CHAPTER 6

The Hydrogen Atom

PROBLEMS AND SOLUTIONS

6-1. Show that both th’z/ZmE and e* /4w e+ have the units of energy (joules).

Recall that V2 has units of m™ (Section 5-8), so
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6-2. In terms of the variable 6, Legendre’s equation is

sinG% (sin@d(jég)) + (Bsin® 0 — mH)O®) =0

Let x = cos@ and P(x) = ©(0) and show that

d*P(x) dP(x)
T +[‘8"
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Begin with Legendre’s equation,

d dee
sin@E (sin@ d; )) +(Bsin* 8 — mHB@) =0
Expanding the first term in 0 gives

d’e d
sin® — + sin¢ cos@d—g + (f%sin* 8 — mHO(E) =0 (D

Let x = cosé and P(x) = ®(8). Then
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156 Chapter 6

Substituting these expressions into Equation [ gives

2

dP dapr
(=5 = 2x(1 = o+ [B =5 =] P =0

d*P(x) dP(x)
dx? - dx

P
(1 - +(ﬁ——li’x2) P(x)=0

6—3. Show that the Legendre polynomials given in Table 6.1 satisfy Equation 6.23 with m = 0.

Letting m = 0, Equation 6.23 becomes

d*pP adP
— e = 2x-— + I +1DP =0
a x)dx2 2)Cdx ( )

For! = 0, P,(x) = 1 and the equation is satisfied. For/ = 1, P,(x) = x and Equation 6.23 becomes
-2x+1(2x =0

For! = 2, P,(x) = 1(3x* — 1) and Equation 6.23 becomes
(1 = x3(3) — 2x(3x) + 2(3) E(sx2 - 1)] =3-3x—6x* 4+ 9x*-3=0
Forl = 3, P,(x) = }(5x* — 3x) and Equation 6.23 becomes
(1 - xH15x — 2x B(ls)c2 - 3)] + 3(4) B(sf - 3x)] =15x — 15x* = 15x* +3x +30x’ — 18x =0
Forl = 4, P,(x) = 1(35x" — 30x® + 3) and Equation 6.23 becomes

(1 —x% [%(420x2 — 60)} - 2x [%(1403:3 - 60x):| +4(5) [%(BSJC4 —30x% + 3)]

= 210x2 — 210x* — 30 + 30x% — 140x* + 60x? + 350x* — 300x* +30=0

6-4. Show that the orthogonality integral for the Legendre polynomials, Equation 6.24, is equivalent to

f P.(cos8) P (cosf)sindd@ =0 I#n
0

Begin with
1
f P(x)P (x)dx =0 I#n (6.24)
-1
Let x = cos @ and dx = — sin#d@ and write Equation 6.24 as an integral over 6, where ¢ ranges
from 7 to O:

0
f P(cosB)F (cos@)(~sin@)dd =0

The Hydrogen Atom

Integrating from 0 to 7w and evaluating the result at the limits of integration yields
/ P, (cosB) P (cos 8) sinfdf) =0
4

where [£ n.

6-5. Show that the Legendre polynomials given in Table 6.1 satisfy the orthogonality and normalization
conditions given by Equations 6.24 and 6.25.

We can write Equations 6.24 and 6.25 together as

1

| P s =
e =S

Some examples of Legendre polynomials satisfying this condition are (for ! = 0, 1 and 2)

1 1
f sz(x)dxzf dx =12
-1 —1
/ Pf(x)dx:[ xidx ==
—1 —1 3
! 1 ¢! 1718 12 2
2 T 2 12 [ [ — J——
[lPZ(x)dxm4[l(3x 1Ydx 4(5 3+2) S

1 )
f Py(x) P (x)dx =[ xdx = §

1 -1

i 1
/ Py(x} Py(x)dx == %f Bx'—Ddx=1-1=0
. | ~1

1 1
/ P (x)P(x)dx = %f (3x* — x)dx =0
—1 -1

6-6. Use Equation 6.26 to generate the associated Legendre functions in Table 6.2.

Blml(x) — (1 . xi)lmilzd_

T P (x) (6.26)

G
Plxy=(1 —x2)°d—P (x) = P(x) =1
Q dxo 0 0
G
Pl(x)=(1 - xz)"iimP,(x) = P (x)=x

dx®
Plx)=(1— xz)‘”%f’l(x) = (1 - %"

d° 1
Pl (x) = (1 — xz)oa—aPz(x) = Py(x) = 5(zuc2 -1
Py(x) = (1— xﬂ)‘f’!% Py(x) =3x(1 - xH)'”

. d2
Pix)y=(1~ xz)a—;m(x) =3(1 — x%)

d° 1
Plx)y = (1~ xz)oa—)-c-a Pi(x) = Py(x) = E(ij — 3x)
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Plx)y={(1- x%'”% Py(x) = %(sz — (1 —xH'7?

2
PHxy=(1- xz);;—zP}(x) =15x(1 — x%)

dS
Plx)y=1{(1- x2)3’2§;§P3(x) = 1501 — x%)*?

6—7. Show that the first few associated Legendre functions given in Table 6.2 are solutions to
Equation 6.23 and that they satisfy the orthonormality condition, Equation 6.28.

d*P dP m*
— o - 2x—— — e 23
(1—=x )dxz 2xdx +[[([+1) 1__x2]P 0 (6.23)

Whenl =m =20, Péj(x) = | and Equation 6.23 is clearly satisfied. When I=1andm=20,
P°(x) = x and Equation 6.23 becomes

0—-2x(D+2-0x=0

When ! = m = 1, P/(x) = (1 — x)'/* and Equation 6.23 becomes

5 i x? X
== [W(i -7 ~x2)-‘”] o [#u——W

_ 1 2
+[2 (1—x2)](1 *)
2

X 2x?

= —(1 — xH* — =57 + a7
+2(1 = 5% a7 _12)1,2
= (—lx-i—;z)lﬂm-i—(i —xH72 =0
The orthonormality condition is
2_(lmb, (6.28)

1
im] {ni =
[ PRt = G

Examples of associated Legendre functions satisfying this condition are

i ' 4 2/
[_ [P]I(X)]de=./}dx(1mx2)=§ mg(a)

1 —

l : 12 2/3
[_ [Pz‘(x)]zdx = f_; dx(9x* — 9x*) = <=3 (F)

1
1

1
/ P (x) Py (x)dx x] dx [3x(1—x)] =0
—1 -1

6-8. There are a number of recursion formulas for the associated Legendre functions. One that we will
have occasion to use in Section 13-12is

(2 + Dx Py = (- ml + DRG0 + (+ [mi) P (x)

Show that the first few associated Legendre functions in Table 6.2 satisfy this recursion formula.

The Hydrogen Atom

Fetl = 1 andm = O

3x PY(x) £ 2P0(x) + Po{x)
3P =G -1+ 1

Let! =m = 1:

3x P (x) £ PI(x) + 2P (x)
3x(1 . x2)1/2 — 31(1 - xZ)UZ +0

P} (x) = 0 because m cannot be greater than /. Let ] = 2 and m = 0:
5xPY(x) = 3P%(x) + 2P%(x)

5 ) 3
5(3"3 —-x) = 5(5x3 ~3x) + 2x

let! =2andm = 1:

5xPL(x) £ 2P} (x) + 3P (x)
15221 — xHY2 £ (1552 - 31 — 2H'72 4 3(1 — xH)'/2
15221 — x5V = 15231 — )2

let!=2andm =2:

5x PX(x) = PX(x) + 4P} (x)
15x(] — x5 = 15x(1 — x5 + 0

Pl2 (x) = 0, because m cannot be greater than /.

6-9. Show that the first few spherical harmonics in Table 6.3 satisfy the orthonormality condition,
Equation 6.31.

