CHAPTER 4

Some Postulates and General Principles
of Quantum Mechanics

PROBLEMS AND SOLUTIONS

4-1. Which of the following candidates for wave functions are normalizable over the indicated

intervals?
a. e " (=00, %0) b. e (0, 0) c. €9 (0,2m)
d. sinhx (0, 00) e. xe™ (0,00)

Normalize those that can be normalized. Are the others suitable wave functions?

Only the functions given by (a), (¢), and (e) can be normalized. The functions given by (b) and (d)
diverge as x —> 00. If a function cannot be normalized, it is not a suitable wave function. Therefore
(b) and (d) are not suitable wave functions. We now normalize the functions given by (a), (c),

and (e). .
a. A? f e dx =1
e 1/%
242 | ePdx = 242 5) =1
/0 e X (4
()
A==
i

—X

. z . .
recalling that ¢™ is an even function.

2T
C. AZ[ e-—i&‘eiﬁ'dg = 1
¢

2n
Azf df = A’(2m) =1
0

1\ 2
A= (5)
2

4-2. Which of the following wave functions are normalized over the indicated two-dimensional
intervals?
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o~ D<x <o b, oG0P O<x<oo
0<y<oo d<y<co

aN"?  mx , wmy 0O<x<a
C. ;I—b“ Sln—a-Slﬂ b Osyfb

Normalize those that aren’t.

[ea] o0
a f dxf dye & =
0 0

a.

[o+]

S—

2 e 2
dxe™ [ dye™
0

) (@)

il
IO
! B

2
Therefore, to normalize the function, it must be multiplied by -ﬁ

o o3 sl x>
b. f dxf dye “t =f dxe""f dve™ =1
) 0 0 0

This function is normalized.

. 4 ¢ nx (" Ty 4 ay {b
C. — int == dv si 2L = — — -1 =1
(ab)fﬂ dxsin” 2 [0 YT (ab) (2) (2)

This function is normalized.

4-3. Why does ¥"y have to be everywhere real, nonnegative, finite, and of definite value?

This is required if ¥y is to be a measure of probability.

4-4. In this problem, we will prove that the form of the Schrédinger equation imposes the condition
that the first derivative of a wave function be continuous. The Schrédinger equation is
d*  2m
— 3+ E- V@) =
If we integrate both sides from a — € to a + ¢, where a is an arbitrary value of x and € is
infinitesimally small, then we have

dir
dx

H+e

[V(x) — E]y(x)dx

Zm
:?

_dy
dx

Xe=gi € =€

Now show that dvr/dx is continnous if V(x) is continuous.
Suppose now that V (x) is not continnous at x = a, as in

.,

r
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!
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Show that

dy

dy
dx

dx

2m
= ﬁ_zm + V. —2El(a)e

Xzgr4€ X —e

so that dyr/dx is continuous even if V{x) has a finite discontinuity. What if V(x) has an infinite
discontinuity, as in the problem of a particle in a box? Are the first derivatives of the wave functions
continuous at the boundaries of the box?

We start with

2’” fite

=5 (V(x) — Elg(x)dx (1)

X=0—€

4
dx

_ay
dx

x=da+e

Because V{x) is continuous, lim
S0

Via+ ) = V(a). We already know that ¢ (x) is continuous,

&)

a-+e

. 2m et 2in .
]ll‘l‘(l) h_2/ [V(x) - ElWr(x)dx = »};2— [V{a) — E]¥r{a) lgigf dx =0 (2)

[had 3
) - O
Xm={f—€

and therefore, dir/dx is continuous. Now suppose that V(x) has a finite discontinuity at x = a. We
divide the integral info two parts, ¢ —e¢toeandatoa + €:

2m
hz

Combining Equations 1 and 2 shows that

lim (dw

€0 dx

dyr
dx

x=iité

2 a ate
[ [V(x) - E}Y(x)dx = hm [[ [Vi(x) — El¢(x)dx +f {V,(x)— E]tlf(x)dx]

u—c o

2m

== {[v,(a)-E]w(a)f dx+[vr(a)—5]w(a)/ dx]

2m
=7 [Vi(a) + V.(a) — 2E] ¥(a)e

Because lzm [V(a) + Via) - 2E] Yr{a)e = 0, dyr/dx remains continuous even though V(x) hasa
finite discontmmty H V(x) has an infinite discontinuity at an arbitrary pomt a, however, we cannot
approach a from one side and therefore cannot integrate the exprcssmn = ;_T{ Vi{x) — ElW(x)dx.

This implies that d1/d x is no longer a continuous function at a. For this reason, the first derivatives
of the wave functions of a particle in a box are not continuous at (and only at} the boundaries of the
box.

4-5. Determine whether the following functions are acceptable or not as state functions over the
indicated intervals.

a. L ©, 00) b. e sinhx (0, c0)
x

c. e *cosx (0, 00) d. ¢ {—00,00)

Unacceptable because it cannot be normalized.
Acceptable.
Acceptable.

ap T

Unacceptable because it cannot be normalized.
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4—6. Calculate the values of crE (E*) — (E)? for a particle in a box in the state described by

12
Prix) = (gg()) xXa — x)* 0<x<a
a -

Using Postulate 4, (E) is given by

= / ’ W (x) Hyr(x)dx (4.11)

0
and {E?) is given by
w%=£%mw#wmm
We are interested in o for the state described by
wmm=wuo:(%?yﬂﬁm—xf

To evaluate {E) and (E£%), we will need to know the first four derivatives of . These are given by

1/2
dy (%) (630) [2x(a e x)? = 2xHa — x)]

dx

2 /2
d W(Zx) = (630) 2(a — x) — 4x(a ~ x) - 4x(a — x) + 2x*]
dx a
= (615?) (2a® — 12ax + 12x7)
a
dy(x) (630
pro (_;3,,) {~—12a + 24x)
d'y(x) g@)
= () e

Using these results,

2 2
fw<)(fdwuﬂm
H1

= f (630) x*a — x) (24> — 12ax + 12x%) dx
a

2m
z d
Zma’ Sy
h2 a a o
_ _630 i [f 205 (a — x)2dx _jr[ ~12ax*(a - x)*dx +/ 12x4(a—x)2dx]
2ma’ | Jo 0 0
or '
6h*
g = I _ M
ma
We used the general integral
1 min!
me L P — 2
];x( = D @
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to evaluate the integrals in the last step to obtain Equation 1. We now evaluate {E*), which is given
by

w%=[ﬁwwﬁWuwx
1]

