
Vibrational and Rotational Spectroscopy of Diatomic Molecules

Spectroscopy is an important tool in the study of atoms and molecules, giving us an understanding
of their quantized energy levels. These energy levels can only be solved for analytically in the case
of the hydrogen atom; for more complex molecules we must use approximation methods to derive
a model for the energy levels of the system. In this paper we will examine the vibration-rotation
spectrum of a diatomic molecule, which can be approximated by modeling vibrations as a harmonic
oscillator and rotations as a rigid rotor. We will use these models to understand the features of the
vibration-rotation spectrum of HCl, allowing us to use the spectrum to learn about properties of the
molecule.
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I. INTRODUCTION

Spectroscopy is the study of how matter interacts with
electromagnetic radiation. Atoms and molecules inter-
acting with light will sometimes emit photons at specific
frequencies; these frequencies depend on the energy level
separation for whatever transitions caused the photon
emission. We can use this to learn about the energy levels
of an atom or molecule.

However, the wavefunctions describing the energy levels
of atoms and molecules more complex than hydrogen
cannot be solved analytically. A good starting point
for analyzing and predicting energy levels is to consider
the energy transitions between vibrational and rotational
states in diatomic molecules. These transitions are small
enough that the molecular orbitals of electrons don’t
change [1].

Figure 1 shows the experimentally-obtained spectrum
of transitions between the ground and first excited vibra-
tional states of HCl [4]. Contained in that spectrum is
valuable information allowing us to find the bond length
and stiffness of HCl [1]. In order to extract this infor-
mation, however, we must first understand where the
features of the spectrum come from. Our goal will be
to understand the physics behind Figure 1; with that
knowledge, we will be able to calculate the bond length
and stiffness of HCl from this spectrum.

II. SPECTROSCOPY BACKGROUND

A typical spectroscopy experiment will involve a source
of photons being directed through a chamber filled with
our molecule of interest in gaseous form. For pure rota-
tional spectroscopy, where the only transitions observed
are transitions between different rotational states, the pho-
tons are typically in the microwave region of the electro-
magnetic spectrum. Infrared light is typical for vibration-
rotation transitions, which involve changing both the
vibrational and rotational energy states [1].

In the experiment described above, the energy of pho-
tons that is emitted via stimulated emission from the
molecule are measured. Our HCl spectrum in Figure 1 is
a plot of photon frequency vs. number of photons; a peak
at a particular frequency ν indicates that lots of photons
were emitted with frequency ν, suggesting that there is

FIG. 1: This is the vibration-rotation spectrum of HCl. The
goal of this paper is to explain the physics behind the spectrum.
This image was taken from [4].

an energy transition with a change in energy equal to hν,
where h is Planck’s constant.

Since we are examining the transitions between energy
eigenstates, we will need to determine what energy transi-
tions in our system are allowed. To determine the allowed
transitions, we will calculate the Einstein coefficient for
stimulated emission, Bab [2]. Consider a molecule with
states |a〉 and |b〉 with energies Ea and Eb, Ea < Eb. A
photon with energy equal to Eb−Ea will, half of the time,
cause the molecule to transition from state |b〉 down to
state |a〉, emitting another photon with energy Eb − Ea.
We can detect this second photon and measure its fre-
quency.

The coefficient Bab is proportional to the probability
that a particular transition will occur. Einstein found
that

Bab =
4π2

3h̄2 |〈a|d |b〉|
2

(1)

where d is the dipole moment [2]. We see that if 〈a|d |b〉
is zero, then that transition will never occur. Thus we
can determine the allowed energy transitions by identify-
ing the set of transitions with non-zero transition dipole
moments.

III. SIMPLE MODELS OF VIBRATIONS AND
ROTATIONS

The vibrations and rotations of a diatomic molecule can
be quite simply modeled using the harmonic oscillator
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and the rigid rotor, respectively, two exactly-solvable
quantum systems. With this alone, a relatively accurate
understanding of the HCl spectrum can be reached.