T 2w
fodesinefo do Y8, ) Y O, ¢) =68 (6.31)

The normalization condition is

2 T 2 g
fo d¢~f de sin@[Yg(B,qb)lsz dqbf d6 sin(4)"!
] 0 Q

= (2)-

2 ks ) 0 . 2 b3 ) 300529
dp | desing Y@, ¢)| = do | d6sine
0 0 0 ] 4

3 3
=2x{ — L.
n’(4ﬂ_)[_ldxx

erdqb rrd9 . | 2 2 b ’ 3Siﬂ29
sind |¥] (0, ¢)] =f d¢f dQSmQ( )
0 s} o Jo 8
3 1
= 2 (—)[ dx(1—x =1
8z J J_,
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From these expressions, we can derive the following relationships

160 Chapter &
a a0
(_r) = sinf cos ¢ (_) = W (ﬁ) = cosf
dx r az

The orthogonality condition is
ax

o ) 2 - 1/2
[ d¢f df sind Yg(e,cb)*Yf’(H,rf)):f dqbf d@sin@(*“—3 4(;:50)
o 0

(%) = sin g (E-C) = sinf sin¢ (?2) = _sind
dy az r

3172
( )[ dx x =
- ox rsing
I = 32 cos @
: 0 * ikl . :i:uﬁ -
f d(bfo df sin8 Y (0, ¢)'Y (9,¢)—jo def 46 sing (—~—2 — ) 0 (8_9) 3 cos 6 sind 96\ cosg % .
i = < 312 ¢inf cos @ ay r v/)  rsing az /]
d dosing Y20, $) Y0, =f e*?d f desine( )mo
f ¢£ AR ?) 0 ? o 2P 6-11. In Cartesian coordinates,
d
L =—ih (x— — yi
* ay ox

Convert this equation to spherical coordinates, showing that

2
because we know that f dpe™™® = 0.

0
—zh—

d¢

6-10. Using explicit expressions for ¥," (8, ¢), show that
YO, ¢)* + 1¥7(6, @)+ 1Y (9, ¢)i* = constant

As in Problem 5-30, the chain rule of partial differentiation states that

(ﬁ) B (%) (g_;) * (%) (g_f) i (ag) (ax)

dx

This is a special case of the general theorem

+
> %70, ¢)|* = constant

m=—]
known as Unsold’s theorem. What is the physical significance of this result and that
. a 3 d
V0, OF + 1100, $) + 1770, gy = 20 3eos0 Fe'h 3 (a_f) = (EJ:) (a_r) + ("gi) (""") + (gg) (a )
(Y70, P + 11, P T 8w dar 8z 4w Y d M ¢ Y
Unsold’s theorem states that the electron density in a filled subshell is spherically symmetric Using the relations between Cartesian and spherical coordinates, we find
a a
(—f)—sm9cos¢ of cos@cosqb _ sing (9f
dx r rsing 8¢
d a3 9
(-—i)—smasmq’:( f cosf sin¢ _cos¢ [af
dy r Fsing \ 3¢
Converting Cartesian coordinates to spherical coordinates Now
In the following problems, we will often need to use the following equations relating Cartesian and . ’
i i : . d a3 d
spherical coordinates: ( a_f N yé_}i) — rsindcosd (g‘f")  rsingsing (g_]i)
X = rsinf cos ¢ r= (x> y 2B Y Y * ,
y = rsin@ sing ¢ = tan™’ (”)‘i) = (rsin® 0 cos ¢ sin¢ — r sin’ @ cos ¢ sin @) (a—f)
X ¥
z = rcosf § = cos”! — ik + (sinf cos 8 cos @ sing — sin 6 cos @ sin ¢ cos ¢) f
(X2 y2 + 2272 i 30
3 aF
co
+ (cos® ¢ + sin’ ¢) (8¢)
_of
d¢
Therefore
a )
L =—ih{x — y— m—hi
: ay dx d¢
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6-12. Convert f_,x and f,y from Cartesian coordinates to spherical coordinates.

We can use our expressions for {(3f/9x) and (9f/3y) from the previous problem. The only new

quantity needed is
O _ (BN () 4 (M) (), () (2
()= o) ()= Ga) (52) + () (52)

(31") = cosf (af) sin 6 (af)
9z ar ¥ 8¢
Then

L i |y 9
e — -
* yaz Zay

. . ] 3
= ~ih [(r sinf cos @ sin¢g — r sinf cos @ sin qb)a— + (—sin* @ sin¢ — cos*# sind))%
r

]
—cotf —
co COS¢8¢]

] d
= —if | —sing¢g— — cotd cos p—
il e

d
= —ih | (rcos@siné cos ¢ — rcosf sin @ cos qb)é— + (cos® H cos¢p — sin’ @ cosqb)—a-w
¥

a6

| ae—

a
— cot @ si —_
co smgbaqb]

3 J
= —ih (cos qbémé- — cot# sin qb%)

6-13. Prove that L? commutes with L , L ,and L, but that
(L, L1=inl, (L, L)=nL, [L,L}=inL,

{Hint: Use Cartesian coordinates.) Do you see a pattern in these formulas?

In Example 6-7, we showed that L? commutes with f,z. Because the labelling of x, y and z is
arbitrary, L* must also commute with L and L . Recall that

and now find
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L
hz[( a a d 8) a d 9 a9
= - ——I ——x— )|z X — -
yaz ZBy “ax ik “ax oz yaz Zay

= -k [y—a—+yz i wxyj\j—wzz & +xz >
dxdz az° axdy dydz

0? , 0 a* ) 8*

e 0x0z +e dxdy +xy8—22 B xa T Byaz]

5 ( 0] b ) 3 a i) J d i]
=-h g —X— Jlx——y— ) -lx=~—y— |z ——x—
ox 0z oy dx oy dx ax az

, 82 82 al 82
I _h _‘l‘ _ 2
[Zay ey e Y ayar | axez
9 by a* N 9 ] 8
X X P —_— — y— — X
ZBxBy dydz yzaxz yﬁz yaxaz
' 3 .
= Wz —y— | =ikl
ay 9z *
[£.1.)=Li-LL,
52 ( G a d 8) d d J d
= - X— — y— ——z— ) |y——z— Jtx— —y—
ay yax yaz Z&y yaz Zay Jy y8x
: 9 8* a* 3?
— __hz — 4+ o 42
[x oz T Vayer 5y Y xaz | axay
8* L) 9 N 3 a 3
—X AP e T —
yayaz Y Gxdz Zaﬁ “ox yzaxay

d 0 -
= =R (X 2 | = iR
(xaz ZBx) I Ly

These formulas involve a cyclic permutation of x, v, and z.

6-14. It is a somewhat advanced exercise to prove generally that (L} = {L ) = 0 (see, however,
Problem 6-58), but prove that they are zero at least for the first few I, m states by using the spherical
harmonics given in Table 6.3.

Because the labelling of x and y is arbitrary, if we can show that (L) = 0 we will have also shown
that {L_} must equal zero.

2 bis
(L) xf dqbf df singd )1"‘(9,¢)*f1x}’,"'(9, &)
4] a
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2x b3 oc 1 Z 3
=/ dq&f dGSinﬂf dr r? —(—) e
0 o 0 T4,
AN
:4(—) f dre ¥ r?
a(} o

o
= 4] e ¥ gdo =1
0
For v,

oo x Zn
fdﬂ[f;mwzoozf dr rzf d@SiH@f dp YryooVogo
1 (Z 4
:f d¢f d@sm@f dr r? LG( )(4 4o +o)e }
(E) fmdr r(4 4o +ot)e™
CIQ 0

Recall from Problem 6-12 that in spherical coordinates
- a J
L = -—ih{—sing— — cotd —
. i ( smqf)ag cotf cos ¢ 8¢»)
Forl ==m =0, Y°1sac0nstantandso L)y=0Forl=1andm =0,

L.YN9, ¢) =—in (%) sin¢ sin g

3 ki g
—ih (Z;) dqbsind)f d9 sin* @ cos @

3
—ih (—) (0)/ dfsin®fcosf =0
4

For! =1land m = &1,

. 3\ ] 2 . 1
LY, ¢) = —ih (S_JT) (— sin¢p— — cot cos ¢ ¢) e=?sing 8

ad

1/2 _ I ‘x’d 4 2 4 3+ 4 —
zh( ) (i’¢smq‘)€039ilei’d’cosﬂcosqﬁ) A o (40 —do" +0%)e
1
o= (421 — 431440 =1

=ih —R dqb dH siné (sing cosf & i cosd cos¢) 8

3 27[ w z For 1,5,
=ih (S_J’T)[ smqﬁdqbf 46 schosBif dqbcosqbf isind cos@] 0 n P

3 ’ [dr’wh;lowzm:/ dr r2f de sin@f ded V30¥0
= [f (8;1)[(0) dﬁstcosQ:i:(O)/ ;sm@cos&] =0 ‘ ’ "

2 4 oo 1 7z 3
f dqbf do sin@f dr r* | — —) o?costfe™
o i} 0 32 aG

1 /ZN\ [ o
= — f d6 sin@ cos® @ / dr rice™

16 ¢

| '

d d T =—1-]lMdh=1
XX f oote =15 (3) 4n

6~15. For an isolated hydrogen atom, why must the angular momentum vector L lic on a cone that
is symmetric about the z-axis? Can the angular momentum operator ever point exactly along the
z-axis?

lI

The uncertainty principle prohibits L from lying along the z-axis. If we observe precise values of
L? and L_ we cannot observe precise values of L and LJ_; therefore (as discussed in Section 6-3)
the angular momentum vector must lie on a cone that is symmetric about the z-axis. If it pointed : . = , 7 . o .

cxactly along the z-axis, we would know the precise values of L_and L, (both would be zero) as : _/ AV Vorn = _/ rr f d6sinf [ 49 Va1 Vot

well as the exact values of L* and L, so this can never occur. 2 . 1 A%
= j dqb[ de sin / drr? Z ) o%sin*ge™
o 64 a,

1 o0
e d9 sinq’Q.[ dr rlo’e™
32

The orthonormality condition for hydrogen atomic wave functions is _ " / dx (1 — x%) / doote™ = _1_ (i) 4n =1
32

For v, or yry, ;.