Suhbstituting in the appropriate quantities gives

B d)
(B = fw(%wzdj)ﬂ

E f 2 and
= 4m2a9 A xXa X X
or
126n*
(EY) = g 5 (3)

Using Equations | and 3 gives

126R" 36R° _ Q0"
miat  mPat T mid

op = (E%) —(E)* =

4-7. Consider a free particle constrained to move over the rectangular region 0 < x < a,
0 = y < b. The energy eigenfunctions of this sysiem are

aN"?  nwx  nmy
v,y =|—]} sin-f—sin-?
2y ab b

==
-
Il
et
B 1
LI

l

a

The Hamiltonian operator for this system is

A A
H=r—|—+—
2m (aﬁ + ay"*)
Show that if the system is in one of its eigenstates, then

or = (EN—(E)=0

If the system is in one of its eigenstates, then

Hwn!nv = En)_n‘_ 1'b'r:xnv
72 __ g2
H 1’y‘nxnv - Er.:xnvwnlnv

ff%m Vo= | [ VinEn b
ffm"mn—%u

(E?) = ff¢ Ay, , = ffW:" Vs,
=ﬁﬁffﬁm%«=%w

Therefore,
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4--8. The momentum operator in two dimensions is
b i (i 450
= 1— [
! dx ] ay
Using the wave function given in Problem 4-7, calculate the value of {p) and then
o, ={p") — (p

- 2 - .
Compare your result with o in the one-dimensional case.

We find
u b . . P . a
:f dxf dyi,n'f:n(x,y) —ih i +,;8— wnxny(x,y)
Rty ki nax , #HAEY nmw n X
4;71]‘ dx/ dysm ~ sin )b (1%(:05 — sin )b -H’Tsm _— cos

/dxf dyvr , (x. y)[ ﬁz( +3y2):| Voo, (2 9)
2 z nwx . BTY
4h / dxf dysin i sin (" )sin £ sin .
a a a b
W w2\ (e
:n—zhz(ﬂi bz iy _2+b2

hZ 2 ”2'
o= (Pt -1 =N =7 ( + b’z)

This is an extension of the result in the one-dimensional case (Problem 3-25).

n.my

4-9. Suppose that a particle in a two-dimensional box (cf. Problem 4-7) is in the state

Yix, y) = a—x)yb—y)

30
@) x(
Show that i (x, y) is normalized, and then calculate the value of (E) associated with the state
described by ¥ (x, ¥).

First, we show that ¢ (x, ) is normalized.

¢ h 900 a ) R kB 5 N
/ dxf dyw*w=ﬁf dx x*{a — x) f dy y*(b—y)
0 0 ab’ Jy 0
900 [ (2)(2a¥) 7T (2)(26%)
a’h’ [ 5! 5!
=1

)
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We used Equation 2 of Problem 4-6 to evaluate the integrals over dx and dy. To find (E), we
evaluate

900 [~ b
<E>=ﬁf dxf dy x(a— x)y(b — y)
a’b’ Jy 0

d? d? 2 ,
[-— (dx + d——yz) (ax — x")(by —y )]
900%H2

- —[ dxf dy x(a — )y = y) [y® ~ ) + x(a ~ 0]

ma’b’

2
= =0 U dxf dy x(a—x)y’(b - y) +fdxf e =y y)]

ma’h’

e |(5) () (5) (5]

4-10. Show that
Yolx) = e
¥, (x) = (4/m) V" xe™
¥y () = (@) A 2x? - e

are orthonormal over the interval —o0 < x < 00.

All of the functions are real, so ¥*(x) = ¥ (x). We want to show that

f YOV, (0dx =3,

oo 2 forel e
./th’fg(X)dx W/(; e dx =1
[my’fz(x}dx i/m 2o gy =1
oo 1 Jt”l o
o ] fo's) »
j:mﬁ(x)dx:mzn]/zfo (2x* — 1)’ dx
1 33.[1/2 Tl T2
- () (7))
) 5 /2 poo .
IRCSICE (;) [ xetax=o
o0 1 oQ mx: o0 ﬁxl
[mWU(x)wi(x)z—(zn)‘/l Umzxze dx—[me a’x]

I
=g ) =0

o0 1 oo s
[ V@Y, = f #2a? = De =0

el

The last integral is easy to evaluate because the integrand is an odd function and the integral is over
a symmetric interval.
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4-11. Show that the polynomials
P(x) =1, P(x)==x, and P(x)=1iGx>-1)

satisfy the orthogonality relation

flP()P()d -
| (XY P (x x—21+1

where §,, is the Kroenecker delta (Equation 4.30).

Again, all the functions are real, so Pi(x) = P,(x).

1 1
/ Pi(x)dx =/ dx=2
-1 -1
1 1 2
f Pl(x)dx = f xidx = =
1 1 3

! 1! 2
f Pix)dx = = f Ox* —6x* + Ddx = =
o 2 ) 5

1 1
[ P(x) P (x)dx = ] xdx =0
- -

1

1 1
f P (x)Py(x)dx = f (B3x" = Ddx =0

1 0

1 1 1
/ P (x)P,(x)dx = 3 (3x* — x)dx =0
-1 -1

4-12. Show that the set of functions (2/a)'?cos(nmwx/a), n = 0,1, 2, ... is orthonormal over the
interval 0 < x < a.

Because the functions are real, ¥, (x) = v _(x).

“ 2 [ nITx miwx
/ ¥ (x)¥, (x)dx = —f COS cos dx
0 0

a a a
=38

nm

This integral was solved explicitly in Problem 3-18.

4-13. Prove thatif § , is the Kroenecker delta

then

and
Y > abs. = ab,

These results will be used later.
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o0
The sum Z ¢,d,, = c,, because every term is equal to zero except for those where n = m. Now

n=1
Z ab s = Zan ( bmam) = Zanbn

where we used the first result to evaluate Z b é .

4-14, Determine whether or not the following pairs of operators commute.