A. Vibrations Modeled as the Harmonic Oscillator

The potential felt by atoms in a diatomic molecule like
HCl is not a perfect harmonic potential. Assuming the
true potential is V (r) for some internuclear distance r,
we can perform a Taylor expansion of V (r) about re, the
equilibrium distance:

V (r) = V (re)+V ′(re) (r−re)+V ′′(re) (r−re)2+· · · (2)

For small vibrations about equilibrium, we approximate
V ′(re) = 0. We can also define V (re) = 0 since we
only care about relative energies. For small vibrations
(r−re � 1), we can ignore terms with higher than second
order in r. Thus, we arrive at V (r) ≈ V ′′(0)r2 ≡ 1

2kr
2.

From this we can imagine a simplified model of a di-
atomic molecule in which the two atoms are point masses
with mass m1 and m2 connected by a spring with spring
constant k. From classical mechanics, we find the differ-
ential equation describing their motion to be

d2x

dt2
= −

(
k

µ

)
x (3)

where x is the distance between the two spheres and

µ =
m1m2

m1 +m2
(4)

is the reduced mass of the system [1].
This suggests that, if we model the molecule vibra-

tions as a harmonic oscillator, we should arrive at the
Hamiltonian

Ĥ =
p̂2

2µ
+

1

2
µω2

e x̂
2, ωe =

(
k

µ

)1/2

(5)

Our energy eigenstates will therefore have energy

Ev = h̄ωe(v + 1
2 ), v = 0, 1, 2... (6)

where we define v as the quantum vibrational number.
Note that ωe is dependent on the masses of the atoms, not
simply the masses of their bare nuclei; in these vibrational
models, the electrons are considered close to the nuclei
such that they vibrate along with the entire atom [3].

We see that the vibrational energy levels are equally
spaced, each one h̄ωe above the previous level. In order
to determine the energy of photons emitted during energy
transitions, we must first determine the allowed transi-
tions. From equation (1), we know that a non-zero change
in dipole moment corresponds to an allowed transition.
We write

dvv′ = 〈v|d |v′〉 (7)

for the transition from state v to v′. Since this is a three-
dimensional harmonic oscillator, we must consider the x,
y, and z components of d. We will calculate di where
i can be replaced by x, y, and z. Using the harmonic
oscillator raising and lowering operators, we find

di,vv′ = 〈v| qx̂i |v′〉

=

√
h̄

2µω
〈v| q(âi + âi

†) |v′〉

∝
√
v′ 〈v|v′ − 1〉+

√
v′ + 1 〈v|v′ + 1〉 .

(8)

We see from equation (8) that the dipole moment for all
dimensions only is non-zero when ∆v = v′− v = ±1. The
energy of photons, Eγ , emitted during allowed transitions
from v + 1 to v is

Eγ = −(∆E) = Ev+1 − Ev = h̄ωe. (9)

Interestingly, we find that the photon energy does not
depend on v at all. This tells us that we should observe
emitted photons only with energy h̄ωe, giving us a single
peak in our spectrum. However, this is not what we
observe in Figure 1. To understand where all the peaks
come from, we must investigate how rotational transitions
add to our spectrum.

B. Rotations Modeled as the Rigid Rotor

We approximate the rotations of diatomic molecules by
considering two point masses kept a fixed distance apart,
r. This model is called the rigid rotor. From classical
physics, we know the energy of rotation is E = J2/(2I)
where J is the angular momentum and I is the moment
of inertia. In our model, the two rotating point masses
with reduced mass µ will have I = µr2.

We adapt these equations to arrive at a Hamiltonian
for the quantum mechanical rigid rotor, Ĥ = Ĵ2/(2I).
The time independent Schrödinger equation is

Ĵ2

2I
|ψ〉 = E |ψ〉 (10)

We see that the solutions for |ψ〉 will be spherical harmon-

ics, which are eigenstates of Ĵ2. Thus, the wavefunction
for |ψ〉 is

ψJM = YJM = 1√
2π

ΘJM (θ)eiMφ (11)

where ΘJM (θ) = PMJ (cos θ) are Legendre polynomials. It
is easy to find the energy levels, which we write as

Ĵ2

2I
|ψJM 〉 =

h̄2J(J + 1)