6~16. Referring to Table 6.5, show that the first few hydrogen atomic wave functions are orthonormal.

0 T i
/ dr r2[ df sin@f dp Yy, (n 6, o), (r,0,¢) =8 8.8 . (6.51)
Q 0 0

We now show that the first few hydrogen atomic wave functions are orthogonal:

oo N : : . oG b s 2z
We first show that the first few hydrogen atomic wave functions are normalized. For ¢, ,, f AT Vo = f dr f d6 sind f dd Yoo ¥ropy

o0 k4 n
dryrl W mf dr r2/ d@sin@f d - s % o0 12 1 7\
f T Ly 0 0 ¢ ViooV o _ Ef d¢/ de sin@f drr’ ——}—/2 (g) e | ——5 (—) 2—o)e "
0 0 0 b1 a, dy

(32m)' 72
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I Z)'"’ f“’ : e
= — 1 — dr (2 —o)e !
\/5 (au 0
1 o0
= — do (20t — oHe ¥
Ji[o

SRR

In showing that either ¥, o v/, is orthogonal to ¢, ., we find that the integral over £ is

-4 1
f dE)sichosG:f dxx =10
0 -1

and so these orbitals are orthogonal. Likewise, in showing that either ¥, ¥, OF ¥, is orthogonal
to ¥r,,, Of ¥,, ;. the integral over ¢ is

in
f depet™® =0
O

and so these orbitals are orthogonal.

6-17. Show explicitly that

for the ground state of a hydrogen atom.

The Hamiltonian operator for a hydrogen atom is (Equations 6.2 and 6.3)

R [1a/,0 N 1 a(_ga)+ 1 82]+ e*
—— e — ————— | 5ind— —_—— :
2m_{r*or ar r*sin@ 94 a8 r’sin’ 6 3¢” dmeyr

and from Table 6.5 the ground state wave function of a hydrogen atom is

1 e h?
—. 0
w = r/u" a. =
O x'2g}? ' wm et
We can therefore write
2 2
g =3 {20 e
0 2m, " dr dr dreyr
2 2 2
— h » ] — (wzewr,’uo + r_l_emr/un) _ 4 1 - e—r,fau
Ard2mr* ' a) a, ay dmeyr '

82 m834 62
dweyr  Begh®  Ameyr

m e*
=ty
- 2p 2700

Beyh

)
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6-18. Show explicitly that

for a 2p, state of a hydrog

€0 atom.

The Hamiltonian operator of a hydrogen atom is the same as in Problem 6-17, and the wave

function of the 2p, staie is

1[[2-"(:

We can now write

1
= —————re

h?.
= b cos 6 4 = 2
(32m) ey

0 wm.e

—r/i2a,

2

. Rl 1a [, 0, 13 0%y, &
H [ B 2 (1] o . 9 4
Van = "3, [rz ar (r or ) e ao \"" a0 || Grey Vn

n? 1

2m,r? (327)
hz

2 3],2 7'3
—rf2a r
e”"McosB {2y — — — —— F
| (s )

2rcosé e’ e,
cosd

_.f,.
ZmEJ'"2 (32:4:)”2613/2

—rf2a, —
dmegr (32m) a)”?

2 2
37} (—rve_’ﬂ““ cosQ) - : 5 ( hoe ) e~ cos B
a)* \4a; (32m)2a)? \2m,a, 4me,

4
m. e

O 1
T 2m, (32m)'
ﬁz
z—m 2J"u““

= a2 Vo

6—19. Given the first equality,

show that the ground-state energy of a hydrogen atom can be written as

K ) L m e m e’

E= = -

¢

- 2 - - 2 742 T g.ip2
2m a 87r80a0 32w egh 8ejh

Recall that we can write a, as

We showed in Problem 6-17 that

SO we can write

0=

aﬂ - 0 = = [t}
Tme me”
[:11]!')‘ f}’!e€4 ¢
Belh?
4 4 2 2 2
mee _ mte o e mee - <4
2p2 T 2,232 77 P
8eqh 32m7esh 87, dmeh 8meya,
n? mee2 R

z z
2ma dmeh 2m a;
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6-20. Calculate the probability that a hydrogen 1s electron will be found within a distance 2a, from
the nucleus.

This problem is similar to Example 6—10. The wave function for the Is orbital of hydrogen is

where ¢ = r/a,, and the probability that the electron will be found within a distance 2a, from the

nucleus is
2 bid Ztr(} E 1 3
pr0b=/ dc,b/ df sin@f dr r?— (w—) e~
0 G i} b3 ao
3 24

H o 2
=4 (—) f dr rie™ = 4[ doa’e™
ao ¢} ]

1 13
4 -4 - .
= (w4mw4e )——1—138 =0.762

6-21. Calculate the radius of the sphere that encloses a 50% probability of finding a hydrogen
Ls electron. Repeat the calculation for a 90% probability.

The probability that a 1s electron will be found within a distance Da, of the nucleus is given by

2 brd D(r” 1 1 3
prob(D):/ d¢f d95in9[ drr*— (—) e
G 0 G Fi aO
D

= 4[ doo’e™ =1-eP@2D*+2D + 1)
0

We find that 2 = 1.3 for prob(D) =0.50 and D = 2.7 for prob(D) = 0.90, so the 50% and 90%
probability spheres have radii of 1.3a; and 2.7a, respectively.

6-22. Many problems involving the calculation of average values for the hydrogen atom require
evaluating integrals of the form
I = ] e dr
o

This integral can be evaluated readily by starting with the elementary integral

i 1
1,(8) =j(; e Mdr = 3

Show that the derivatives of I{8) are

di, o0
—— “Brdy — —
T fo re ¥ Il

d*l ©
Eﬁ—zozfo rledr =1,
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and so on. Using the fact that I,(8) = 1/8, show that the values of these two integrals are —1/ B
and 2/B°, respectively. Show that, in general

dn]l) n * n_—fr n
a5 ={=0D rre™dr = (—1)"1
0
. !
:(—l) ﬁn+l
and that
n!
I = EE—]

e = | ear
0
dl, fw d f‘” -
— = — (e Vdr = — re Fdr = ~1
g Jo OB (") 0 ‘

d21 £ 3 =]
— mf — (—re ) dr :] rredr = I,
dp o B 0

Alternatively, since [,(8) = 1/8,
dl, _ 8 (i) _ 1
g 8p\B) P

@l _ 8 1y _2
dﬁz_é‘ﬁ( 62)'5‘

Generally,
d"i oo
dﬁ"o = (—1)”/ rre = dr
¢
. el
= (=1 W
and so
n!
[ﬂ = W

6-23. Prove that the average value of r in the 1s and 2s states is 3a,/2Z and 6a,/Z, respectively.

The average value of r, {r}, is given by

2 ™ oo
{ry = [ dq{)] do sin@f drr*y, (r.6,¢) v, (r,6,¢)
0 0 0

The wave functions for the 1s and 2s states are (Table 6.5)
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50
Z\' [®
{ry, =4 (—) ] rle®
a, a
da, 4a, (3! 3/a
—_ _0 d 3—2:1_______@_ ___)__(_Q
z J, °7° Z (16 2 z)
and
AN o
{r, == (w_) f 4 —4d0+oHe™
d 8 ao 0
Y fmda(40r3 —dgt +o%)e”
8Z Jy
= 30_(4.31 — 441 51 = %
27 ! ! ! =
6-24. Prove that {V) == 2{E) and, consequently, that (I%) = —{E), for a 25 electron.