A B
d d* d
(2) 2; B—;—g 4 22}*-
d
b all
®) x dx
(c) SQR SQRT
d d?
d 1 —
@ dx dx*

cod (&f _df\ &f _df

a. ABp=2 (4L 2y _2J 0T
f dx (.:i’x2 * dx) dx*  dx*

- & dNdf d&f _d&f

BAf=| - +2— | = — 42—

f (dx2 dx) dx  dx’ dx*

ABf=BAf

This pair of operators commules.

non df

b 'k
ABf =x--
~ n _i . df
BAf = —(f)=f+x-
ABf +#BAf

This pair of operators does not commute.
. ABf =[SQRI(NP = (£ = 1
BAf =SQRT(f}==f
ABf #BAf

This pair of operators does not commute.

. d 2 3
d ABf=x*— (%) _»dL
dx \dx dx
s & df LrLfdf
BAf = — 2 = 2. 4x —— jp i
/ dx? (x dx) e + Y ax t o

ABf < BAF

This pair of operators does not commute.
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4-15. In ordinary algebra, (P + O)}{(P ~ ) = P> — (% Expand (P + OXP -~ (). Under what
conditions do we find the same result as in the case of ordinary algebra?

(B4 0P - Q)= P = G4 0P~ PO =P - 0+ [0, P]

In order for this result to equal the result found in ordinary algebra, P and O must commute.

4-16. Evaluate the commutator [/9:, B, where A and B are given below.

A B
dz
(@) s X
d d
(b) d—x—x E;+x
* d
d il
©) ]{; x Tx
d < d e
() dx® * dx x
& df  df
a Aszdz(xf)—ZE-im —
o - d*f
BAf”‘xEC—E

- d df df

b S ol A R e
ABS = (dx x) (dx —i—xf) dx* +/ /
A d d a*f )
BAf:(E x)(é_ f)m—”f"”f“x

(A, B1=2
B 4f -
c. ABf—[d dx = flx) ~ f(0)

~ d
BAf == ftif@)—f&)

A, BIf =—f(©0)
o d* df df df df
d. N = 2 il w —
ABf_(dx2 x)(dx-i-xf) d3+ 1 +3d +Q2=-xNF

o Z 3 2 d
BAfu(i-{-x)(%— f) Z{~I~x %xiwxd—f—(1+ ) f

~ A d
{A, Bl =4x— +3
dx
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4-17. Referring to Table 4.1 for the operator expressions for angular momentum, show that

[L,L)= ihf,z

and
(L,L1=inl

(Do you see a pattern here to help remember these commutation relations?) What do these
expressions say about the ability to measure the components of angular momentum simultaneously?

N P A | T
£ = [ (g )| [ (s —0)

_ ﬁz( af 82f *f 32f ' f
= — + ¥ —X¥ 3 X2 —
ax 8 ax 8z* 8x8y dydz

co o [ L8 8 o Of _ of
i = [ (s - )| |- 0545

atf & f *f  af a* f
52 B L =
( axdz dxdy i Z gy e )

.. I 5
[L,L]: i y— = x| = ih | =ik (X — y—
x? Hy ax dy ay ax

=ihl

z

e
™M

In the same way, we can show {L L J= zhL and [L L = LhL The pattern involves the

cyclic permutation of x, y, and z. Smce no combma’tion of the operators L L ,and L commutes,
it is not possible to simultaneously measure any two of the three compn)nents of angular momentum
to arbitrary precision (as discussed in Section 4-6).

4-18, Defining
PP=i2+ P24 12

show that L commutes with each component separately. What does this result tell you about the
ability to measure the square of the total angular momentum and its components simultaneously?

P2 -0

717 I 12 __f1271 For T T
p2r, - L0 =020, - (L,L,+inl) L,
P21, - 1,02 =120, - (L1, -inl,) L,
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In a similar way, we can show that 1? commutes with iy and f,z. This result tells us that we can 5{: b. TP v =x(—in %
simultaneously measure the square of the total angular momentum and any of its components to : =0 ax
arbitrary precision (as discussed in Section 4~6). : AN honx nwx | nay
= —ih| — T — cos —— sin
ab a a b
4-19. In Chapter 6 we will use the operators ' o 5 4\ 12 0T
P P PR = —ih— (x (—b) sin 2 sin = i
L,=1L +il, | FAN ¢
: (AN nmx  nmmY amx  nmx BT
and : =—ih| — sin sin + cos sin
: ab a b a a b
ﬁ_:f, —il AN n mx . Tx nay
x y = —ihyr — ih pry £ — cos ——-'sin ;
: 1] [4 a
Show that 'zf o s U
C (%, B]=%B - PR =in
L L_=L"—L +hL,
{L, L I=nhL,
and that C. YPhw=y i
. . ’ dy
(L, L.]=-hL_ . 4 " nmy i ATE n iy
N ab b a b
N T Y T T eSS N . 0 4N mogx  nwy
L i = (Lx +:Ly) (Lx - zLy) =2 4il B, il L+ 1 __ Piy =it (y (EE) sin 2% i 27
o Fr o F2F F1—fro gz ) 2 -
=Lt by il Ll= Lot Ly hl, = L= Lo nt, . 'h(4)1/2 (si RIE T T T nyﬂy)
- - R . : —ih| — n sin sin cos
where we used the fact that L2 + L} = L* — L. ab b b a b
PR - PO PN ~ n 4 Vznyﬂy n.mIx n,ry
[Lz, L+] =L i +il L ~LL ~ill, = —ihy —ik| — )~ sin———cos =
(L, Ly+ill, L=l +nl, [7.8] =178 p¥=in
=hnl,
[I:z, IZ_] — (L. L1—ifl,L)=ini, —nL,
R o n 3
= —nl d VP =y (——ih—w)
- dx
— A - _if 4\'"? B Ty n.aTx nay
4-20. Consider a particle in a two-dimensional box. Determine [X, Py], (X, P11V, y}, and [¥, P ] =t ab a cos a Sm b
. 3 AN nmx  mmy
From Equation 3.56, we have P Yy = —lha ()’ (EE) st —— sin b
12 12
nax Ay 4 n Ty nITX oy
— x — —ih| — X X ¥
Yr(x, v) ( b) sin B sin 5 [ (ab) . €OSs , sin 5
. Y n o . n oa
a XPydf:x ‘“‘lha_ [Y’ Px]zYPx_PxYZO
¥
AN omx noT
= —ih (“};) yb sin 2227 cos yb Y
“ 2 “ 4-21. Can the position and total angular momentum of any electron be measured simultaneously to
A o 4 B g . T,
PRy =—int <= sin nax sip 2 y arbitrary precision’
¥ ay ab a b ;
4N\ n mwx n.w
=—ih —) 77 gin T o5 2 >
ab b a b
[X, Py] —XB -PX=0
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Yes. The position and total angular momentum operators are vector operators given by R =
ix + jy + kZ and L= 1L -+ ]L -+ kL We are interested in whether R and L commute.
[R, L] = [i£ + 5 + k,iL, +jL, + kL]
=% L1+05. L1+1z L]
=0
where we have used the fact thati-i=j-j=k-k=1andi-j=j k =k i=0 (MathChap-

ter C). Therefore, the position and total angular momentum of any electron can be measured
simultaneously to arbitrary precision.