2I
|ψJM 〉 ≡ B J(J + 1) |ψJM 〉

(12)

where B = h̄2/(2I) has units of energy. The quantum
numbers J = 0, 1, 2... and M = −J, ...,+J indicate that
|ψJM 〉 is an eigenstate of both Ĵ2 and Ĵz.
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As with vibrational transitions, we can derive the al-
lowed rotational transitions (i.e. the allowed values for
∆M and ∆J) by calculating the transition dipole moment:

dJM ;J′M ′ = 〈ψJ,M |d |ψJ′,M ′〉 . (13)

We can rewrite d in spherical coordinates as

d = d0(sin θ cosφ ex + sin θ sinφ ey + cos θ ez). (14)

We use equations (11), (13), and (14) to find the transition
dipole moment:

dJM ;J′M ′ =

∫ φ=2π

φ=0

∫ θ=π

θ=0

ψ∗JM dψJ′M ′ sin θ dθ dφ

=
d0

2π

[
ex

∫∫
ei(M

′−M)φ ΘJM sin θ cosφΘJ′M ′ sin θ dθ dφ

+ ey

∫∫
ei(M

′−M)φ ΘJM sin θ sinφΘJ′M ′ sin θ dθ dφ

+ ez

∫∫
ei(M

′−M)φ ΘJM cos θΘJ′M ′ sin θ dθ dφ

]
.

(15)

By evaluating these integrals, we find that they are non-
zero only when ∆M = 0,±1 and ∆J = ±1; these are
the only allowed pure rotational transitions, as shown in
Figure 2(A) [3].

Now that we know the allowed energy transitions, we
again calculate the energy of photons emitted during these
transitions. From equation (12) we see that the energy is
dependent only on J , so we don’t have to consider how
changes in M will affect the energy. The change in energy
of rotational transitions from J + 1 to J is

Eγ = −(∆E) = EJ+1 − EJ
= B (J + 1)(J + 2)−B J(J + 1)

= 2B (J + 1).

(16)

Unlike with vibrational energy transitions, the energy of
an emitted photon is dependent on the starting value of
J . We will therefore observe photons with energies equal
to 2B(J + 1). If we plot the energies of detected photons
as shown in Figure 2(B), we see that the spacing between
peaks is 2B.

Now we begin to see something closer to the vibration-
rotation spectrum shown in Figure 1 with several equally
spaced peaks. However, there are still features of Figure
1 that aren’t explained, including the gap in the middle
where it seems to skip a peak. To explain this, we will
examine transitions where both v and J change.

C. Combining Vibrations and Rotations

We will now consider the transitions between vibra-
tional and rotational eigenstates simultaneously. For

Energy of detected photonsJ = 0
J = 1

J = 2

J = 3

(B)(A)

J
=
0
→
1

J
=
1
→
2

J
=
2
→
3

2B

FIG. 2: The diagram in (A) illustrates the rotation energy
levels and possible transitions for emission of a photon. A
sketch of the corresponding spectrum is shown in (B). The
spacing between peaks is equal to 2B.

convenience, we define the function G(v) to be the con-
tribution to energy from vibrations; similarly F (J) is
defined to be the contribution to energy from rotations.
Equations (6) and (10) give us

G(v) = h̄ωe(v + 1
2 ), v = 0, 1, 2...

F (J) = B J(J + 1), J = 0, 1, 2...
(17)

First, we want to understand the relative scales of vi-
brational and rotational transitions. Experimental values
for B indicate it is much smaller than typical values for
vibrational energy level spacing [3]. Knowing this, we
deduce that emission of a photon would require that v
decrease but would not restrict J to necessarily decrease.
This is illustrated in Figure 3. Thus we consider the
energy transitions for ∆v = −1 and ∆J = ±1

We note that most physical chemistry textbooks ex-
amine the energy transitions for absorption of a photon.
However, we will be doing our calculations to find the
energy of an emitted photon, since that is what physically
happens during a spectroscopy experiment. As a result,
some of our signs may be flipped compared to our ref-
erences (e.g. while it is standard to consider transitions
where ∆v = +1, we will look at ∆v = −1).