The average potential energy of a hydrogen-like 2s electron is (Equation 6.1)
vy ={--2
N dmer
2 b4 o 62
= f dq&/ dd siné‘f dr r*y], (w—) W,
0 9 0 Ame,r :
e?_ 7 3 o]
=— — ) f drr{(2—o)e™”
3lme, \q, o

e’ zZ oo 5 N
= - — do (4o —4o” +07)e
32me, \ay/ Jo

Zet
16mea,

The total energies of a hydrogenlike atom are (Problem 6-34)

E o Ze* _ Zet
" Bmsagn’ T 32mega,

forn = 2, s0 (V) = 2{F). Because (Ii’) + (VY= E, (I%) = —{E).

6-25. By evaluating the appropriate integrals, compute {r} in the 25, 2p, and 3s states of the hydrogen
atom; compare your results with the general formula

(r )= 329{3n2 — I + 1]

In Problem 6-23 we found the average value of r in a hydrogen 2s orbital to be {r) = 6a,. The
wave functions for the 2p and 3s states are (Table 6.5)

I ASE
Yoy = ———=—=1—| e cosf
210 v a,
1 7 172
= 2L} (27~ 180 +20He™
Vi 8137 (ao)
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Sofor Z == 1, we have

3 T n oo
r, Y= A (L /2 dqﬁ/ df sind Coszé'f dr rioe™
2 = 32 \a,) )y ; o
_ ﬁf] dxxszdaaje‘“ _ 9 (2 51y = sa
16 f_, o 16 \ 3 ' 0

i 2 T o0
{ry,) = ﬁ/ dt;bf dg sinB[ dr r*(27 — 180 + 20%)2e™ ™"
! Fmay Jo 0 0

o0
- 4a0

M?O

4a, 3\ 5\° 3\
= 2135302} +43°50(Z) +47({=
S [ (2) " (2) N (2)
3y’ 3\° 3\’
—4.3%.41( ) 443851 (2] 832612
(3) +433(3) -s30(3)

and

doo® [3° +4(3'07) + 4ot — 4(3F0) + 4(3%07) — 8(Fa )] e

21a,
T2

Using the general formula

r )= %9[3”12 -+ 1]

we obtain 6a,, Sa, and 27a,/2 for the values of {r,} for the 25, 2p and 35 orbitals, in agreement
with the above calculations.

6~-26. Show that the first few hydrogen atomic orbitals in Table 6.6 are orthonormal.

See the solution to Problem 616,

6~27. Show that the two maxima in the plot of rzg[ff‘,(r) againstr occurat (3 =+ \/g)ao. {See Figure 6.3.)

We can write r>yr; (r) as

flry=ryin)

3 2
— rZ_E___ (l) (2 - _r_) e—r,t’a”
32m \a, a,

2 2
_ IS (2“‘“ L) e—r/a“
- 3
I2may a,

To determine the maxima of f(r), we find the values of r for which df (r)/dr = 0:

2 2 2 2
df(r) — 1 2?" 2 _ “f_ e—r/ali . g’__":_ 2 . L e,_,,’;ﬂ“ _ I’_ 2 _ L e-"/ﬂ(,
dr 32ma] a, a, a, a, a,
I 2r v r
O0=2{72— ;x| _ max  mfg _max
ao ao ao aO

—2agr,. + .

— dg? — e
= day; — 2ayr_ . - 2a,r

max max Imax
= —6ar +4a
 Pmax 0" max 0
r = (3+5aq,
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6-28. Calculate the value of {r) forthe n = 2, [ = 1 state and the n = 2, { = 0 state of the hydrogen
atom, Are you surprised by the answers? Explain.

The average value of r, {r}, is given by

{r} =fdw’fn,(h@,d’)*v'f,,f(r,@,tﬁ)

We use the wave functions in Table 6.6 to find

4 e r\*
= drrt {2 — —ridy
<r)20 32”013 /0 rr ( ao) e

= ﬁf dxx3 (2~ xYe™ = 2 (4.3 — 4.4] + 51)
8 J, 8

= 6a

0

{r) 21 foodé?sinﬁcosz@]wd 3(r)2 —rin
= — e — ) e
A 32.7'[!118 o 0 a,
a, (2 oo
[—t) - d 5 —x
16 (3)/0 e

..ﬁ(g)(y)-—s
Tle\3) VY T %

These results show that an electron in the 25 orbital is farther from the nucleus (on average) than
an electron in the 2p orbital. This is surprising, as we might expect the reverse to be true from
our studies of multi-electron systems in general chemistry; note, however, that a one-clectron
hydrogen-like wave function differs from multi-electron wave functions (Chapter 8).

and

6-29. In Chapter 4, we learned that if ¢, and ¥, are solutions of the Schrodinger equation that have the
same energy £, then ¢y, + ¢, ¥, is also a solution. Let i, = ¢, and 1, = 1r,,, (see Table 6.5).
What is the energy corresponding to ¥ = ¢, ¥, + ¢,%, where cf + c% = 1?7 What does this result
tell you about the uniqueness of the three p orbitals, p , p , and p ?

Recall that the energy of the hydrogen atom depends only on the value of n. Therefore, ¥, and
¥, ,, have the same encrgy, £,.and so (Chapter 4) the energy corresponding to ¥ = ¢, ¥, + ¢, ¥,
where c]2 +- C% =1 is also E,. The three p orbitals (p_, Py and p,), therefore, are not a unique
representation of the three degenerate orbitals forn = 2 and ! = 1.

6~-30. Show that the total probability density of the 2p orbitals is spherically symmetric by evaluating
E:ﬂﬂ_] V3. (Use the wave functions in Table 6.6.)
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: IS AN
Z Viim = 27 (a—o) o’e™ (cos” # + sin” 6 cos® ¢ + sin” @ sin’ ¢b)

230.28—0

- 327’[613
Zigte™

= Sma
_ Zice™

327ra3

mr=—1

[cos® 6 + sin’ & (cos® ¢ -+ sin® ¢) ]

(cos? 8 + sin” )

The sum depends only on the variable r (through ), so the total probability density of the
2 p orbitals is spherically symmetric.

6-31. Show that the total probability density of the 34 orbitals is spherically symmetric by evaluating
32wl (Use the wave functions in Table 6.6.)

2 3 2 b
1 Z 3 -1
E Vvl = T (Z;) gle~ A [% + 2sin” @ cos® § cos’ ¢

m=-2

sin* @ cos? 2¢ . sin*  sin® 2¢]

2sin® @ cos® # sin®
+28in" 6 cos” @ sin” ¢ + 2 5

+ 25in? 8 cos* 6 (sin® ¢ + cos’ ¢)

_ Zigleh? [(3 costd — 1)?

81°ma; 6
sin* 0 (cos® 2¢ + sin® 2¢) :i
+
2
230,48—20/3
=————[(cos’0 —~ 1)’ ++ 12sin’ 6 cos’ ¢ + 3sin* 4]
(81)*6ma;

Now substitute sin®# == | — cos’ @ into the above expression Lo get

2 3 4 —2e/3
Zo'e
2 4 2
w9 008 G — O CO8%HF + 1
mzz Vo = G em el [9cos
+12(1 — cos? #) cos” § + 3(1 — cos” 0)*]
Z3 g2/
= ?8_‘1{{);% [9cos'® — 6cos’ 6 + 1 + 12¢cos* @ — 12¢cos' @
na;

+3 — 6cos’ B + 3cost 9]
4230.46—20/3 2230_4e-2r1/3

@D%ra () 3na

The sum depends only on the variable r (through o), so the total probability density of the
3d orbitals is spherically symmetric.

6-32. Show that the sum of the probability densities for the n = 3 states of the hydrogen atom is
spherically symmetric. Do you expect this to be true for all values of n?7 Explain.

In Problem 631 we showed that the sum of the probability densities of the 3d orbitals is spherically
symmetric. The probability density of the 3s orbital is also spherically symmetric, and so we need
only show that the sum of the probability densities of the 3 p orbitals is spherically symmetric. The
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angular dependence of the 3p orbitals is the same as that of the 2p orbitals. In Problem 6-30 we
showed that the sum of the squares of the 2p orbitals is spherically symmetric, and therefore the

same must be true for the 3 p orbitals. Thus, the sum of the probability densities for the n = 3 states
of the hydrogen atom is spherically symmetric. We expect this to be the case for all values of n.