4-22. Can the angular momentum and kinetic energy of a particle be measured simultaneously to
arbitrary precision?

Yes. The proof is similar to that in Problem 4-21.

K. L1=[K,LI+IK,L]1+I[K, L]
= {}

We see from this that the kinetic energy and angular momentum of the electron can be simultaneously
measured to arbitrary precision.

4-23. Using the result of Problem 4-20, what are the “uncertainty relationships” AxAp and AyAp,
equal to?

]

Because [ X, 13):] and [ ¥, ﬁx] are both equal to zero (Problem 4-20), the “uncertainty relationships’
are AxAp, == AyAp_= 0. This means that the quantities x, p,and y, p can be measured
simuktaneously to arbitrary precision.

4--24. We can define functions qf operators through their Taylor series (MathChapter I). For example,
we define the operator exp (3} by

s (S
eS:Z n!

n=0

Under what conditions does the equality

[ mee
hold?
Let { be the identity operator. Then
s s o oA (A+B)Y
e =T+ A+ B+ Ew—"g—)w-+0[(A+B)]
. . . A B* AB BA
=/4+A+B+—+—+—+— A+ B
2+2+2+2+0[(+)]

Some Postulates and General Principles of Quantum Mechanics
|l 5 B .
+ 0@ [T+ B+ = + 0B

These two expressions are equivalent only if [,51, l§] = 0); in other words, only if A and B commute.

4-25. In this chapter, we learned that if ¥ is an eigenfunction of the time-independent Schrdinger
equation, then

W (x,1) = ¥, (x)e B
Show that if ¥ and v are both stationary states of H, then the state
\'I"(xa I) - lelfm(x)e“‘Em’/" + Cri U’f,, (x)e—iEnI/fl

satisfies the time-dependent Schridinger equation.

Postulate 5 gives the time-dependent Schridinger equation as
AW {x, 1)
at

We will substitute W into each side of this equation separately to show that the equivalence holds.
The left side becomes

HW(x,1) = ih

3 5 —iE, t/h ~i E 1
HY = H[c, ¥, e 5 +c e B
~{E _t/h —iE
=E c Ve %" + Ec e’

and the right side is

oW —iE iE,
ih— = ih( me o e Ealf - —Lg o 7P 'n)

— CmEm‘l/’fm —iE tfh +C E ’\ID' ew:fz t/h

4-26. Starting with
{x) = [ U x, NxW(x, t)dx

and the time-dependent Schridinger equation, show that

d [ A -
c(;) =f\D*%(Hx—xH)\L’dx
Given that
. T
H= e } V
2md 3+ V)
show that




938

Chapter 4

Finally, substitute this result into the equation for d (x) /df to show that

dix)
mgr =

Interpret this result.

{(x) =[lll*x\1-'dx

d ay* o
(x) =f—x@dx+[¢*xa—dx

dr ar ot
Using Postulate 5 to express 8W¥/dr, we can wrile
dix) | _ 1 f(ﬁ\y)*xwx +1 / W x(HW)dx
dt ih ik

Because H is Hermitian, this is equivalent to

di{x) 1 - i A
Y W Axdx+ — | o
o 7 xWdx + ™ [ x(HW)dx
= %f\l’*(ﬁx — xFWdx (1

Now, using the given expression for H, we find that

. . _ Z 2 _hl dlf
Hx—xH)f=|——+V o x| e =L
(Hx —xH)f [Zm dx2+ (x)]xf x[zm dx2+v(x)f]
—hx d*f  -2n* df +h*x dEf
= _— = _—_ V —_—
v d = am dx T VW g TRV,
. . =R d AP .
— I —— = e —P
(Hx —xH) m dx m h *
—ih -
=—F (2)

m X

Substituting Equation 2 into Equation 1 gives

d{x) 4
" =kl

which is the quantum mechanical equivalent of the classical definition of linear momentum,

p = mu.

4-27. Generalize the result of Problem 4-26 and show that if F is any dynamical quantity, then

air) _ f\p*i(f}ﬁ— FEYWVd
dr h *

Use this equation to show that

dt T\ dx

d{P) ( dV)

Interpret this result. This last equation is known as Ehrenfest’s theorem.

Some Postulates and General Principles of Quanturm Mechanics

Replace x by F in the first part of the previous problem to show that

diF —fw*i(ﬁﬁ Fihwd 1
dir i * o
Now consider the case where F' = ﬁx:
P ~d
HP = —ihH—
* dx
Flz 3 ] d
n A B’ d? d dv
PH=—ih|—— ) — — ihV(x)— — i
g ! ( Zm) de (x)dx dx
fo2l as s dV
(A= Ab - P s = in=
dx

Substituting this result into Equation 1 gives

d{p v
(F = wj‘\lf*é—\[fdx =<—ﬂ>
dx d

dt X

Ehrenfest’s theorem is the quantum mechanical equivalent of Newton’s law, F' = ma.

4-28. The fact that eigenvalues, which correspond to physically observable quantities, must be real
imposes a certain condition on quantum-mechanical operators. To see what this condition is, start
with

Ay = ay (D

where A and ¥ may be complex, but  must be real. Multiply Equation 1 from the left by ¢~ and
then integrate to obtain

/w*ﬁwdr majw*wdr =a (2)

Now take the complex conjugate of Equation 1, multiply from the left by ¥, and then integrate to
obtain

jwﬁ*w*dz =d*=a (3)
Equate the left sides of Equations 2 and 3 to give
f YrAYdT = f VA dT (4)

This is the condition that an operator must éatisfy if its eigenvalues are to be real. Such operators
are called Hermitian operators.

