been either real or purely imaginary. Let us consider a case in which « turns out to
be complex. Consider the equation

d’y _dy

—S +2—=+10y=0

dx* + dx + 10y
If we substitute y(x) = ¢ into this equation, we find that & + 2 + 10 = Q or that @ = —1 =+ 3i.
The general solution is

e (=130 (-1-3i)x
y(x) =ce +c,e

=c e e + ce e

Show that y(x) can be written in the equivalent form
y(x) = e, coé 3x + ¢, sin3x)

Thus we see that complex values of the a’s lead to trigonometric solutions modulated by an
exponential factor. Solve the following equations. '

a. %—FZ%-{-Z)I:O

b. %—~6j—i+2§y=0

c. %+2ﬁj—i+(ﬁz+w2)y:0

d. %+4%+5y:0 y(0) =1; %(atx:O)-—:—3
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where we have used the subscripts on E to denote explicitly the dependence of the energy on the
valuesof n_andn,.

2_14. Extend Problems 2-9 and 2-13 to three dimensions, where a particle is constrained to move
freely throughout a rectangular box of sides a, b, and ¢. The Schrodinger equation for this system is

8” 9* 9° 87’mE
AN O
ox ay 0z h

)llf(x,y,Z)=0

and the boundary conditions are that ¥ (x, v, z) vanishes over all the surfaces of the box.

As in Problem 2-13, we can separate the variables to produce three differential equations, one for
each dimension:

X  8n'mE

o AP
Y  8x'mE
—S+——Y=¢
ay* * h? 1
3z  8n’mE 5
2t O

where p* + g% + r? = 8n*mE/ h®. Following the method described in Problem 2—13, we find

n 1, 2,3, ...

n_mwx nmwy n
¥(x,y,z) = Asin —— sin ’b sin 2 n,=123 ..
a , ¢ n, 1, 2,3

and

27,2 27,2 232
~‘nxh nyh n°h

nayt, T 8ma®  8mbt 8mc?

2-15. Show that Equations 2.46 and 2.48 are equivalent. How are G, and ¢, . in Equation 2.48 related
to the quantities in Equation 2.467

T =G, cos(w, t + ¢,.) (2.48)
Using the trigonometric identities from Problem 2-5, we write this as

T @) =G, [cos(w,,1) cos ¢, — sin(w,,1) sin ¢,,.]
=G, cos(w,, )cosd,, — G sin(w, 1)sing,,

=E, cosw, !+ F, sinw, 1 (2.46)

where Geos¢, = E, and —Gsing,, = F, .

Many problems in classical mechanics can be reduced to the problem of solving a differential
equation with constant coefficients (cf. Problem 2-7). The basic starting point is Newton’s second
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law, which says that the rate of change of momentum is equal to the force acting on a body.
Momentum p equals mv, and so if the mass is constant, then in one dimension we have

dp dv d*x 7

—_—_— M= =

dt dt dt*
If we are given the force as a function of x, then this equation is a differential equation for
x(¢), which is called the trajectory of the particle. Going back to the simple harmonic oscillator
discussed in Problem 27, if we let x be the displacement of the mass from its equilibrium position,
then Hooke’s law says that f(x) = —kx, and the differential equation corresponding to Newton’s
second law is

d’x
E{ +kx(t) =0

a differential equation that we have seen several times.

2-16. Consider a body falling freely from a height x, according to Figure 2.9a. If we neglect air
resistance or viscous drag, the only force acting upon the body is the gravitational force mg. Using
the coordinates in Figure 2.9a, mg acts in the same direction as x and so the differential equation
corresponding to Newton’s second law is

d*x
mgE =

Show that
1 2
x(t) = zgt + vyt + x4
where x,, and v, are the initial values of x and v. According to Figure 2.9a, x, = 0 and so
1 2
x(t) = Egt + vyt

If the particle is just dropped, then v, = 0 and so

1
= — t2
x(t) =38

Discuss this solution. Now do the same problem using Figure 2.9b as the definition of the various
quantities involved, and show that although the equations may look different from those above,
they say exactly the same thing because the picture we draw to define the direction of x, v,, and mg
does not affect the falling body.

(a) (b)

FIGURE 2.9
(a) A coordinate system for a body falling from a height x,, and (b) a different coordinate system for a body falling
from a height x,.
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We solve the equation (written using the coordinates in Figure 2.9a)

d*x
e ="
by integrating twice to obtain
tZ
= -g-z"— +ct + k

Atr=0,x =0,andsok = 0. Likewise, at t = 0, dx/dt = vy, and s0 ¢ = v Thus, we obtain the
result

1
x(t) = Egt2 + vyt (H

When v, = 0, we have x(¢) = % gtz, which is a formula for the acceleration of a falling body
from rest; the distance x(¢) increases quadratically with time. Newton’s equation in the coordinate
system of Figure 2.9b is

d*x
mogE = T

whose general solution is
x(t) =at* + bt +c¢

The particle is falling from an initial height of x,, s0 x(0) = x,. Also dx/dt = —v, initially, and so

2

x(f) = —%wvot-i—xo 2

Both Equations 1 and 2 say the very same thing. For example, to find the time that it takes for the
mass to strike the ground, let x{r) = x, in Equation 1 and x(¢) = 0 in Equation 2 to obtain

1,
Egt + vt = x,

in each case.