We can calculate the possible photon energies for transi-
tions with ∆v = −1 and ∆J = ±1 just like we did before.
The energy of an emitted photon for ∆J = +1 is

Eγ,+1 = −(∆E) = Ev,J − Ev−1,J+1

= G(v) + F (J)−G(v − 1)− F (J + 1)

= h̄ω − 2B(J + 1)

(18)

and for ∆J = −1 is

Eγ,−1 = −(∆E) = Ev,J − Ev−1,J−1

= G(v) + F (J)−G(v − 1) + F (J − 1)

= h̄ω + 2BJ.

(19)

Like with the pure rotational spectrum shown in Figure
2, we see that the energy of photons for these transitions
have a spacing of 2B. Interestingly, we have no spectral
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P branch R branch
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J = 2

J = 3

J = 1
J = 0

J = 2

J = 3

v = 0

FIG. 3: This illustrates the vibration-rotation energy levels
and shows possible transitions for emission of a photon. For
the energy to decrease, we must have ∆v = −1, but J can
increase or decrease by ±1.

peak at exactly h̄ωe as we did when only considering vibra-
tional transitions. This is because there is no transition
for ∆J = 0.

There now appear to be two groups of spectral peaks on
either side of h̄ωe. One group is called the “P branch” and
corresponds to ∆J = +1 transitions; the other is called
the “R branch” and corresponds to ∆J = −1 transitions.
These results closely match the HCl spectrum we saw in
Figure 1. An annotated version of the spectrum is shown
in Figure 4.
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FIG. 4: Here again is the vibration-rotation spectrum of HCl,
annotated to show our results in analyzing the vibration-
rotation energy transitions.

Notice there are still some aspects of the HCl spectrum
that can’t be explained from what we have done so far.
For example, the spacing in the P branch is larger than in
the R branch. In order to explain this, we will have to find
more accurate models for the vibrational and rotational
energy eigenstates of a diatomic molecule.

IV. CORRECTIONS TO THE SIMPLE MODELS

There are several adjustments to be made to our models
above in order for them to more accurately explain the
vibration-rotation spectrum of HCl. We will first discuss
the physical motivations for two important corrections –
vibration-rotation dependence and centrifugal distortion
– and examine how they affect the HCl spectrum. We
will then derive them more rigorously in Section IV-C by
examining the Dunham potential.

A. Vibration-Rotation Dependence

Our first correction comes from the fact that rotational
energy levels depend on the vibrational energy level. We
know that the energy levels of the rigid rotor are de-
pendent on the distance between the two atoms. This
distance will change as the molecule vibrates with different
energies.

This results in a dependence on the vibrational quantum
number, v, in F (J) from equation (17). We replace B
with

Bv ≡ Be − αe(v + 1
2 ) (20)

where Be = h̄2/(2I) and αe = B2
e/(h̄ωe).

By calculating the energy level transitions, we will see
that this correction helps to explain the difference in spac-
ing between peaks in the R and P branches. Consider the
transition from v = 1 to v = 0. The ∆J = +1 transition,
corresponding to the P branch, will have spectral peaks
at

Eγ,+1 = −(∆E) = E1,J − E0,J+1

= G(1) + Fv=1(J)−G(0)− Fv=0(J + 1)

= h̄ωe − 2B0 + (B1 − 3B0)J + (B1 −B0)J2

(21)

and the ∆J = −1 transition, corresponding to the R
branch, will have spectral lines at

Eγ,−1 = −(∆E) = E1,J − E0,J−1

= G(1) + Fv=1(J − 1)−G(0)− Fv=0(J)

= h̄ωe + (B1 +B0)J + (B1 −B0)J2.