Recall from Problem 6-10 that

+

Z 1¥"(8, $)|* = constant (1

mr=—1{

When we sum all of the probability densities corresponding to any given n, we evaluate a sum
similar to that in Equation 1. Because the sum is equal to a constant, it cannot have any angular
dependence and will depend only on r. Such a sum is spherically symmetric.

6-33. Determine the degeneracy of each of the hydrogen atomic energy levels.

The energy depends only on the quantum number n:

E = - n=1,2,... (6.45)
" 8mean
For a given value of n. there are n — 1 allowed values of [. For each [ there are 20 + 1 allowed
values of m. All of these combinations of [ and m are degenerate, and so the total number of energy

sublevels for one value of n is

n—t _1
Y+ = 3(”—2)34”1:”2

1=()

6-34. Set up the Hamiltonian operator for the system of an electron interacting with a fixed nucleus of
atomic number Z. The simplest such system is singly ionized helium, where Z = 2. We will call
this a hydrogenlike system. Observe that the only difference between this Hamiltonian operator and
the hydrogen Hamiltonian operator is the correspondance that ¢? for the hydrogen atom becomes
7e? for the hydrogenlike ion. Consequently, show that the energy becomes (cf. Equation 6.44)

B m 62284 2
n WW n=1, 4, ...

Furthermore, now show that the solutions to the radial equation, Equation 6.47, are

R (r) —_ (f'u', - — 1)1 }Uz (%)H—Nz rl'e——Zr/ml“Lll+l (&)
u 2al(n + D' na, "\ na,

Show that the 1s orbital for this system is

and show that it is normalized. Show that

and that

The Hydrogen Atom

Last, calcualate the ionization energy of a hydrogen atom and a singly ionized helium atom. Express
your answer in kilojoules per mole.

The Hamiltonian operator for a hydrogenlike system is

H? o 7t

H=- -
2m, dre,r

The only difference between this Hamiltonian and that of a hydrogen atom is that e” is replaced by
Ze*. Because e appears nowhere else, we can obtain the results of this problem by replacing e by
Ze* in the hydrogen atom results. For example, the expression for the energy of a hydrogen atom is

m e
HZ—W 11:1,2,... (644)
o
and so the energy of a hydrogenlike atom is given by
E — J"ne(Zez)2 . mezze4 (2 ’
n 8eih’n’ B Rech’n® PERL (D

The Bohr radius (eﬂhz/n,u,e2 for hydrogen) for a hydrogenlike atom is

2
E,‘O)'?

- TpZe’

g

Consequently, we can replace a, by a,/Z in Equation 6.47 to find

172 32
R (r)=— { (n—1—D! m%% ! o~ Zrinay [ 4+ &
nt 2nl(n+DI1P na, i na,

The hydrogen atomic 1s orbital for a hydrogen atom is

i
3/2
Ir"lzaol

e—r,ﬂ’u“

’[//LI' =

and becomes, for a hydrogenlike atom of atomic number Z,

v ] zZ\"? —~Zr i 2)
= = _ e ()
k= 7 g,

To see whether this function is normalized, we evaluate

2 T oo 3
Z.

./‘d“ﬁ;.-'ﬂ]s =j(; dqi?f 46 sim‘?/ drrz—na3e“2z’f"o
0 a 0

4z%
= — drrie

ay Jo
_ 4Z'2la;

R VA

-2
..Zr,‘nn

We now evaluate {r}),  using Equation 2.

2 T o 23
(r)l\' = [ d¢f d@ Sin@f drr3 (_3) e"zzr,":r"
l 0 0 o 7T ¢y

4z7% = da. [
— . d}_rBB—ZZr/n“ . ¢ do,o,je—za
ay Jo 0
!
_ da, 3! 3a,

~Z 16 2Z
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The value of Fp is given by

d * 2
;wl.rwl_rrmp - 0

3
d 2 Z =2Zr_fa,
T _ge =0
dr " ray
—2Zr?
Zrmpemz.Zrmp/uO 4o TTm 22l
a

0
ao——Zrmp =0

¥ = &}-
mp Z
The ionization energy is given by — £, and so we find from Equation 1

m Z2et

IE = W = (1312 kJ-mot ) Z?

Therefore,

IE, = 1312kI'mol™ = 13.60eV and IE,, = 5248 k)-mol~' = 54.39 eV

6-35. How does E_ for a hydrogen atom differ from Equation 6.44 if the nucleus is not considered to
be fixed at the origin?

See the solution to Problem 5-44.

6-36. Determine the ratio of the ground-state energy of atomic hydrogen to that of atomic deuterium.

The energy of the ground state of a hydrogen atom is given by (Problem 6-35)

4

e
E=-1
8esh?

where /4 is the reduced mass of the atom. The ratio of the ground-state energy of a hydrogen atom
to a deuterium atom, £,/ F_, is then

Ly _ #a

Ey,
In Problems 5-7 and 5-46 we calculated that p, = 9.104431 x 107" kg and that My =
9.106 909 x 107" kg, so the ratio of the energies is

Ey  9.104431 x 107 kg
E,  9.106909 x 107 kg

=0.999 728

6-37. In this problem, we will prove the so-called quantum-mechanical virial theorem. Start with

Hy = Evy
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where
- K
H=——V1V(x,y,2)
2m
Using the fact that A is a Hermitian operator (Problem 4--28), show that
[ w1 Az =0 M
where A is any linear operator. Choose A to be
- a8 a 8
A=—ib|lx—+y—+z— 2
l (xax )’ay—i—zaz) (2)
and show that
RN av av av TN . X
(A, Al=if (x5 +y 2o + 250 ) = P2+ P24+ Y
ax dy az m ¥ :
v A% av .
=ih|x— — g | — 2ihK
I (xax-l~yay+zaz) i
where K is the kinetic energy operator. Now use Equation 1 and show that
v av av ..
— e o g } = 2K 3
(a+yay+za) (K} (3)

Equation 3 is the quantum-mechanical virial theorem. Now show that if V{x, y, z) 1s a Coulombic
potential

Yooy, )= e, (2 ie; +H7
then
(V) = —2{K) = 2(E) @
where
(E) = {(K)+ (V)

In Problem 6-24 we proved that this result is vaiid for a 25 electron. Although we proved Equation 4
only for the case of one electron in the field of one mucleus, Equation 4 is valid for many-electron
atoms and molecules. The proof is a straightforward extension of the proof developed in this
problem.

‘We first show that
[t dwar =0 M)
Writing out the commutator, we have
fw*ﬁéwdr - f W AHYdT =0
Using the Hermitian property of H, we can write this difference as

] (W) bdr — f y A (Ay)dr Lo
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We know that ﬁw = Evr, 50
fa,&*[ﬁ, Alydr = Efx/f*,«iwdr - Ef YyrAydr =0
Now let
A=-in (xi+y~§~+zi) )
X ¥ z

We are given

Then

ay

h3 3 8 & B a?

L P R R zf 7
dx“dz dxady

2
HAf = ~in [—S*Vz + Vix, y, z)] [ zf - ygi +zi]

o o Y axtay
3*f &f ' f a'f o' f Ff 33f)

e Ay 22 42
ay* Eiy1 dy 28z+x8x822+ 8y82+ 3z° e 3z’

af  af  8f
—ih [v (xa +73, +28—z)}

+2

. int (9 3 aN (8*f B f P 9 2 a
AHf:im— x—+y—+z—)(—f f+ f —ihlx—+y—+z—- | VS
ax dy az 3] ay? a8z’ ¥ z

ih3(83f 3 f 3 f 8 f af ' f A F a*f)

x—5 +x +x +y—=+y I
ax’ axdy? dxaz* yaxzay yay ayaz dx*dz

_ a3V AV av of | df . df
—zh[(xéw+y“§;+z?’—;)f+(xa—x 3 +z 5—2*) ]

Therefore,

A in? * 3* 3* 8V oV v
[H,A]ﬂfw(ZWJr?. +2m2~)+m(x—+y—+z——)
Z x Z

2m \ ax? ay* ] ] Dy B
av.  av ih

= ih e — oy PZ PZ P?.)