We start with
Ay =ay (D

Multiplying Equation 1 from the left by /" and then integrating gives

/w*ﬁwdr = f Yravrdr = af vrydt = a 2)
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The complex conjugate of Equation 1 is
A = aty
Multiplying this expression from the left by ¥ and then integrating gives
fuui*gff*dr = fwa*w*dr = a*fww*dr =aq (2)

because we have imposed the restriction that « is real. Equating Equations 2 and 3 shows that if a
is real, then

[uf*/iwr mfwﬁ*vp*dr

4-29, In this problem, we will prove that not only are the eigenvalues of Hermitian operators real but
that their eigenfunctions are orthogonal. Consider the two eigenvalue equations

Ay, =ay, and Ay =a ¥

Maultiply the first equation by v and integrate; then take the complex conjugate of the second,
multiply by v, and integrate. Subtract the two resulting equations from each other to get

[ widvas = [ v iviar = -a) [ vivax
Because A is Hermitian, the left side is zero, and so
(@,~a) [ viwds=0

Discuss the two possibilities n = m and n = m. Show that ¢, = a;, which is just another proof that
the eigenvalues are real. When n = m, show that

[ml,f/,:w”dxz() m=n

if the system is nondegenerate. Are

m

and v necessarily orthogonal if they are degenerate?

Carrying out the stated steps gives

]w;,iwndr manfw:,ljfndr

fwné*w;dr = a;fw”w;d-c =a;‘f1,lf;1lfndr

Subtracting these two expressions gives
fy'f,:fil,bndt - fwnfi*uf;dr = (a, —al) f yiy dt =0

We set this last equation equal to zero because (as stated in the question) A is Hermitian. If n = m,
then the integral [ ¥y dt is equal to one and so the above equation tells us that a, = a, (= a,).
In other words, @ must be real. If # & m, for a non-degenerate system (@, — a;,) will be nonzero
and so

fl/f,:w"dr=0 nm
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Note that ¥ and v, are not necessarily orthogonal if they are degenerate, because a, can equal a; .

4-30. All the operators in Table 4.1 are Hermitian. In this problem, we show how to determine if an
operator is Hermitian. Consider the operator A = d/dx. If A is Hermitian, it will satisfy Equation 4
of Problem 4-28. Substitute A = d/dx into Equation 4 and integrate by parts to obtain

o0 *ﬂ _ w . 3 o] d","f*
[was=| |- [vie

For a wave function to be normalizable, it must vanish at infinity, so the first term on the right side
is zero. Therefore, we have

= d > d
F—rdx = — —'d
-~ wdxy,f x _/_‘mwdxw o
For an arbitrary function v (x), d/dx does not satisfy Equation 4 of Problem 4-28, so it is not
Hermitian.

d
We will use the fact that f vdu =uv — f u dv. Let ¢ be v and d—wdx be du. Then
X
o0 d oo [e's] d *
[ g = —f WA
- dx SO S x

- d
I
- — Zurd
[mwdxw g

vy

4-31. Following the procedure in Problem 4-30, show that the momentum operator is Hermitian.

fm WP ydx = fm v (—ihﬂ”«) dx
—co o dx

Y +[ iwddi dx

= j_: [—ihf;xb(x)] trdx

- f_w (ﬁ;w*) Wdx

o

=

The momentum operator is Hermitian.

4-32. Specify which of the following operators are Hermitian: id /dx, d*/dx*, and id®/dx*. Assume
that —oo < x < oo and that the functions on which these operators operate are appropriately well
behaved at infinity.

We must determine whether the operator satisfies the condition

f FAS dx = f FEVAF*(x)dx

If the operator satisfies this equation, then it is Hermitian (Section 4-5).
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a. f_:f*(i%)dxzi/mf*ﬁdx=i[|1f*f|—

f*
d
oo dx x]
o0 df o0 ] d i
f -/; N I (wt {E) frdx
:[wf(dJ-f“
This operator is Hermitian.

b. “ ‘_f_z_{) _‘“’ Jf| (e dftdf
[_mf (a’x2 dx = “oof dx _[Woo dx dxdx

d2 f*
z

e O o0
o0 dZ . dz
<[ () rae= [ (i) 7o

This operator is Hermitian.

°° d’f * af =dfrdf
C. ' *i—= ldx = el — -
[—oc f (E dxz) ¥ ,Oof de I f dx dxdx
- d

P

This operator is not Hermitian.

Problems 433 through 4-38 deal with systems with piece-wise constant potentials.

4-33. Consider a particle moving in the potential energy

Vix)
A

A >

Region 1 Region 2
> X
0
whose mathematical form is
0 x <0
Vix)=
() V. x>0

o}

where V) is a constant, Show that if £ = V,, then the solutions to the Schrédinger equation in the
two regions (1 and 2) are (see Problem 3-32)

¥, (x) = Ae™* + Be " x <0 (1)
and

P, (x) = Ce™* + De " x>0 2
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2mEN'"? 2m(E — V)
ky = ( P ) and  k, = ("__""h”i“wwo_) (3

where

—ikx

As we learned in Problem 3-32, ¢ represents a particle traveling to the right and e™™** represents
a particle traveling to the left. Let’s consider a particle traveling to the right in region 1. If we
wish to exclude the case of a particle traveling to the left in region 2, we set D = 0 in Equation 2.
The physical problem we have set up is a particle of energy E incident on a potential barrier of
height V. The squares of the coefficients in Equation | and 2 represent the probability that the
particle is traveling in a certain direction in a given region. For example, |A |* is the probabillity that
the particle is traveling with momentum -7k, (Problem 3-32) in the region x < 0. If we consider
many particles, N, instead of just one, then we can interpret |A|*N, to be the number of particles
with momentum %k, in the region x < 0. The number of these particles that pass a given point per
unit time is given by viA}ZNO, where the velocity v is given by fik, /m. Now apply the conditions
that ¥ {x) and d+/dx must be continuous at x = 0 (see Problern 4—4) to obtain

At+B=C
and
k(A —B)=kC
Now define a quantity

v IBIEN, Bk {BI’Ny/m |B}
v AN,  RkJAPN/m AP

and show that

Similarly, define

_ uCPNy Rk ICEN/m kICP
v |APN, Rk JAPN/m kAP

and show that
_ dk k.,
(k, +k,)*
The symbols R and T stand for reflection coefficient and transmission coefficient, respectively. Give
a physical interpretation of these designations. Show that R + T = 1. Would you have expected

the particle to have been reflected even though its energy, E, is greater than the barrier height, V,;?
Showthat R — 0and T — las V, — 0.