2-17. Derive an equation for the maximum height a body will reach if it is shot straight upward with
a velocity v,. Refer to Figure 2.9b but realize that in this case v, points upward. How long will it
take for the body to return to its initial position, x = 0?

Using the coordinate system of Figure 2.9b and Equation 2 derived in Problem 2-16 (with v, = —v,
and x(0) = 0), we find that

x(t) = —gt* + vt

and

dx
I = —gt + v,

To determine how long it will take for the body to return to earth, we first calculate how long

it will take the body to reach its maximum height. At its maximum height, the velocity is zero
(dx/dt = 0). Therefore the time needed to reach the maximum height, ¢__, is given by

0 = _gtmax + vO
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or

<

-0
g

t
max
The maximum height that the mass will attain is x(f,,,.) = v;/2g. From the instant the body is shot,
it will take 2¢__ (or 2v,/g) to return to earth because it takes the same amount of time for the body

max

to return from its maximum height as it takes the body to reach that height.

2-18. Consider a simple pendulum as shown in Figure 2.10. We let the length of the pendulum be /
and assume that all the mass of the pendulum is concentrated at its end as shown in Figure 2.10. A
physical example of this case might be a mass suspended by a string. We assume that the motion
of the pendulum is set up such that it oscillates within a plane so that we have a problem in plane
polar coordinates. Let the distance along the arc in the figure describe the motion of the pendulum,
so that its momentum is mds/dt = mld6/dt and its rate of change of momentum is mld*6/dr*.
Show that the component of force in the direction of motion is —~mg sin @, where the minus sign
occurs because the direction of this force is opposite to that of the angle 8. Show that the equation
of motion is

ldze = sin 0
m 9}7 = —mg sin
Now assume that the motion takes place only through very small angles and show that the motion
becomes that of a simple harmonic oscillator. What is the natural frequency of this harmonic
oscillator? Hint: Use the fact that sin 8 ~ 6 for small values of 6.

FIGURE 2.10
The coordinate system describing an oscillating pendulum.

The component of the force mg along the arc in Figure 2-10 is mg sin @, but in a direction opposite
to the motion. Newton’s law states that the change in momentum is equal to the forces acting on the
body. Therefore

d*s .
m:i“ti = —mgsind
Since s = 16,
d*
mlzt—f = —mg sinf

For small angles, sinf = 6 and (a) becomes

A PR
dit 1
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The general solution to this equation is (Example 2—4)

x(t) =c, cos t\/% + ¢, sin t\/g

The natural frequency of the pendulum is (g/)".

2-19. Consider the motion of a pendulum like that in Problem 2-18 but swinging in a viscous medium.
Suppose that the viscous force is proportional to but oppositely directed to its velocity; that is,

ds do
) = A= = —Al—
fV]SCOllS dt dt

where A is a viscous drag coefficient. Show that for small angles, Newton’s equation is

2 + Al o +mgé =0
il 4 mel =
dr’ dt &

Show that there is no harmonic motion if

ml

dm’g
[

Does it'make physical sense that the medium can be so viscous that the pendulum undergoes no
harmonic motion?

A2 >

Now we have both the force of gravity and the viscous force acting on the system, so, again by
Newton’s Law,
d’e do

d*e . do
mlF + mg sin@ +ME =0

For small angles siné = §, so

0 Ade g
AT ¥\
o T @)

Substituting 9(¢) = ¢* into (a) and dividing through by 6(¢) gives

A
@+ e+ E=0
m l

Solving for « gives
172
2 _ % 1/2
G RN,
A 7 | — - 5
4m l
and so the solution to the differential equation is (Problem 2-6)

0(t) = e (c ¥ + c,e™)
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2 12

where 8 = i £ LK A < 4m*g/l, then B is imaginary and the motion is harmonic.
m

However, if A> > 4m®g/1, then B is real and there is no harmonic motion. The viscosity is so large
that the pendulum simply approaches its vertical position without oscillating.

2-20. Consider two pendulums of equal lengths and masses that are connected by a spring that obeys
Hooke’s law (Problem 2-7). This system is shown in Figure 2.11. Assuming that the motion takes
place in a plane and that the angular displacement of each pendulum from the vertical is small,
show that the equations of motion for this system are

d*x :

m—g = —mwix — k(x — y)
d*y

m—mdt2 = —mawly — k(y — x)

where w, is the natural vibrational frequency of each isolated pendulum, [i.e., w, = (g/1)"/*] and k
is the force constant of the connecting spring. In order to solve these two simultaneous differential
equations, assume that the two pendulums swing harmonically and so try

x(t) = Ae' y(t) = Be'*

Substitute these expressions into the two differential equations and obtain

k k
<w2mw§——)A=—mB
m m

k k
(wzwa)g‘w—)B=——A
m

m

Now we have two simultaneous linear homogeneous algebraic equations for the two amplitudes
A and B. We shall learn in MathChapter E that the determinant of the coefficients must vanish in
order for there to be a nontrivial solution. Show that this condition gives

(#-ai-3) =(5)

Now show that there are two natural frequencies for this system, namely,

2k
ol =w} and )=} + =
m

Interpret the motion associated with these frequencies by substituting ] and « back into the two
equations for A and B. The motion associated with these values of A and B are called normal
modes and any complicated, general motion of this system can be written as a linear combination
of these normal modes. Notice that there are two coordinates (x and y) in this problem and two

FIGURE 2.11
Two pendulums coupled by a spring that obeys Hooke’s law.
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