I(xa e za) m(‘+y+z

where we know P and K from Table 4.1. Now, substituting this result into Equation 1 gives

AV av  av R
/w* [ih (x— +y—+z3_) WZiPLK} Ydr =0
Z

dx dy
oV v
i w*(x —+z—)wdz_mf¢21<wdr
dx ]
RAGNAANAL WP 3)
ax Ty Ty T AN
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Now consider the Coulombic potential

Ze?
Vix, y, z) =
(x,¥,2) 47[80(x2+y2+22)§/2
This gives
oV aV BV Ze* [xr  yPF
AT Y L - D S T e 3
dx ay 8z dwe, \r r r
7 2
=2y
dme,r

and so substituting into Equation 3 gives (V) = w2(!2). Because {K ) +{V} = E, we can write
— (K} = —2(K)

or £ = —(1% y for a Coulombic potential.

6-38. Use the virial theorem (Problem 6-37) to prove that (R} = (V} = E/2 for a harmonic oscillator
{cf. Problem 5-23).

For a three-dimensional harmonic oscillator,

x? k‘yz k 7*
Vix,y, 7) = = +—’2—+ :‘2

Therefore, 7
aVv av av

— — =k, k kz® =2V
8x+y8 +zaz x4 y+z

and substituting into Equation 3 of Problem 6-37 gives 2{V} = 2(K}. Because Ky +(Vy=E
we can also write

(Ky=1(Vv

1
3 e
=]

6-39. The average value of r for a hydrogenlike atom can be evaluated in general and is given by

2 1 I+ 1
=il

Verify this formula explicitly for the ¥,,, orbital.

We first determine (r),, directly:

i 7. .
(r)Zl = f d¢f S]ﬂgdgf }’zdrqﬁ;“r(bzn
0 0 0
Z3 2 T oo Z 2
= 3f d¢cos’ ¢ de sin”)[ drr? (_r) o Zridy
32ray Jo 0 A a,

N J'Tif dxx’e™
327 3 b
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Using the equation given in the problem,

2? 1 1{1+1
=2l i[- 2)

6-40. The average value of r* for a hydrogenlike atom can be evaluated in general and is given by

n“aé 3 W+1nH-1
k72 EAE ] =

Verify this formula explicitly for the v, orbital.

We first determine (r*),, directly:

2 frd o0
(r’y,, =f dqb/ sin@dﬂf rrdrgy iy,
0 0 0
3 n ¢ o0 7z 2
= Z 3f dq’)[ d85in900529[ (_r) e rlptdy
323‘1’&0 ¥} ¥} 0 dy,
3 oo 2
_ 22 %[ (_%“{:) e—Zr/uor‘ldr
327’[&3 3 0 4,
2 co
= aozf dxxbe™
24Z2° Jo

2 2
ay 30a0

ZZ

10 +1y-1
N

6-41. The average values of 1/r, 1/r*, and 1/ for a hydrogenlike atom can be evaluated in general

and are given by

1\ z
rly  an’

1) B zZ?
r? n,_aﬂn g+1 )

and

1y VA
Ple an’ld+HU+ 1
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Verify these formulas explicitly for the ,, orbital.

We first evaluate these quantities directly:

1 b 4 e o 1
<._> :f d¢f sin9d9f ”zd"‘n{f;m_‘/fzzo
r 21 1] Q0 0 r
1 7 3 2z 4 o 1 2
= — (——-) f dqﬁf dfsing coszﬁf drr’— (E) e~ %%
327 \a,/ Jo ¢ 0 FAda

VAR z (e
- _.Z d 3 ,-Zriay, — f d 3 -k
16ag 3 [ e 2da, Jy T

> 1
) = [ de f sinfde f rzdrw;,o—zzpm
21 0
1 (Z
= — —)f dqbf d0 sin 8 cos® 9/ drr— Zr e—zr/"o
327 \a a,

ZS 9 f 72 oo
— = drr?,e—Zr/uﬂ - dxxze—’
0

16a; 3 24a; Jo
z? VA
= 202 =
a; 12a;

1 2 T ) oc . 1
(—3) :/ d¢f Smé’d@f rzdfw2]0—31/1210
in 0
1
=—(«—)/ dqb/ d0 sin b cos® 9/ drr*t = ( )e‘Z’/“a
32m \ a,

z’ Z
= f drre %% = —/ dxxe™
16“0 24{10

Z}
24a(3,

Using the equation given in the problem,
(1) _Zz z
rly  a2*  4a

(1) _ z 4
Ply T @+ T 124

(1) B z? 7
Pl @@L+ @] 24a]

6-42. The designations of the d orbitals can be rationalized in the following way. Equation 6.63 shows
that d,, goes as sin 6 cos cos ¢. Using the relation between Cartesian and spherical coordinates,
show that sin@ cos 6 cosqb is proportional to xz. Similarly, show that sinf cos @ smq& (d,,) is
proportional to yz; that sin® 0 cos 2¢ (d._,2} is proportional to x* — y* and that sin® @ sin 2¢ d.)
is proportional to xy.
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The relations between Cartesian and spherical coordinates are
x =rsinfcosg y = rsinfsing z =rcost
Thus, for the d,, and dyZ orbitals, we see that

r?sinf cosf cos§ = xz
sinfcosfcosg o xz
r*sinf cosfsing = yz
sinf cosfsing o« yz
Likewise, for the dxzﬂ,z and dx)_ orbitals,
r?sin® 0 cos® ¢ — r¥sin? @ sin® ¢ = x* — y?
r?sin? @ cos 2¢p = x* — y*
sin® 6 cos 2¢ o x* — y*
r’sin® 6 cos ¢ sing = xy
Ir?sin® 0sin2¢ = xy

sin® 6 sin 2¢p o xy

Problems 6—43 through 6-47 examine the energy levels for a hydrogenatom in an external magnetic field.

6-43. Recall from your course in physics that the motion of an electric charge around a closed loop
produces a magnetic dipole, j, whose direction is perpendicular to the loop and whose magnitude
is given by

u=IiA

where i is the current in amperes (C-s~') and A is the area of the loop (m*). Notice that the units of
a magnetic dipole are coufombs-meters®-seconds ™' (C-m’-s™"), or amperes- meters® (A- m?). Show
that

_4v

T 27y

for a circular loop, where v is the velocity of the charge ¢ and  is the radius of the loop. Show that

_qu
H=5

for a circular loop. If the loop is not circular, then we must use vector calculus and the magnetic
dipole is given by

_gl{rxv)

2

Show that this formula reduces to the preceding one for a circular loop. Last, using the relationship
L =r x p, show that

g
=-—L
. 2m

The Hydrogen Atom

Thus, the orbital motion of an electron in an atom imparts a magnetic moment to the atom. For an
electron, g = —|e| and so

_ e

- 2m,

For a circular loop, the frequency with which a charge g will pass a given point is v/2mr {the speed
of the charge divided by the circumference of the circle). Then

qu
i=gqv=-"—
7 2nr
The area A of the loop is 772, so
,u,_iA_qw”z _gqrv
2y 2

Using vector calculus, we find

_grxv) gqrv siné _qrv

2 2 2

because 8 = /2 for a circular loop. Finally, to show the last relationship, recall that p = mv, so

_ g(r x v) _ gm(r X V)

2 2m
grxp) g
= — = _L
2m 2m

6-44. In Problem 6-43, we derived an expression for the magnetic moment of a hydrogen atom

imparted by the orbital motion of its electron. Using the result that L? = #%[(! + 1), show that the
magnitude of the magnetic moment is

u=-Bl¢+ DI

where 8, = file|/2m_ is called the Bohr magneton. What are the units of 8,7 What is its numerical
value? A magnetic dipole in a magnetic field (B) has a potential energy

V=-pB

{We will discuss magnetic fields when we study nuclear magnetic resonance, NMR, in Chapter 14.)
Show that the units of the intensity of a magnetic field are J-A™'-m™2. This set of units is called a
testa (T), so that we have 1 T = 1J-A™"-m™. In terms of teslas, the units of the Bohr magneton,
B, arc ] T\

Taking the square root of both sides of the equation L? = R*(l + 1) gives |L| = R [I( + 1]
Recall from Problem 643 that

P el L
2m,

Substituting in |L| = & [I( + 1)}* gives

h
= “%{w + DI = =1+ D)
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Because the quantity [[(Z 4 1)]'/ is unitless, the units of B, are the same as the umts of £ (C-m*-s™"),

The numerical value of B, is
(1.602 177 x 107° C)(1.054 572 x 107 J-5)

e = T 2(9.109 390 x 107 kg)
=9274007 x 10°%* C-m?-s~! = 9.274 007 x 107 J.T"!