Region 1 (x < O}

R,
2m odx®

The solution to this differential equation is

2mEN'?
o = ket = (22E)
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Region 2 (x > O}

_Edy,
2m dx?

+ Wi, = B,
giving
) . 2m(E — 12
wz(x) — Celkzx - Deﬂkzx kz — [w]
Let D =0 as stated in the problem. Now we impose the boundary conditions 4 (0) = 0 and
dipfdx =0atx =0,s0

ay,
dx

s

x=0 dx

v {0) = ¥,(0)

x=0

This gives
A+B=C (h kA—kB=FkC (2)

If we multiply Equation 1 by &, and subtract the result from Equation 2, we can obtain

Bk -k,
Ak, k
B [k &\
R = % = (———mm‘ 2) (6))]
1A| ky +k,
If we multiply Equation 1 by &, and add the result to Equation 2, we can obtain
c 2%,
Ak 4k,

kICE  4kk,

2

kAP + k)

Sy

The quantity R is the proportion of the wavefunction that is reflected back into region 1 and T is
the proportion of the wavefunction that is transmitted into region 2, Therefore, R + T = 1, which
is in agreement with the sum of Equations 3 and 4.

P L et A R N
(k, + k,)? (k, + k)

In a classical treatment of the problem, the particle would not be reflected when its energy was
greater than the barrier height. This is a quantum mechanical effect. As V, — 0, k; — &,, and so
R—0and T — 1.

4-34. Show that R =1 for the system described in Problem 4-33 but with £ < V. Discuss the
physical interpretation of this result.

Region 1 (x < 0):

_rady
2m dx*

== Ey’/}
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giving

_ ‘ 2mEN'""?

Y (x) = Ae™" + Be™ht k= (':—2)
Region 2 (x > O):

B dhy,

2m dx?

+(E - V), =0
giving

2m(V, — E)1'"?
T

V,(x)=Ce™ + De ™  B= [

Now, 8 must be real because E < V. This means that for ¥ to remain finite as x > 00, € must
equal zero. The boundary conditions give

@,
dx

=

0 dx

¥, (0) = 3, (0)

x=0

A+B=D  ikA—ikB=—pD

We can now use these relationships between the coefficients to solve for R as in Problem 4-33.

B B+ik,
AT —Btik,
BV (B + ik B — ik)

R=7

TR ik (=B~ ik

This result tells us that all the particles will be reflected by the barrier.

4-35. In this problem, we introduce the idea of quantum-mechanical tunneling, which plays a central
role in such diverse processes as the a-decay of nuclei, electron-transfer reactions, and hydrogen
bonding. Consider a particle in the potential energy regions as shown below.

Region 2
Region 1 Vy Region 3
l > X
0 a
Mathematically, we have

0 x <0

Vix) =V, O<x<a
0 xX>a

Show that if E <V, the solution to the Schrédinger equation in each region is given by
¥, (x) = Ae™" | Be™'h* x <0 (1)

Yo (x) = Celr* - De™" D=x<a 2)
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and
Y (x) = Ee'™* 4 Femths x>a
where )
2mEN'"? 2m(V, — E)\'?
ky = (h_z) and k= (#) )

If we exclude the situation of the particle coming from large positive values of x, then F = (0 in
Equation 3. Following Problem 4-33, argue that the transmission coefficient, the probability the
particle will get past the barrier, is given by

z
- :_illf (5)
Now use the fact that ¥ (x) and dvr/dx must be continuous at x =0 _and Xx = ¢ to obtain
A4+B=C+D ik (A—B)=k(C-D) (6)
and
Ce'" 4 De ™ = Ee'* k,Cel" — k,De " = ik, Ee™ @

Eliminate B from Equations 6 to get A in terms of C and D. Then solve Equations 7 for C and D
in terms of E. Substitute these results into the equation for A in terms of € and D to get the
intermediate result
ikoa
2ik A = [(ky — ki + 2ik k)b + (k] — & + Ziklkz)e*sz’]—gi—l—

2

Now use the relations sinh x = (¢* — ¢™)/2 and coshx = (¢* + ¢™)/2 (Problem A—11) to get

E dik e

A " 20 = & sinh k,a + 4ik, k, cosh k,a

Now multiply the right side by its complex conjugate and use the relation cosh® x = 1 + sinh® x to

get

? 4
RN s

kil

4+ sinh® k,a

Finally, use the definition of &, and k, to show that the probability the particle gets through the
barrier (even though it docs not have enough energy!) is

7= ! (8)

2
s 1/2
sinh”(v, — &) !

bt 48(1;00— &)
or
T— : ©)
- sinh?[vy*(1 — r)'2]
4r(1 —r)

where v, = 2ma’ V,/h*, ¢ = 2ma’E/h, and r = E/V, = ¢/v,. Figure 4.3 shows a plot of T
versus r. To plot T versus r for values of r > I, you need to use the relation sinhix =i sinx
(Problem A~11). What would the classical result look like?
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Transmission coefficient

1.0~
0.6
0.2
1 I ! 1 i FIGURE 4.3
0.0 1.0 2.0 3.0 4.0 5.0 A plot of the probability that a particle of energy £
EIV will penetrate a barrier of height V,, plotted against
“ the ratio E/ V,, (Equation 9 of Problem 4-35).
hn? d*y
Region 1: —— —— = E,, givin
egion T ¥, giving
¥, (x) = A" + Be " x =0 (H
. B d'y iy |
Region 2: ~m I + V¥, = Ev,, giving
P, (x) = Ce" + Dea* O<x<a {2)
R d*y
Region 3: ———= = E,, givin
egion T % ¥y, glving
P (x) = Eef™ 4 Fethr xX>a {3)
where
2mEN\"* 2m(V, — B\
ky :( 72 ) and K, = (—hoz“m) ' )
Let F = 0 (given in the problem). Now we will use the boundary conditions
dyr dy
0) = 0 -1 =2
¥ (0) = ¢,(0) D" dx |
to find
A+B=C+D ik (A— B)=k,(C—-D) (6)
and the boundary conditions
dyr di,
¥, (a) = ¥, (a) d_xz = Tr _
to find
Ce* + De™" = B k,Ceh — k,De™" = ik Ee™" (7