(22)

When we substitute the expressions for B1 and B0 in
equation (20), we find

Eγ,+1 = h̄ωe − 2Be + αe − 2BeJ − αeJ2

Eγ,−1 = h̄ωe − (2Be − 2αe)J − αeJ2.
(23)

From equation (23) we see that, as J increases, the space
between spectral peaks in the P branch (∆J = +1) is
2Be, while the spacing in the R branch (∆J = −1) is
2Be − 2αe. Thus, the spacing between peaks in the R
branch is smaller than in the P branch. This explains the
difference in spacing between the branches that we see in
the HCl spectrum.
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B. Centrifugal Distortion

Our next correction to the simple model also comes
from the fact that the bonds of diatomic molecules are not
perfectly rigid. The internuclear distance will vary with
rotational energy because the centrifugal force will pull
the atoms father apart from each other as the molecule
rotates faster. This effect, known as centrifugal distortion,
is accounted for by adding a term to F (J):

F (J) = BJ(J + 1)−D(J(J + 1))2. (24)

where D is the centrifugal distortion constant, with units
of energy. We will describe the derivation of this term in
detail in Section IV-C.

We now examine how this affects our HCl spectrum.
The energy of a photon emitted due to a pure rotational
transition from J + 1 to J is now

Eγ = F (J + 1)−F (J) = 2B(J + 1)− 4D(J + 1)3. (25)

The spacing between peaks is no longer be 2B, but is
instead 2B− 12D− 24DJ − 12DJ2. As J gets large, the
spacing between peaks will decrease. This effect can be
seen in our HCl spectrum when the spacing of peaks near
the edges of Figure 1 are examined.

C. The Dunham Potential

Now that we have an idea of what corrections need
to be made, we shall delve into the math supporting
them. The Dunham potential considers the potential,
V (r), of a vibrating and rotating molecule, which varies
with the internuclear distance, r. Unlike in Section III-
A, we will not approximate the potential as a harmonic
oscillator. It is convenient to use a dimensionless variable,
ξ ≡ (r − re)/re, where re is the equilibrium internuclear
distance.

We will consider how this potential fits into a Hamilto-
nian accounting for both vibrations and rotations. The
Schrödinger equation, slightly rearranged, will read

d2ψ

dξ2
+

2mr2
e

h̄2

(
E − V (ξ)− Ĵ2

2mr2
e(1 + ξ)2

)
ψ = 0 (26)

where the last term, which is dependent on J , comes from
the centrifugal force of rotations [5]; we will define this
term to be

Vcent =
J(J + 1)

2mr2
e(1 + ξ)2

. (27)

We now expand V (ξ) as a Taylor series about ξ = 0 [5]:

V (ξ) = V (0) +
dV

dξ

∣∣∣∣
0

ξ +
d2V

dξ2

∣∣∣∣
0

ξ2 + · · · (28)

Like in Section III-A, dV
dξ

∣∣
0

= 0 because ξ = 0 is at the

minimum of the potential, and we define V (0) to be equal
to zero since we only care about relative energies.

To find a more accurate model than before, we consider
higher order terms in the expansion of V (ξ). First, we
rewrite our expansion of V (ξ) in equation (28) to make
constants easier to keep track of:

V (ξ) = a0ξ
2(1 + a1ξ + a2ξ

2 + · · · ). (29)

Since we want to look at the rotational transitions, we will
examine Veff = V (ξ) + Vcent(ξ). We can expand Vcent(ξ),
defined in equation (27), as a Taylor series about ξ = 0
so that it matches the form of V (ξ). Combining this with
equation (29), we find

Veff(ξ) = a0ξ
2(1 + a1ξ + z2ξ

2 + · · · )
+BeJ(J + 1)(1− 2ξ + 3ξ2 − 4ξ4 + · · · )

(30)

where Be = h̄2/(2I) [5].
Now we can use the WKB semiclassical approximation

and the quantization condition for a “soft wall” potential
to find the energy levels [3]. WKB theory tells us that

√
2µ

h̄

∫ r2

r1

√
E − V (r)dr = (v + 1

2 )π (31)

where r1 and r2 are the classical turning points of V (r)
at energy E [2]. In his paper The Energy Levels of
a Rotating Vibrator, Dunham solves this integral with
the potential in equation (30) through a series of Taylor
expansions and approximations. This long, but relatively
straightforward calculation is discussed further in his
paper [5]. He ultimately finds the energy levels to be
given by

EvJ =
∑
jk

Yjk(v + 1
2 )j(J(J + 1))k (32)

where Yjk is a constant, different for every j and k. Dun-
ham calculated these constants in terms of a0, a1, ..., then
expressed them in terms of common spectroscopy con-
stants.