The units of B are the units of V divided by the units of u, or

]

—— =] AT m?=1T
C-m*s

6-45. Using the results of Problems 6-43 and 6-44, show that the Hamiltonian operator for a hydrogen

atom in an external magnetic field where the field is in the z direction is given by

- B .
[ ZLZ

H=H,+

where H is the Hamiltonian operator of a hydrogen atom in the absence of the magnetic field.

Show that the wave functions of the Schrédinger equation for a hydrogen atom in a magnetic field
are the same as those for the hydrogen atom in the absence of the field. Finally, show that the energy

associated with the wave function ¥, is

E=E® +4Bm (D

where EW is the energy in the absence of the magnetic field and m is the magnetic quanium number.

The Hamiltonian operator for a hydrogen atom in an electromagnetic field can be expressed as

H = ﬁo + V
where ﬁo is the Hamiltonian operator of an isolated hydrogen atom and V = — - B is the potential

energy associated with the external magnetic field. If the external magnetic field is in the z direction,
then only the z components of the vectors p and B effect the potential energy of the atom, and we

find

H=H—

B =H0+-—LB
B,

A+

The hydrogen atomic orbitals which sat1sfy the equatlon H W, = E°1,!f are mgenfunctlons of L
and so they are also eigenfunctions of H. Because L My, = WA

}SEBZ
B

H'{/}—n.’m = gﬂ’l/fnfm + LAanFm
Ewnim = Eiﬂ)wnlm + ﬁeBzmwnIm
giving

E=EP +4Bm

The Hydrogen Atom

6-46. Equation ! of Problem 6-45 shows that a state with given values of n and [ is split into 2/ + 1
levels by an external magnetic field. For example, Figure 6.8 shows the results for the 1s and
2 p states of atomic hydrogen. The 1s state is not split (21 + 1 = 1), but the 2 p state is split into three
levels (21 -+ 1 = 3). Figure 6.8 also shows that the 2p to 1s transition in atomic hydrogen could (see
Problem 6—47) be split into three distinct transitions instead of just one. Superconducting magnets
have magnetic field strengths of the order of 15 T. Calculate the magnitude of the splitting shown
in Figure 6.8 for a magnetic field of 15 T. Compare your result with the energy difference between
the unperturbed 1s and 2p levels. Show that the three distinct transitions shown in Figure 6.8 lie
very close together. We say that the 2p to 1s transition that occurs in the absence of a magnetic
field becomes a triplet in the presence of the field. The occurrence of such multiplets when atoms
are placed in magnetic fields is known as the Zeeman effect.

No magnetic Magnetic
field field ,,
USRS +1

2p e ezzzziIIII 0

----- -1

— Energy —»

ls —Y . YYY o
Corresponding CD ED:D
spectrum
FIGURE 6.8

The splitting of the 2p state of the hydrogen atom in a magnetic field. The 2p state is split
into three closely spaced levels. In a magnetic field, the 2p to 1s transition is split into three distinet transition
frequencies.

In Problem 6-45 we derived the equation £ = E” -+ §, B m. Thus
AE=E, - E =B,B(m,—m)
For the 1s state m = 0 and for the 2p state m = 0, =1. Thus (m, —m,) =0, £1 and so the
magnitude of the splitting shown for a magnetic field of 15 T is either 0 or
= (9.274 x 107¥ 1. T"HY(15 T)(1)
=1.391 x 10727

The energy difference between the unperturbed 2 p and 1s energy levels is (Equation 1.11)

i 1
AV = (109737 cm_‘) (Ti — -2-5) = 82303 cm™!

E

25

— E,=1635x10""]

The magnitude of the splitting caused by the magnetic field is on the order of 0.01% of the energy
difference between the unperturbed energy levels.
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6-47. Consider a transition between the [ = 2 and the / == 3 states of atomic hydrogen. What is the
total number of conceivable transitions between these two states in an external magnetic field?
For light whose electric field vector is parallel to the direction of the external magnetic field, the
selection rule is Am = 0. For light whose electric field vector is perpendicular to the direction of
the external magnetic field, the selection rule is Am == -1, In each case, how many of the possible
transitions are allowed?

Recall from Problem 646 that a state with given values of n and [ is split into 2! 4 1 levels by
an external magnetic field. The I == 2 state will therefore be split into 5 states (m = 0, £1, +2)
and the { = 3 state will be split into 7 states (m = 0, £1, 2, +3), making a total of 35 possible
transitions. Using the selection rule Am = 0, five transitions are possible (when m =0, m =1,
m = —1,m = 2, or m = —2 for both states}. Using the selection rule Am = =1, the following ten
transitions are allowed:

=2 — 1=3

m=0 m=1
m=10 m=—1
m = | o=

m=—1 m= -2
m=1 m=10
m=—1 m o=

m=72 m=73
mo=2 m=1
m=-2 m=—3
m=—2 m= -1

Problems 648 through 6-57 develop the quantum-mechanical properties of angular momentum
using operator notation, without solving the Schriodinger equation.

6-48. Define the two (not necessarily Hermitian} operators
L, =1 +il, and L =L —il

Using the results of Problem 6-13, show that

and

In Problem 6-13, we showed that

(L,.L]=ih

|agad
o
-[...‘,
{l
:::-'
i
s
>
[
o
I
=
t~<

The Hydrogen Atom

Now

=L i +il i —-L L —ilL,

=(L L, ~LLy-il L —LL)

=[L,L]-i[i, L

=ikl ~iGhL) =n(L +il)=hL,
[I:z, £_] =LL ~1L L

w L (ix - zl‘) ~ L L +il L

=L L —ilL -LL +ill,

=L, ~LLiy+i(LL~LL)

= [f, , f,x] +1 []:.’, f,z

F4
=il +iGnl)y=n(~L +il)=-hL
We also showed in Problem 613 that 12 commutes with f,x, Ih,y, and I:z. Using this result, we find

[i2,]=12

AR
—i2(L,— i) - L4l 07
= 2D 2D - B2+l B2

6-49. Show that

and
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L L =L, —il)L, +ily)

=B Dvil b il b = 2 - 2L, L]

=[P~ [ —nl,
DL =(L +iL )L, —iLy)

P

=2 B24il, L] =12 - B2 4al,

6-50. Because L’ and f,z commute, they have mutual eigenfunctions. We know from the chapter that
these mutual eigenfunctions are the spherical harmonics, ¥;"(8, ¢), but we really don’t need that
information here. To emphasize this point, let I}'Jaﬂ be the mutual eigenfunctions of L? and ﬁ? such
that '

Ly, =pv,

szﬂfﬁ = aff
Now let
. o
ti - L+waﬁ
Show that
L = (& -+ )]
and
o:f! - ﬁ

Therefore, if « is an eigenvalue of f,z, then « + 1 is also an eigenvalue (unless

74 happens to
be zero). In the notation for the spherical harmonics that we use in the chapter, L N Y8, ¢) o«
Y;'m-i-l (6, ¢)

We start with
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Finally,

6-51. Using L_ instead of L , in Problem 6-50, show that if @ is an eigenvalue of f,z, then o — &
is also an eigenvalue (unless w@l =L ¥, happens to be zero). In the notation for the spherical
harmonics that we use in the chapter, f,_ Yre, ¢) « Yo, ¢).

We solve this problem by using the same approach as in Problem 6-50.

L Wﬂ,ﬁ L f“—waﬂ - (i‘zi‘x - ii‘zi’}') ‘ffﬂ,ﬂ

LL—hl )y =L @-m,=@-nv,

6-52. Show that each application of L . to ¥, raises the eigenvalue by %, so long as the result is
nonzero.

In Problem 650, we showed that if
f’z¢aﬁ = af
then
F 7 [
LZL+W.1;1 = (e +h) ;,,

Now applying L to and operating with L gives

1: [ aﬁ “‘i‘+(i‘z_+h)

where we have used the relation ﬁzﬁ = L L + FLL Now L = {a +Hh) mﬁ ,
LL mL (o -+ 2h) = (o + 2k)

Whlch shows that the eigenvalue once again increases by k. We can continue this process to show
that L = (u -+ 3h) aﬁ , and so forth.