Following the steps suggested in the problem,

ik,[A— (C+ D — A)] =k(C— D)

2ik,A = (ik, + k,)C + (ik, —k)D (8)
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and

2k,Cer" = (ky + ik ) Ee™"

_ (ky + ik Eett

¢ 2 e ©)
ZkZDe"‘Z“ = (k, — ik,)Ee™*
(k, ~ ik, )Ee™t
D= e (10
>
Substituting Equations 9 and 10 into Equation 8 gives
) ) (k2 + ikl)Eefkltl . (k2 . ikl)Eeikla
2lk1A = (Ikl + kz)wm -+ (Ikl — kz)w
_ Ee™ [k, + ik) . —{ik, — k,)?
2/(2 ekz" e—r’czu
_ Eet Y ke 22 o ke
== [k — & + 2ik ke™" + (k= k5 + 2ik,k,)e""]
2
which can be written as
E 4ik k emhe
A - k;"(ekﬂ” _ e"""‘i"') . k%(ekga . e"kz") + 2fk|k2(€k2“ +ewk2(r)
4ik|k2e“”"=”
(1

~ 20& — K sinhk,a + 4ik,k, cosh k,a

To find T, we need to evaluate

2

T:l-l—;;-
A

Using Equation 11, we obtain
- (dik ke "y (~dik k,e~ ")
(2(k — k) sinhk,a + ik k, coshk,a)(2(k} — k) sinhk,a — 4ik,k, coshk,a)
B 16k7k3
40k} — kD)? sinh* k,a + 16k7k2 cosh® k,a

Using the identity cosh’ x = 1 + sinh” x, we have

- 16K242
(4k; ~ Bk(k; -+ 4k}} sinh’ k,a + 1647k sinh® k,a + 16k;43
~ 161242 4
== 4(k2 -}-k2 ZSiﬂhzk'}a + 164242 - kz +k2 2
2 TR 2 N usinhzkza

kik;
Using the definitions of &, and &, in Equation 4 gives

4
T =

2m(V,—E)

3
2mE
LI :| 2+ b2
[ﬁ1 7l . 3| f2ma
4 zmg) sinh I:( T ) (VO—E)I/Z:I
hz

2m{V,—E)
n?

Some Postulates and General Principles of Quantum Mechanics 109

Now let v, = 2ma*V,/h*, ¢ = 2ma*E/h, and r = E/V, = £/v; to find

4
T = 3
v .
44 s(vo—(ivs) sinh’*(v, — £)'/*
1

By
1 o inh2 (. — g)1/2
+ 4—5(v0 8 sinh*(v, — &)

i
sinh’fvy” (1 — 1"
4r(1 —r)
The classical result would have a discontinuity at £ = V; if E < V, the probability that the particle

would penetrate the barrier would be zero, and if £ > V, the probability that the particle would
penctrate the barrier would be one.

4-36. Use the result of Problem 4-35 to determine the probability that an electron with a kinetic energy
8.0 x 1072 T will tunnel through a 1.0 nm thick potential barrier with V, = 12.0 x 107 L.

The probability of the electron tunneling through the barrier is given by the expression for T in
Problem 435,

1

T sinh[y*(1 =)'

b 4r(l — r)
First we calculate the values of the variables in this expression.
_E_3_2
v, 12 3
" = 2ma’V,
0 h2

2(9.1094 x 107 1<g)(;ﬁo % 1077 m)*(12.0 x 1072' )
o (1.0546 x 107 I.¢)*

=20

Now substitute into Equation 7 from Problem 4-35:

1
sinh’[vy* (1 = r)'?]
4r(l —r)

1
sinh*{(2.0)"*(§)'"*]
43

1+

=0.52
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4-37. Problem 4-35 gives that the probability of a particle of relative energy £/ V, will penetrate a

rectangular potential barrier of height V) and thickness a is

1
sinh’[vy” (1 — )"
4r(1 —r)

1+

where v, = 2m ‘l/'[)az/.‘?i2 and r = E/V,. What is the limit of T as r — 1?7 Plot T against r for

v, = 1/2, 1, and 2. Interpret your results.

Use the fact that sinhx = x + x*/6 4 - - - to write

1 B 1
v(l—r) T T4y/4
4r(l ~r)

T =

1+

In the graph below, the solid line is the graph of T versus r for v, = 1/2, the dashed line is the

graph of T versus r for v, = 1, and the dotted line is the graph of T" versus r for v, = 2.

1...

0.8 - _
—_ -
0.6 T e
- - P
T .
0.4 Ve
/ i
/
02H
[
o ¥ | | | | |
0 0.2 0.4 0.6 0.8 ]

4-38. In this problem, we will consider a particle in a finite potential well

V(x)
\
Region 1 ¥y Region 2 Vo Region 3
i > X
-~ 0 a
whose mathematical form is
v, X< —a
Vix)y=20 —a<x<a

VO X >da

(1)

Some Postulates and General Principles of Quantum Mechanics

Note that this potential describes what we have called a “particle in a box” if V, — o0. Show that
if 0 <« E <V, the solution to the Schridinger equation in each region is

¥ (x) = A" x < —a
¥, (x) = Bsinax + Ccosax —a<x<a )
Py (x) == De ™t~ X >a
where
2m(V, — EY\'? 2mEN"
= () e o= (2 )
Now apply the conditions that ¥ (x) and dvr/dx must be continuous at x = —a and x == a to obtain
Ae ™™ = —Bsinaa + Ccosaa (4)
De™% = Bsinaa 4+ Ccosaa (3)
klAe'kl“ = aBcosaa +aCsinaa (6}
and
—k, De™ % = gy Bcosaa —aCsinea (7}

Add and subtract Equations 4 and § and add and subtract Equations 6 and 7 to obtain

2Ccosaa = (A + D)e ™™ (8)
2Bsinaa = (D — Aye™* )]
20Csinaa = k (A + D)e ™ (10)
and
20Bcosaa = —k (D — A)e ™" (11)

Now divide Equation 10 by Equation 8 to get

o sinaa

= atanaa =k, (D= —Aand C #£0) (12)
CosSoa

and then divide Equation 11 by Equation 9 to get

FONE _ yeotaa = —k,  and (D= Aand B#0) (13)

sin ea !