These results are often written in the following general-
ized form:

Fv(J) = BvJ(J + 1)−Dv(J(J + 1))2 + · · ·
G(v) = h̄ωe(v + 1

2 )− h̄ωexe(v + 1
2 )2 + · · ·

(33)

where

Bv = Be − αe(v + 1
2 ) + γe(v + 1

2 )2 + · · ·
Dv = De + βe(v + 1

2 ) + · · ·
(34)

This confirms the claims in equations (20) and (24), and
provides new higher order corrections. These higher order
corrections correspond to physical phenomena beyond the
scope of this paper [1]. With the mathematical support
of the Dunham potential, we can feel confident in our
understanding of the features of the HCl spectrum.
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V. DISCUSSION AND CONCLUSION

From the calculations above, we have successfully
achieved an understanding of where the peaks in the HCl
spectrum in Figure 1 come from. The spectrum is of a
transition from v = 1 to v = 0, and each peak corresponds
to a different transition between rotational energy eigen-
states. With this knowledge, we can use the spectrum to
explore many interesting molecular properties.

For example, if we can find a value for ωe, we can
find the bond “stiffness”, k by using the formula ωe =
(k/µ)1/2. We found in Section III-C that the energy
corresponding to h̄ωe is halfway between the two peaks
closest to the center of the spectrum in Figure 4. If we
estimate the positions of those two center peaks to be
8.60× 1013 Hz and 8.72× 1013 Hz, we can conclude that
h̄ωe ≈ h · (8.66× 1013 Hz), where h is Planck’s constant,
as shown in Figure 5(A). By plugging in the known values
for h̄, h, and the masses of hydrogen and chlorine, we find
the bond stiffness to be k ≈ 481N . Despite our rough
estimates, this is quite close to the accepted value for HCl
bond stiffness [4].

hωe ≈ h·(8.66 × 1013 Hz) 4B ≈ h·(0.12 × 1013 Hz)

(A) (B)

hωe

FIG. 5: In (A) we estimated the value of ωe by estimating
the midway point between the two peaks in the HCl spectrum
closest to the center. In (B) we estimated B by approximating
the space between those two peaks to be 4B.

Additionally, we can calculate the bond length of HCl
from this spectrum. We assume that the spacing between
the two peaks shown in Figure 5(B) is approximately
equal to 4B, two times the spacing between rotational

peaks. We know that B = h̄2/(2I) = h̄2/(2µr2). By
plugging in our estimate for B and the known values for
h̄ and the masses of hydrogen and chlorine, we can find
r, the average bond length. As shown in Figure 5(B), we
estimated that 4B ≈ h · (0.12× 1013 Hz). From this we
find the bond length, r, to be approximately 0.13 nm [4].

A more accurate way to find the bond length would be
to use a pure rotational spectrum like the one illustrated
in Figure 2, where the vibrational energy level does not
change. In this situation, there are fewer corrections to
B that need to be made and we can get a more accurate
measure for B and for bond length. Nevertheless, our
estimate from the vibration-rotation spectrum comes very
close to the value often obtained from a pure rotational
spectrum, r = 0.127 nm [4].

Of course, there is still more to uncover from our HCl
spectrum in Figure 1. We did not discuss the physical
meaning behind differences in peak intensities. Addition-
ally, there are affects not directly relevant to the spectrum
in Figure 1 that are still important areas of study. For
example, one could study vibrational transitions other
than v = 1 to v = 0 and observe effects like vibrational
overtones [1].

Finally, one can go beyond diatomic molecules to study
the vibration-rotation spectra of polyatomic molecules.
Polyatomic molecules have different selection rules, allow-
ing for transitions where ∆J = 0; this gives rise to a “Q
branch” which appears in between the P and R branches
in the spectrum [3].

Through spectroscopy, we are able to observe scores
of properties of diatomic molecules and beyond, giving
us a window through which to study their fundamental
quantum structures. Spectroscopy allows us to test our
models and, as we did in this paper, to use experimental
data to correct our models to arrive at ever more precise
predictions.
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