6-53. Show that each application of E_ oY, fowers the eigenvalue by i1, so long as the result is
NONZero.
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In Problem 6-51, we showed that if
I:zd)dﬁ =ag,,
then
LL =y
Applying f_,m to ‘:Va_ﬁl and then operating by 1:Z gives
i yl=1L (EZ - h) v
where we have used the relation f,zﬁ_ = 1:_1’:a —hL . Now ﬂz_w;ﬁ‘ = (o —R)¥,,, 50
LI g =1L_(a—2m)yg =(—2m)y,;

Just as in Problem 6-52, we can continue this process to show that EZ 1/;;; = (@ — 3h) 1/;01”;, and so
forth.

6-54. According to Problem 6-48, L2 commutes with L . and L_. Now prove that £.> commutes with
L? and L? . Now prove that

(L% L7 =0 m=1,23, ...

T2 727 7272 7272 _ {r27 7 7 -
(L2, i2) =21 - 1202 = (P21 ) (1,) - L, (£, 1)
Using the fact that [?and L , commute, we can rewrite this as

72 72 I f27
[’ 12]=L, L'L, ~

o~
4~

P*L, =0

We can show that L? commutes with L2 by replacing 7, L With L_ in the above proof. We can show
that the general statement is true using a stepwise approach. For example, consider the case of
m = 3. We have already shown that L* commutes with L2 and L2. Then

L L= DPL - 02 = (21,) (13) - 12 (£,£)
Using the fact that (L2, I:i] = 0, we can rewrite this as
Ut iy=1, (PPL,) L, — 21PL, = 222D, ~ 22070, =0

We can show the general statement js true for any m = n as long as we have proveditform =n — 1.
Again, the case with L is proved in the same way, substituling L for L

6--55 In Problems 6-50 through 6-53, we proved that if 1/;*”’ izwaﬁ, then
L = (o0 = miyr m=0,1, 2, ...

so long as the result is non-zero. The operators L are called raising (L ) or lowering (L ) operators
because they raise or lower the eigenvalues of L They are also called ladder operators because the
set of eigenvalues o £ mh form a ladder of elgenvalues Use the result of Problem 6-54 to show
that

w p— ,8 wim

The Hydrogen Atom

F2.p3m __ F2F
L waﬂ =1L Lz‘rf’aﬁ

_ fmf2

= L1ity,,

Fmp2

= Ly,

a2k

=8 wﬁm

6-56. Start with
L = {o = mh)] i’"
Operate on both sides with L , and subtract the result from (Problem 6-55)
im '82 :l:m
to get
(L = Dy = (L + Dy = 18~ (£ mm) 10
Because the operator f,i + f,f corresponds to a nonnegative physical quantity, show that
B* ~ (a £ mh) =0
or that
~B<atmh<f m=20, 1, 2,

Because # is fixed, the possible values of m must be finite in number.

The steps outlined in the problem lead easily to the result
_ L?)wﬂ{ﬂ (LZ + L )wim _ [ﬁz - (CE :l:mh)2]wdiﬁm

Because the operator f,i + I:f corresponds to a nonnegative physical quantity, we know that
] r(ydry (£ + LZ) Vi 2 0
(6 - 2] [ e (v) i = 0
B —(ax mﬁ) >0

Then

—fB<atmh<p m=20,1,2, ...

6-57. Let ¢ be the largest possible value of & &= mh. By definition then, we have that

Lzl‘b‘anmxﬁ = amachx B

nix

Ly, =89, ,

nLx mx
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and

Livy, ,=
==L} -nl)y, ,
and
B =l +ha,
Use a parallel procedure on wum » to obtain
g = aiin ~ e
Now show that o, = —¢ ., and then argue that the possible values of the eigenvalues a of f,,z

extend from +a to —o in steps of magnitude 7. This is possible only if «__ is itself an integer
{or perhaps a half-integer) times A. Finally, show that this last result leads to

B =1(+ Dn’ [=0,1,2 ...
and

o = mh m=0, £1, +2, ..., +I

Recall from Problem 6-49 that L L, = L* —~ [? — &L . Then

Liy, ,=L®=0=C L)y,

pHEY milxﬁ
= (1212 ~al)v, ,

Using our definitions in the beginning of this problem, we can evaluate the result for the operation
of each operatoron ¥, , to get

0=[8—al,—ha_ IV 5
This result implies that

B — (el +ha y=0

max

or, equivalently,
B = +he, (1)
Similarly, for o, recall that L, L = L* — L2+ AL . Then

by, ,=Lo=0=L1lw,,

nin

{72 __782 7
=( -—LZ~§~F1LZ) Vo 4

Using the definitions at the beginning of this problem (replacing o,
the result in for each operation and write

« with «_. ), we can substituie

a; min

0= [ﬁz — Oti"-n - hamin]yfra 8

jEDS
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This result implies that

B — (ol —ha_ }=0

min

or, equivalently,

2.2
ﬁ = Oein hamin

Now we have two equations for 8%, one in terms of @, .. and one in terms of o, . Setting these

equal to one another, we find
2 —
o, Tha =«

ax min min

2

max
~hx B — 4 (ha, — ok,
amax = 2
— _E + 2amin —h
2 2 _

amax = _amén or armin —h
However, ¢, is the minimum valuc.of @, s00,, Fo ——_h and wecanconclude thate,, = ~a_, .
According to Problem 6-535, @ varies in integral steps of A, so « must vary from o, to @, in

steps of i. This is only true if & is an integer or half-integer times k. We call this multiplicative
constant [ and so

a =Ih o, = —lh
Because o varies in integral steps of iz, we can describe any value of o by
o = mh m=0,%1,£2,..., =
(If @ =0, then ! must be an integer.) We can also write (from Equation 1)

B = (R’ +R(R) =R P+ 1) = I( + DR?

where [ is, of course, an integer.

6-58. According to Problems 6-50 and 6-51,
LY (0, 6y = he}, Y™ (0, 6)
and
l:A Y.'m (6, qb) — hC;i Y[m-—l (9, ¢)

where we are using the notation ¥/"(6, ¢} instead of e Show that

- he) he,,
LY"@.¢)=—=1""6.6)+ 2176, 9)

2
and
7,100, 9) = nypeige, gy - Minyroig, )
e 2i 2i
Use this result to show that
(Ly={L)=0

X

for any rotational state (sce Problem 6-14).
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Add the first two equations given in the problem to obtain

(L, + L)Y®, ¢) =he) ¥ (0. ¢) + he;p, Y76, )
2L Y76, ¢) = kel Y8, ¢) + hep, Y70, )
R het hic,
LY@ o) ==2re. 9+ 20,9

Subtract the first two equations given in the problem fo obtain

(L= L)Y, ¢) =helh Y0, ¢) — by, Y716, )
UL YO, ¢) =Rt Y0, ) +hc, Y0, ¢)
T m hctﬁ " hc.;:n w1
LYMNE.¢) = S 21 0.0) — =21 0,0) Q)

We will now use these results to show that {L } = ( L},) = 0 for any rotational state.

(L) = f Y9, )L _Y"(9, ¢) sin6d0de
Substituting in from Equation 1 gives

.
(L) = F’% Y70, ) Y0, ¢) sin6d0dg

+h—;ﬂ f Ym0, pY Y8, §) sinBdOde

=

because the functions ¥} (6, ¢) are orthogonal. Likewise,

¥

(L) = f Y70, $Y' LY@, §) sin0dod¢

Substituting in from Equation 2 gives

‘.‘.‘
(L} =h-;’.’" [ Y0, $)* Y7 (9, ¢) sin 0d0d ¢
- I3
FICI #1rm—1 -
——2.’” Yo, ¢y Y8, ¢) sinfdbde
L
=0

because the functions Y;" (8, ¢) are orthogonal.

The Hydrogen Atom

From Equations 6.37 and the definitions of /, . and 137 (Problem 6-438),
L =L + iL,
‘h sin¢ g cotf cos ¢ 9 +h @ 0 td sing 6
=—ih|{ - — COs p— c — — singp—-
a0 06 P T COtOSIneS
h (c0s¢+'sin¢)a+'( ¢+ isi EGa
S — I [—
i Yz i (cos Lsing) co P
o d
=he | — +icotd—
he [89 +ico 8¢]
., 0 0 a3 , B
= —ih (_ smqbgg — cotf cos qb%) ~h (cos qbéa ~ cotd sin qb%)

= h [—‘ (cos ¢ — i sin¢) (% + i {cos¢ — isingb)cot!?a—aa]

6-59. Show that

and
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