Referring back to Equation 3, note that Equations 12 and 13 give the allowed values of E in terms
of V. It turns out that these two equations cannot be solved simultaneously, so we have two sets of
equations

ctanca =k (14)

i
and

(15)

acotaa = —k
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Let’s consider Equation 14 first. Multiply both sides by a and use the definitions of & and k, to get

2ma*EN'" 2maEN'"? 2ma® 12
(2F) w (2E) = |5 B a6

Show that this equation simplifies to
e tane'? = (v, — £)'” 17

where & = 2maE/h* and v, = 2ma’V,/h*. Thus, if we fix v, (actually 2ma*V, k"), then we can
use Equation 17 to solve for the allowed values of ¢ (actually 2ma*E /R*). Equation 17 cannot be

solved analytically, but if we plot both &'/ tan &'/ and (v, — £)'7? versus ¢ on the same graph, then
the solutions are given by the intersections of the two curves. Show that the intersections occur at
¢ = 2ma*E/h* = 1.47 and 11.37 for v, = 12. The other value(s) of ¢ are given by the solutions to
Equation 15, which are obtained by finding the intersection of —&'™ cote'* and (v, - €)'/ plotted
against £. Show that ¢ = 2ma®Efh* = 5.68 for v, = 12. Thus, we see there are only three bound
states for a well of depth ¥, = 127%/2ma’. The important point here is not the numerical values

of E, but the fact that there is only a finite number of bound states. Show that there are only two

bound states for v, = 2ma*V, /i* = 4.

R d? .
Region 1: —ﬁﬁ + Vo, = Ev, giving

¥, (x) = At

(We ignore the solution cze“""‘ because if the particle goes from region 2 into region 1, it must be
traveling to the left.)

. R d*yr ..
Region 2: ) = Ey,, giving

¥, (x) = Bsinox + Ccosax

as in Example 2-4.
. B dy -
Region 3: Y + Vo, = Evfr,, giving

Y (x) = De™* X>a

(We ignore the solution cle’fl" because if the particle goes from region 2 into region 3, it must be
traveling to the right.) In the above expressions

2m(V. — E)\'"* 2mEN'?

Now use the boundary condition equations ¥, (—a) = ¥,(—a), ¥,(a) = ¥,(a),d¥ /dx = dyr,/dx
at x = —a, and dy,/dx = d{,/dx at x = a to find

Ae™™“ = — Bsinag + Ccosaa {4)
Bsinaa + Ccosaa = De™ (5)
kAe H = aBcosaa +aCsinaa (6)
—k De™ ¢ = aBcosaa — aCsinaa 0D
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Adding and subtracting Equations 4 and 5 gives

2Ccosaa = (A + D)e ™ (8)

2Bsinaa = (D — A)e™h )]
Adding and subtracting Equations 6 and 7 gives

20Csinaa = k (A + D)e™ (10

RaBcosaa = —k (D — A)e™" (11

Now divide Equation 10 by Equation 8 and Equation 11 by Equation 9 to obtain

asinaa

=oatanaa =Kk, (D —-Aand C #0) a2
cosaa
o COS el
mee——— zz g COta = —k, (DF Aand B #0) (13)
sSmoa

We now have two sets of equations:

atanaa =k, (14)

acotag = ~k, (15}

The result that A = =D implies that the chance of the particle leaving the finite well through one
side of the well is equal to the chance that it will leave the finite well through its other side. Using
the definitions of & and &, (Equation 3) and multiplying Equation 14 by a, we find

2matEN'? 2ma’EN'"” 2ma’ 12

If we let ¢ = 2ma*E /h* and v, = 2ma®V,/h*, we obtain

e tane'? = (v, — )" (rn
Likewise, we can obtain the expression
—e'?eote'? = (v, — £)'/? (18)

by going through the same procedure with Equation 15. The solutions to Equations 17 and 18 are
shown graphically for v, = 12 in the captioned figure. The solutions for v, = 4 are shown in the
figure below. Because these graphs show two intersections, there are two bound states for v, = 4.

4 - r 2 -
£'2tan 12/
3
1}
N | t | 0
0 0.5 1 1.5 2
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MATHCHAPTER D

Spherical Coordinates

PROBLEMS AND SOLUTIONS

(b) D-1. Derive Equation D.2 from D.1.
FIGURE 4.4 " o _
(a) Plots of both £'/? tan&'? and (12 — £)'/ versus &. The intersections of the curves give the allowed values of & ' Equations D.1 are
for a one-dimensional potential well of depth V, = 124%/2ma”. (b} Plots of both —¢'/2 cot&'/? and (12 — &)'/
plotted against £. The intersection gives an allowed value of £ for a one-dimensional potential well of depth x =rsinf cos¢ y =rsin@sing 7 = rcosd D.1)

V, = 12r%/2ma’.
We use these equations to write tan ¢ as

. g /si
tan ¢ = sin ¢ _ rs%n sin ¢ _7 M
cos¢  rsing \cos¢ X
Likewise, we can write (using trigonometric identities)
E - r? = ri(sin®* & + cos? 8)(sin® ¢ + cos? ¢)
18 = rlsin® 8 sin’ ¢ + r* cos? 0 sin® ¢ + r* sin’ 0 cos? ¢ + r2cos? 8 cos? ¢
g - = (rsinf sin ¢)? + (r sin® sin ¢)* + (r cos 6)(sin® ¢ -+ cos? ¢)
% zx2+y2+z2
A r=*+y )2 (2)
and
z=rcosd
cosf= — = 3)

(x2+y2+zz)1/2
Equations 1, 2, and 3 are Equations D.2.

D-2. Express the following points given in Cartesian coordinates in terms of spherical coordinates.

(x,v.2): (LOB; OLO; (0,0, (©O0-1)

Use the equations derived in the previous problem (Equations D.2).
a. (1,0,0)

roo= (x2+y2+22)1/2 =1

z T
§ = cos™! (—) =cos™' 0= —
¥ 2

¢ =tan™! (%) =fan™ 0 =0

Spherical coordinates: (1, 5, 0)
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